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Abstract

In this paper we consider a continuous version of cellular automata
(Fuzzy CA) obtained by “fuzzification” of the disjunctive normal form
which describes the corresponding Boolean rule. We concentrate on Fuzzy
rule 90, whose Boolean version has deserved some attention for the com-
plex patterns it generates. We show that the behavior of Fuzzy rule 90 is
very simple, in that the system always converges to a fixed point. In the
case of finite support configurations, we also show aperiodicity of every
temporal sequences, extending and complementing Jen’s result on aperi-
odicity of Boolean rule 90. We finally show and analyze the remarkable
fact that, depending on the level of state-discreteness used to visualize the
dynamics of Fuzzy 90, the display might show (after a transient) the well
known complex Boolean behavior instead of the (correct) convergence to
a fixed point. The results of the analysis lead not only to a caveat on
the dangers of visualization, but also an unexpected explanation of the
dynamics of Boolean rule 90.

1 Introduction

The existing models for spatially extended systems have been extensively studied
and applications have been found in a variety of contexts. For example, Boolean
cellular automata (CA) have been introduced by Von Neumann as models of self-
organizing/reproducing behaviors [15] and their applications range from ecology
to theoretical computer science (e.g., [5, 7, 13, 16]); Coupled Map Lattices
(CML) have been introduced by Kaneko as simple models with the features of
spatiotemporal chaos, and have now applications in many different areas like
fluid dynamics, biology, chemistry, etc. (e.g., [1, 11, 12]).
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These models correspond to different levels of “discreteness”; for example,
Partial Differential Equations represent the continuous extreme (being continu-
ous in space, time and states), Cellular Automata represent the discrete extreme
(being discrete in space, time, and state), Coupled Map Lattices are somehow
in between (being discrete in space, time, but continuous in state).

An interesting area of investigation is the relationship among the different
levels of discretization; in particular, some studies have been done to approxi-
mate CML by CA; i.e., to “discretize” some types of CML (e.g., [2, 3]).

Fuzzy CAs are an attempt to perform the reverse process; i.e., to start from
a CA and “fuzzify” the disjunctive normal form which describes its rule [4].
Introduced to study the impact that state-discretization has on the behavior of
these systems, they have been used to investigate the result of perturbations
(e.g. noisy sources, computation errors, mutations, etc.) on the evolution of
Boolean CA [6]. In this sense, this continuous-state CA model is a particular
case of CML.

The goal of our work is the analytical study of dynamical properties of Fuzzy
CA rules which generalize Boolean CAs. In this paper, we focus on Rule 90; its
Boolean evolution, although linear, is considered to be complex and has been
object of extensive investigation (e.g., see [9, 10, 14]).

We first show that the behavior of the Fuzzy version, which has never been
studied before, is actually very simple: independently of initial configurations,
the system converges to a fixed homogeneous configuration. In the particular
case of finite support configurations, we generalize Jen’s result [10, Prop. 2]
on aperiodic sequences in Boolean Rule 90: we prove aperiodicity of temporal
sequences in each site of the spatio-temporal diagram of Fuzzy Rule 90, we
actually show periodicity also in every diagonal and even in every nontrivial
temporal sequence.

We then observe an interesting behavior of the rule in the visualization
process. When visualizing the space-time diagram of Fuzzy rule 90, the interval
[0,1] must be discretized, since only a finite number of states can obviously be
represented. We show that this discretization process, inevitable for displaying
the behavior of the rule, is however very dangerous in that it could mislead the
observer by showing a totally incorrect dynamics. In fact, when the fixed point
1
2 is an extreme of discretization interval, the space-time diagram of Fuzzy rule
90 shows fractal-like patterns, although the system actually converges to the
fixed point.

We show that, such a wrong display, due to a certain discretization of the
state space, after a short transient, surprisingly shows the exact same behavior of
Boolean rule 90. Our analysis of this phenomenon provides an explanation about
the dynamics of Boolean rule 90: its complex patterns describe the oscillations
of Fuzzy Rule 90 around its fixed point.
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2 Basic definitions

A cellular automaton is a collection of cells arranged on a graph. All cells
share the same local space (i.e., the set of values cells range in), the same
neighborhood structure (i.e., the cells to which a cell is connected), and the
same local function (i.e., the function defining the effect of neighbors on each
cell, also called transition function or rule). The global evolution is defined by
the synchronous update of all values according to the local function applied to
the neighborhood of each cell. A configuration of the automaton is a description
of all cell values.

Given a linear bi-infinite lattice of cells, the local Boolean space {0, 1}, the
neighborhood structure 〈 left neighbor, itself, right neighbor 〉, and a local rule
g : {0, 1}3 7→ {0, 1}, the global dynamics of an elementary CA is defined by:

f : {0, 1}Z 7→ {0, 1}Z

s.t. ∀i ∈ Z, f(x)i = g(xi−1, xi, xi+1).

The local rule is defined by the 8 possible local configurations a cell can detect
in its direct neighborhood:

(000, 001, 010, 011, 100, 101, 110, 111)→ (r0, · · · , r7),

where each triplet represents a local configuration of the left neighbor, the cell
itself, and the right neighbor. In general, the value

∑

i=0:7 2iri is used as the
name of the rule. The local rule of any Boolean CA is canonically expressed as
a disjunctive normal form:

g(x1, x2, x3) = ∨i|ri=1 ∧j=1:3 x
dij

j

where dij is the j-th digit, from left to right, of the binary expression of i, and
x0 (resp. x1) stands for ¬x (resp. x).

Definition 1 A Fuzzy CA is obtained by fuzzification of the local function of a

Boolean CA: in the disjunctive normal form, (a∨b) is replaced by (a+b), (a∧b)
by (ab), and (¬a) by (1 − a). The resulting local rule is a real-valued function

simulating the original function on {0, 1}3, with l(a, 0) = 1 − a and l(a, 1) = a:

g : [0, 1]3 7→ [0, 1]
s.t. g(x1, x2, x3) =

∑

i=0:7 ri

∏

j=1:3 l(xj , di,j).

The usual fuzzification of the expression a∨b is max{1, a+b} so as to ensure
that the result is not larger than 1. Note, however, that taking (a + b) for the
CA fuzzification does not lead to values greater than 1 since the sum of all the
expressions for Rule 255 is 1, and so every possible partial sum must be bounded
by 1.

Example 2 Consider rule 14 = 2 + 4 + 8:

(000, 001, 010, 011, 100, 101, 110, 111)→ (0, 1, 1, 1, 0, 0, 0, 0).
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The canonical expression of rule 14 is:

g14(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3).

The fuzzification process after simplification yields:

g14(x1, x2, x3) = (1 − x1) · (x2 + x3 − x2 · x3).

In the rest of this paper, unless specified otherwise, we will study Fuzzy Rule
90, defined by the local function

g : [0, 1]3 7→ [0, 1]
s.t. g(x, y, z) = x + z − 2xz.

3 Homogeneous configurations

The first step of our analysis consists in a strong assumption on the values under-
taken by the fuzzy cells of the automaton we consider: they are all initialized to
the same value and, as the global dynamics is homogeneous, all subsequent con-
figurations are homogeneous, too. This reduces the infinite-dimensional system
to a a one-dimensional one, the dynamics of which is analyzed in a straightfor-
ward way. The motivation is to get a clear idea of the local process.

The reduced function is

h : [0, 1] 7→ [0, 1]
s.t. h(x) = 2x(1 − x).

It has two fixed points: 0 and 1
2 . The absolute value of the first derivative

h′(x) = 2(1 − 2x) evaluated in each of these fixed points gives |h′(0)| = 2 and
|h′(1

2 )| = 0. Thus, 0 turns out to be repelling, and 1
2 is an attractor. The second

order Taylor expansion of h around x is

h(x + u) = h(x) + h′(x)u +
1

2
h′′(x)u2

= 2x(1 − x) + (2 − 4x)u − 2u2

and, around the fixed points, we have h(u) ≈ 2u and h(1
2 +u) = 1

2 −2u2. Initial
conditions close to zero are essentially multiplied by two, and attracted by 1

2 :
for any u ∈ (− 1

2 , 1
2 ), h(1

2 + u) is strictly closer to 1
2 than 1

2 + u.
Thus, this one-dimensional system behaves in a very simple way: 0 is a

repelling fixed point; 1 is attracted to 0 in one iteration; 1
2 is an attracting fixed

point whose basin is the open interval (0, 1).

4 Single values in zero backgrounds

In this second analysis, all cells but one are initially set to 0. This step is
motivated by the classical analysis of finite support configurations of Boolean
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Local states
Time · · · −3 −2 −1 0 1 2 3 · · ·

0 · · · 0 0 0 1
4 0 0 0 · · ·

1 · · · 0 0 1
4 0 1

4 0 0 · · ·
2 · · · 0 1

4 0 3
8 0 1

4 0 · · ·
3 · · · 1

4 0 7
16 0 7

16 0 1
4 · · ·

4 · · · 0 15
32 0 63

128 0 15
32 0 · · ·

...
...

Table 1: Evolution from 1
4 in a zero background.

CA [10]. For example, starting from a single value a = 1
4 in a zero background,

the spatio-temporal evolution is represented in Table 1.
More abstractly, assuming a 6= 0 and ga(x) = g(x, •, a) = g(a, •, x) = a +

x(1 − 2a), we have the evolution of Table 2. What is the rule underlying these

Local states
Time · · · −3 −2 −1 0 1 2 3 · · ·

0 · · · 0 0 0 a 0 0 0 · · ·
1 · · · 0 0 a 0 a 0 0 · · ·
2 · · · 0 a 0 h(a) 0 a 0 · · ·
3 · · · a 0 ga(h(a)) 0 ga(h(a)) 0 a · · ·
4 · · · 0 g2

a(h(a)) 0 h(ga(h(a))) 0 g2
a(h(a)) 0 · · ·

...
...

Table 2: Evolution from a in a zero background.

numbers, if any?

Definition 3 The spatio-temporal diagram from an initial configuration x0 is

the double sequence (xt
i)i∈Z,t∈N where t expresses time steps, and i denotes cell

indices.

Definition 4 The jth diagonal is the sequence (x
i+2(j−1)
i )i≥0.

Definition 5 The light cone from a cell xt
i is the set {xt+p

j | p ≥ 0 ∧ j ∈
{i − p, · · · , i + p}}.

Proposition 6 The second diagonal of the spatio-temporal diagram obtained by

the evolution of Fuzzy Rule 90 from a single value a ∈ (0, 1) in a zero background

converges to 1
2 .
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Proof. The first diagonal starting from the central non-zero value a is uni-
formly equal to a. The second diagonal, from h(a), can be obtained by successive
iterations of ga(x). It has exactly one fixed point x = 1

2 , independently of a.
The absolute value of the slope of this linear function is smaller than one iff
a ∈ (0, 1). This means that the second diagonal converges to 1

2 as time goes to
infinity.

Let f(t, i) =

(

t
t+i
2

)

, where

(

a

b

)

= a!
b!(a−b)! .

Proposition 7 The spatio-temporal diagram from a single value a ∈ (0, 1) in

a zero background is explicitly given by: ∀t ∈ N,

xt
i =

{

1
2 (1 − (1 − 2a)f(t,i)) if t + i is even and i ∈ {−t, · · · , t}
0 otherwise

Proof. By induction. The first case is straightforward: x0
0 = a and ∀i 6=

0, x0
i = 0. The inductive case is twofold.

• If (t + 1)+ i is odd, i > t + 1 or i < −t− 1, then xt
i−1 = xt

i+1 = 0, whence

xt+1
i = 0.

• Otherwise, (t + 1) + i and t + (i− 1) are even, and i ∈ {−t− 1, · · · , t + 1}.
Thus, if −(t − 1) ≤ i ≤ t − 1, then

xt+1
i = g(xt

i−1, •, x
t
i+1)

=
1

2
(1 − (1 − 2a)f(t,i−1)+f(t,i+1))

=
1

2
(1 − (1 − 2a)f(t+1,i)).

The two limit cases are i − 1 = −t − 2 and, symmetrically, i + 1 = t + 2.
Let us examine the first one:

xt+1
i = xt+1

−t−1 = g(xt
−t−2, •, x

t
−t) = g(0, •, xt

−t) = xt
−t

=
1

2
(1 − (1 − 2a)f(t,−t)) = a.

Thus, any infinite sequence of non-zero terms in the diagram converges to
1
2 , provided that it is embedded in the light cone originating from the central a,
and the sequence of non-zero time steps tends to infinity. The central column,
any diagonal, any sequence containing horizontal segments or even backward
loops, they all converge to 1

2 .

Corollary 8 Let x0
0 = a ∈ (0, 1), x0

i6=0 = 0, i : N 7→ Z and τ : N 7→ N

be two functions such that i(0) = τ(0) = 0, |i(j)| ≤ τ(j), x
τ(j)
i(j) 6= 0, and

limj→∞ τ(j) = ∞. Then, the sequence (x
τ(j)
i(j) )j∈N converges to 1

2 .
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Remark 9 Exactly as in nontrivial evolutions of Boolean Rule 90 [10], any
nontrivial infinite sequence of states taken in the spatio-temporal evolution of
Fuzzy Rule 90 from a single value in a zero background is aperiodic, due to
Proposition 7. On the other hand, any such sequence converges to a specific
value, here 1

2 , which was not the case of Boolean Rule 90.

Remark 10 If the initial configuration contains two consecutive values, a and
b, in a zero background, the result is obtained by superposition of the individual
diagrams obtained from a and b. Let (xt

i) be such that x0
0 = a and ∀i 6= 0, x0

i = 0,
(yt

i) be such that y0
1 = b and ∀i 6= 1, y0

i = 0, then (zt
i = xt

i + yt
i) is the diagram

starting from z0
0 = a, z0

1 = b and ∀i ∈ Z\{0, 1}, z0
i = 0. Unfortunately, this

property cannot be extended to larger finite support configurations.

5 Infinite heterogeneous configurations

Here, we extend the analysis to evolutions starting from heterogeneous con-
figurations, i.e., initial values chosen arbitrarily in (0, 1). With such a weak
assumption, we are, of course, not able to derive the closed-form expression of
all xt

i, but the last result mentioned in §4 still holds: we prove that any se-
quence of non-zero terms in the spatio-temporal diagram converges to 1

2 . We
first establish useful lemmas, we then prove the main result.
Let us rewrite the local function g as follows:

φ(x, y) = g(
1

2
+ x, •,

1

2
+ y) =

1

2
− 2xy. (1)

Lemma 11 The function g is contracting around 1
2 :

∀x, y ∈ (0,
1

2
) ∪ (

1

2
, 1), |g(x, •, y) −

1

2
| < min{|x −

1

2
|, |y −

1

2
|}.

Proof. Let us change the variables: x = 1
2 + v, y = 1

2 +w, and rewrite the left-
hand side expression: |g(x, •, y)− 1

2 | = |g(1
2 + v, •, 1

2 +w)− 1
2 | = |φ(v, w)− 1

2 | =
|2vw|. Since 0 < |w| < 1

2 , we have |2vw| < |v| = |x − 1
2 |. Symmetrically,

|2vw| < |w| = |y − 1
2 |.

Lemma 12 The function g is k-contracting around 1
2 on [1−k

2 , 1+k
2 ]:

∀x, y ∈ [
1 − k

2
,
1 + k

2
], |g(x, •, y) −

1

2
| ≤ k min{|x −

1

2
|, |y −

1

2
|}.

Proof. Changing variables as in the previous lemma, we have |g(x, •, y)− 1
2 | =

|2vw| ≤ 2k
2 |v|, since y = w + 1

2 ∈ [1−k
2 , 1+k

2 ].

The next example gives a convergence rate for purely temporal sequences
of the diagram (i.e., columns), where every other row is ignored (since g does
not depend on its central argument). The proof easily follows from the previous
lemma.
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Example 13 If x0 ∈ (0, 1)Z and x0
0 ∈ [ 1−k

2 , 1+k
2 ], then |x2

0 − 1
2 | ≤ k2|x0

0 − 1
2 |,

and the sequence (x2t
0 )t∈N converges to 1

2 .

If connected paths are considered in the spatio-temporal diagram, the con-
vergence rate is k.

Example 14 If x0 ∈ (0, 1)Z and x0
0 ∈ [1−k

2 , 1+k
2 ], then |x1

±1−
1
2 | ≤ k|x0

0−
1
2 |, and

any connected path (xj

i(j))j∈N such that i(0) = 0 and ∀j ∈ N, i(j + 1) = i(j) ± 1,

converges to 1
2 .

Finally, using Lemma 12 again, we generalize Corollary 8: any path in the
spatio-temporal can be considered, and still lead to the same conclusion.

Theorem 15 Let x0 ∈ [0, 1]Z be such that lim inf x0
i > 0 and lim sup x0

i < 1,
i : N 7→ Z and τ : N 7→ N be two functions, τ(0) = 0, and limj→∞ τ(j) = ∞.

Then, the sequence (x
τ(j)
i(j) )j∈N converges to 1

2 .

Proof. Let us define k = 2 max{| lim inf x0
i −

1
2 |, | lim supx0

i −
1
2 |}. We have of

course 0 < k < 1 and, ∀i, x0
i ∈ [ 1−k

2 , 1+k
2 ]. Thus, |x1

i±1 − 1
2 | ≤ k|x0

i − 1
2 | ≤ k k

2 .
The evolution does not depend on position i anymore; in fact, ∀t, i, |xt

i −
1
2 | ≤

1
2kt+1, whence the result.

Indeed, the function g may be rewritten in the form 1 − 2g(x, z) = (1 −
2x)(1−2z), and this suggests that a different proof of the convergence to 1

2 may
be obtained by a simple variable change. Since we know that 1 − 2g(x, z) = (1−
2x)(1 − 2z), applying this rule (n − 1) times to a finite string a1a2a3 . . . an, we
have:

a1a

0

@

n − 1
1

1

A

2 a

0

@

n − 1
2

1

A

3 . . . a

0

@

n − 1
n − 2

1

A

n−1 an.

If all the ai’s are bounded by 1− ε, this is bounded by (1− ε)2
n−1

. This clearly
goes to 0 exponentially fast, implying convergence to 1

2 in the original variables.

6 On the observation precision and the Boolean

case

In the previous sections we have shown that that Fuzzy Rule 90 has a very
simple behavior: it attracts everything to 1

2 . The result leads to the intriguing
question: where do the complex patterns in its Boolean evolution come from?

We know that Fuzzy Rule 90 attracts everything to 1
2 . We also know that

the values alternate around this point as they get closer to it: this is due to
the minus sign appearing in equation (1). The corresponding “rule table” is
detailed in Table 3 left.
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Figure 1: Evolution of Fuzzy rule 90. Grey levels indicate different value ranges.
Times evolves from top to bottom. Left: 127 discretization intervals have been
used and the fixed point 1

2 is in the middle of the central interval. Right: 128
discretization intervals have been used and the fixed point 1

2 is on the border of
one of the central intervals.

Consider a partition of the interval [0, 1] in a finite number of subintervals,
used as coarse-grained approximations of the real numbers. Such a discretiza-
tion is necessary for visualizing the space-time diagram of Fuzzy rule 90. The
graphical representation will strongly depends on whether 1

2 is in the middle or
on a border of one of the discretization subintervals.

If the fixed point 1
2 is in the middle of a subinterval, the observation becomes

homogenenous after a few steps, as all the iterations get quickly very close to
the fixed point (see Fig. 1 left). On the contrary, if the fixed point is on the
border of some subinterval, the values will alternate around the two subintervals
bordering on the fixed point according to the rule of Table 3 left. Thus, the
visualization will show the alternance between intervals (i.e., using different grey
levels, depending upon whether they are smaller or greater than 1

2 ) creating the
seemingly ”chaotic” triangular patterns found in the Boolean evolution (see
Fig. 1 right); this is exactly what happens in the binary case, when the interval
[0, 1] is divided into two subintervals. In other words, if the fixed point is
on the border of some subinterval, the visualization displays a consequence of
the discretization process and misleads the observer not showing the inherent
convergence to 1

2 which is the basic behavior of Fuzzy Rule 90.
This leads to an observation on the observation precision. In fact, as we

have seen, the same dynamics can be observed as very simple or totally com-
plex, depending upon whether the attracting fixed point falls in the interior
or on the border of some discretization interval. In other words, the observed
behaviour is an artifact of the visualization toos used. This very important
phenomenon is not a specific feature of Fuzzy Rule 90; actually, when looking
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Behavior around 1
2 Boolean Rule 90

x y z g(x, y, z)
− − − −
− − + +
− + − −
− + + +
+ − − +
+ − + −
+ + − +
+ + + −

x y z g(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Table 3: Left: Behavior around 1
2 . The rule table is obtained from equation (1):

− (resp. +) stands for “smaller (resp. greater) than 1
2”. Right: Rule table of

Boolean Rule 90

at the behavior of any continous system by simulation, the descriptive precision
used is of utmost importance on the observed complexity and it deserves a deep
investigation. This indicates the limits and the dangers of visualization tools
and of experimental analysis.

Another very important observation concerns the question we posed at the
beginning of this section: where the ”complex” patterns of linear Boolean rule 90
come from? In the Fuzzy case, we have seen that, if 1

2 is the extreme of one of the
discretization subintervals, the display hows, after a short transient, the exact

same behavior of Boolean rule 90 (see Fig. 2). This surprising and remarkable
observation is actually explained by the fact that the table of Boolean Rule
90 (see Table 3 rigth) is exactly the same as the one describing the alternance
around the fixed-point of Fuzzy Rule 90 (see Table 3 left) where − (resp. +)
is replaced by 0 (resp. 1). This provides the first explanation of the “complex”
nature of the evolution of the Boolean rule: The well-known observed dynamics
of Boolean Rule 90 (see Fig. 2) describes the behavior of Fuzzy Rule 90 around
its fixed point.

7 Concluding Remarks

An interesting open direction is to find general techniques for analyzing the
Fuzzy rules’ behaviors and to apply them to classes of rules instead of having
to perform case-by-case analysis.

Some transformations and operations on the rules (which preserve qualita-
tive and/or quantitative dynamic properties) could be used to extend the class
of rules to which our method applies. Infact, building homomorphisms between
known and new systems, composing known rules to obtain new ones, and com-
bining individual properties to get homomorphically global ones, the methods
described in this paper can be applied, with minor modifications, to the Fuzzy
Rules 60, 102, 153, 165, and 195 where we find the same convergence properties.
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Figure 2: Evolution of Boolean rule 90 from a random initial configuration. The
black pixels correspond to the value 0, the white pixels correspond to 1.
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