
Algorithmica manuscript No.
(will be inserted by the editor)

Ping Pong in Dangerous Graphs:

Optimal Black Hole Search with Pebbles

Paola Flocchini ·

David Ilcinkas ·

Nicola Santoro

Received: date / Accepted: date

Abstract We prove that, for the black hole search problem in networks of
arbitrary but known topology, the pebble model of agent interaction is compu-
tationally as powerful as the whiteboard model; furthermore the complexity is
exactly the same. More precisely, we prove that a team of two asynchronous
agents, each endowed with a single identical pebble (that can be placed only on
nodes, and with no more than one pebble per node), can locate the black hole
in an arbitrary network of known topology; this can be done with Θ(n log n)
moves, where n is the number of nodes, even when the links are not FIFO.
These results are obtained with a novel algorithmic technique, ping-pong, for
agents using pebbles.

Keywords Distributed computing · Graph exploration · Mobile agents ·
Autonomous robots · Dangerous graphs

A preliminary version of this paper appeared in the Proceedings of the 22nd International
Symposium on Distributed Computing (DISC 2008) [15].

P. Flocchini
SITE, University of Ottawa, Ottawa, ON K1N 6N5, Canada
E-mail: flocchin@site.uottawa.ca

D. Ilcinkas
LaBRI, CNRS & Université de Bordeaux, France
E-mail: david.ilcinkas@labri.fr

N. Santoro
SCS, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
E-mail: santoro@scs.carleton.ca

2

1 Introduction

1.1 The Framework

Black Hole Search (Bhs) is the distributed problem in a networked system
(modelled as a simple edge-labelled graph G) of determining the location of a
black hole (Bh): a site where any incoming agent is destroyed without leaving
any detectable trace. The problem has to be solved by a team of identical
system agents injected into G from a safe site (the homebase). The team
operates in presence of an adversary that chooses e.g., the edge labels, the
location of the black hole, the delays, etc. The problem is solved if at least
one agent survives and all surviving agents know the location of the black hole
(e.g., see [17]).

The practical interest of Bhs derives from the fact that a black hole can
model several types of faults, both hardware and software, and security threats
arising in networked systems supporting code mobility. For example, the crash
failure of a site in an asynchronous network turns such a site into a black hole;
similarly, the presence at a site of a malicious process (e.g., a virus) that
thrashes any incoming message (e.g., by classifying it as spam) also renders
that site a black hole. Clearly, in presence of such a harmful host, the first
step must be to determine and report its location.

From a theoretical point of view, the natural interest in the computational
and complexity aspects of this distributed problem is amplified by the fact that
it opens a new dimension in the classical graph exploration problem. In fact, the
black hole can be located only after all the nodes of the network but one have
been visited and are found to be safe; in this exploration process some agents
may disappear in the black hole. In other words, while the existing wide body
of literature on graph exploration (e.g., see [1,2,9,10,18,19]) assumes that the
graph is safe, Bhs opens the research problems of the exploration of dangerous
graphs.

Indeed Bhs has been studied in several settings, under a variety of as-
sumptions on the power of the adversary and on the capabilities of the agents;
e.g., on the level of synchronization of the agents; on whether or not the links
are FIFO; on the type of mechanisms available for inter agent communication
and coordination; on whether or not the agents have a map of the graph. In
these investigations, the research concern has been to determine under what
conditions and at what cost mobile agents can successfully accomplish this
task. The main complexity measures are the size of the team (i.e., the num-
ber of agents employed) and the number of moves performed by the agents;
sometimes also time complexity is considered.

In this paper we are interested in the weakest settings that still make the
problem of locating a single black hole solvable. Thus we will make no assump-
tions on timing or delays, and focus on the asynchronous setting. Indeed, while
the research has also focused on the synchronous case [5,7,8,21–23] where all
agents are synchronized and delays are unitary, the largest body of the inves-
tigations has concentrated on the asynchronous one (e.g., [4,11–14,16,20]).

3

More specifically, in synchronous networks, tight bounds have been estab-
lished for some classes of trees [8]. In the case of general networks the decision
problem corresponding to the one of finding the optimal strategy is shown to be
NP-hard [7,22] and approximation algorithms are given in [7] and subsequently
improved in [21]. The case of multiple black holes have been investigated in
[5] where a lower bound on the cost and close upper bounds are given.

In asynchronous networks with whiteboards, a complete characterization
has been done for the localization of a single black hole in a ring [13], pro-
viding protocols that are optimal in size, number of moves, and time. In [12],
arbitrary topologies have been considered and optimal location algorithms
have been proposed under a variety of assumptions on the agents’ knowledge
(knowledge of the topology, presence of sense of direction). In [20], the effects
of knowledge of incoming link on the optimal team size is studied and lower
bounds are provided. The case of black links in arbitrary networks has been
studied in [4,16], respectively for anonymous and non-anonymous nodes pro-
viding non-optimal solutions in the case of multiple black holes and links in
[4], and conditions for solvability in [16]. All the previous literature considers
black holes in undirected graphs; the case of directed graphs has been recently
investigated in [6], where it is shown that the requirements in number of agents
change considerably. A variant of dangerous node behavior is studied in [24],
where the authors introduce gray holes (i.e. black holes with Byzantine behav-
ior, which do not always destroy a passing agent) and consider the periodic
ring exploration problem. Finally, variations of the pebble model where a peb-
ble can be placed on a node in correspondence of ports, or multiple pebbles can
share the same node, have been investigated in [11,14,25]. More details about
those approaches are given in the next Section when describing the challenges
we face when dealing with pebbles.

1.2 The Quest and its Difficulties

In the asynchronous setting, the majority of the investigations operate in the
whiteboard model: every node provides a shared space for the arriving agents
to read and write (in fair mutual exclusion). The whiteboard model is very
powerful: it endows the agents not only with direct and explicit communication
capabilities, but also with the means to overcome severe network limitations;
in particular, it allows the software designer to assume FIFO links (even when
not supported by the system). Additionally, whiteboards allow to break sym-
metry among identical agents. Indeed, whiteboards (and even stronger inter-
agent coordination mechanisms) are supported by most existing mobile agent
platforms [3]. The theoretical quest, on the contrary, has been for the weakest
interaction mechanism allowing the problem to be solved.

A weaker and less demanding interaction mechanism is the one assumed by
the pebble model, used in the early investigations on (safe) graph exploration;
it is provided by identical pebbles (that can be placed on nodes, picked up and

4

carried by the agents) without any other form of marking or communication
(e.g., [2]).

The research goal is to determine if pebbles are computationally as powerful
as whiteboards with regards to Bhs. The importance of this quest goes beyond
the specific problem, as it would shed some light on the relative computational
power of these two interaction mechanisms.

Two results have been established so far in this quest. In [11] it has been
shown that ∆+1 agents1 without a map (the minimum team size under these
conditions), each endowed with an identical pebble, can locate the black hole
with a (very high but) polynomial number of moves. In [14] it has been shown
that two agents with a map (the minimum team size under these conditions),
each endowed with a constant number of pebbles, can locate the black hole in
a ring network with Θ(n log n) moves, where n denotes the number of nodes
in the network.

Although they indicate that Bhs can be solved using pebbles instead of
whiteboards, these results do not prove yet the computational equivalence for
Bhs of these two inter-agent coordination mechanisms. There are two main
reasons for this. The first main reason is that both results assume FIFO links;
note that the whiteboard model allows to work assuming FIFO links, but
does not require them. Hence, the class of networks for which the results of
[11,14,25] apply is smaller than that covered with whiteboards; also such an
assumption is a powerful computational help to any solution protocol. The
second and equally important reason is that these results are not established
within the single pebble model used in the traditional exploration problem.
In fact, in [11,14,25] the agents are allowed to place pebbles not only on
nodes but also on links (e.g., to indicate on which link it is departing); this
gives immediately to a single pebble the computational power of O(log ∆) bits
of information, while additionally in [14,25] each agent has available several
pebbles, and multiple pebbles can be placed at the exact same place to store
even more information.

1.3 Our Results

In this paper, we provide the first proof that, indeed, the pebble model is
computationally as powerful as the whiteboard model for Bhs in networks of
known topology. More precisely, we prove that a team of two asynchronous
agents, each endowed with a single identical pebble (that can be placed only
on nodes, and at no more than one pebble per node) and a map of the graph,
can locate the black hole with Θ(n log n) moves, even if the links are not FIFO.

In other words, for networks of known topology, using pebbles it is possible
to obtain exactly the same optimal bounds for team size and number of moves
as using whiteboards.

1 ∆ denotes the maximum node degree in G

5

Note that our result implies as a corollary an optimal solution for the
whiteboard model using only a single bit of shared memory per node; the
existing solution [12] requires a whiteboard of O(log n) bits at each node.

Our results are obtained using a new and (surprisingly) simple technique
called ping pong. In its bare form, this technique solves the problem but with
O(n2) moves. To obtain the optimal bound, the technique is enhanced by inte-
grating it with additional mechanisms that we have developed using a variety
of novel not-trivial techniques. These mechanisms are the first to overcome
the severe limitation imposed by the lack of the FIFO assumption (available
instead in all previous investigations with whiteboards or pebbles).

The paper is organized as follows. We first define the problem and some
useful terminology in Section 2. We then present our techniques, prove their
properties and analyze their complexity in the case of ring networks (Section
3). In Section 4, we show how to modify and enhance those techniques so to
obtain the same bounds also in the case of arbitrary graphs. Finally, open
research questions and problems are discussed in Section 5.

2 Terminology and Definitions

Let G = (V,E) be a simple biconnected2 graph with n = |V | nodes. At each
node x, there is a distinct label from a totally ordered set associated to each of
its incident links. We shall denote by (G,λ) the resulting edge-labelled graph,
λ being the function specifying the link labels.

Operating in (G,λ) is a team of identical autonomous mobile agents (or
robots). All agents enter the system from the same node, called homebase.
The agents have computing capabilities, computational storage (polynomially
bounded by the size of the graph), and a map of (G,λ) with the indication
of the homebase; they can move from node to neighbouring node, and obey
the same set of behavioural rules (the algorithm). Every agent has a pebble;
all pebbles are identical. A pebble can be carried, put down at a node if no
other pebble is already there, and picked up from a node by an agent without
pebbles.

When an agent enters a node, it can see if there is a pebble dropped there;
it might be however unable to see other agents there or to determine whether
they are carrying a pebble with them.

The system is asynchronous in the sense that (i) each agent can enter the
system at an arbitrary time; (ii) travelling to a node other than the black hole
takes a finite but otherwise unpredictable amount of time; and (iii) an agent
might be idle at a node for a finite but unpredictable amount of time. The
basic computational step of an agent (executed either when the agent arrives
to a node, or upon wake-up) is to look for the presence of a pebble, drop or
pick up the pebble if wanted, and leave the node through some chosen port
(or terminate). The whole computational step is performed in local mutual

2 Note that biconnectivity is necessary for Bhs to be solvable in the worst case [12]. It is
actually sufficient that the removal of the black hole does not disconnect the graph.

6

exclusion as an atomic action, i.e. as if it takes no time to execute it. Links
are not FIFO: two agents moving on the same link in the same direction at
the same time might arrive at destination in an arbitrary order.

To simplify the model, we can assume without loss of generality that the
transition between two states of the agent at a node plus the corresponding
move are instantaneous. In other words, the waiting due to asynchrony only
occurs after the move of the agent. Furthermore we can assume that also the
actions of agents at different nodes occur at different instants.

A black hole is a node that destroys any incoming agent; no observable
trace of such a destruction will be evident to the other agents. The network
contains exactly one black hole and its location is unknown to the agents.
The Black Hole Search problem is to find the location of the black hole. More
precisely, the problem is solved if at least one agent survives, and all surviving
agents know the location of the black hole. An edge is said to be safe if the
black hole is not one of its extremities.

The two measures of complexity of a solution protocol are the number of
agents used to locate the black hole and the total number of moves performed
by the agents.

3 Black Hole Search in Rings

In this section we present our techniques, prove their properties, and analyze
their complexity when the network is a ring. These techniques will be modified
and enhanced in the next section to work in the arbitrary graphs with the same
time bounds.

3.1 Preliminaries

Let the network be a ring whose size n is known to the two agents. Without
loss of generality, we can assume that the clockwise direction is the same for
both agents: for example, the direction implied by the link with the smallest
label at the homebase. In the following, going right (resp. left) means going
in the clockwise (resp. counterclockwise) direction. An agent exploring to the
right (resp. left) is said to be a right (resp. left) agent. Using this definition,
an agent changes role if it was a left agent and becomes a right agent or vice
versa. For i ≥ 0, the node at distance i to the right, resp. to the left, of the
homebase will be called node i, resp. node -i. Hence, nodes i and i−n represent
the same node, for 0 ≤ i ≤ n.

In the algorithm the agents obey the two following metarules:

1. An agent always ensures that a pebble is lying at u before traversing an
unknown edge {u, v} from u to v (i.e. an edge that it does not know to be
safe).

2. An agent never traverses an unknown edge {u, v} from u to v if a pebble
lies at u and the pebble was not dropped there by this agent.

7

These metarules imply that the two agents never enter the black hole from
the same edge. Moreover, each agent keeps track of its progress by storing
the number of the most-right, resp. most-left, node visited by this agent in a
variable Last Right, resp. Last Left, used to detect termination: when only
one node remains unexplored, this node is the black hole and the agent can
stop.

A (right) agent is said to traverse an edge {u, v} from u to its (right)
neighbour v using cautious walk if it has one pebble, it drops it at u, traverses
the edge (in state Explore-Right), comes back to u (in state Pick-Up-Right),
retrieves the pebble and goes again to v (in state Ping-Right). A (left) agent
is said to traverse an edge {u, v} from u to its (left) neighbour v using double
cautious walk if it has one pebble and the other is at u, it goes to v (in state
Explore-Left) carrying one pebble, the other pebble staying at u, drops the
pebble at node v, comes back to u (in state Pick-Up-Left), retrieves the other
pebble and goes again to v (in state Ping-Left). We will see later that double
cautious walk is employed only by left agents. Note that these two cautious
explorations obey the first metarule.

3.2 The Algorithm

Our algorithm is based on a novel coordination and interaction technique for
agents using pebbles, Ping-Pong. The idea at the basis of this technique is
the following: one agent explores the “right” side and one the “left” side (the
side assigned to an agent changes dynamically, due to the non-FIFO nature of
the links). However, only one agent at a time is allowed to explore; the agent
willing to do so must first “steal” the pebble of the other, and then can proceed
to explore its allowed side. When an agent discovers that its pebble has been
stolen, it goes to find it and steal the other pebble as well. This generates “ping-
pong” movements of the agents on the ring. The actual Ping-Pong technique
based on this idea must however take into account the non-FIFO nature of
the links, which creates a large variety of additional situations and scenarios
(e.g., an agent moving to steal the pebble of the other, might “jump over” the
other agent).

Algorithm EnhancedPingPong is divided in two phases, each one further
divided into stages. The first phase is the Ping-Pong technique. The second
phase, whose function is to ensure that the costs are kept low, in some cases
may not be executed at all. Inside a phase, a stage is a maximal period during
which no agent changes role.

In the first phase, exploration to the right is always done using cautious
walk, while exploration to the left is always done using double cautious walk
(i.e., after stealing a pebble). Note that, since an agent exploring to the right
uses one pebble and an agent exploring to the left uses two pebbles, the agents
cannot make progress simultaneously in two different directions because there
are only two pebbles in total. This also implies that while an agent is exploring
new nodes it knows all the nodes that have already been explored, as well as

8

the position of the only unexplored node where the other agent possibly died.
This prevents the agents from exploring the same node and thus from dying
in the black hole from two different directions.

Phase 1. Initially both agents explore to the right using cautious walk. This
is done by cycling through the states Explore-Right, Pick-Up-Right, and
Ping-Right, as explained in the last paragraph of Section 3.1.

Since links are not FIFO, an agent may pass the other and take the lead
without any of the two noticing it. Nevertheless, it eventually happens that
one agent R1 finds the pebble of the other agent R2, say at node p (at the
latest it happens when one agent locates or dies in the black hole). Agent
R1 needs to be empty-handed at this point to be able to steal R2’s pebble.
Hence, if R1 is currently carrying its pebble, it goes back to node p − 1 in
state Put-Pebble-Right, drops there its pebble, and moves again (without a
pebble) to p. By that time, R2 might have already picked up his pebble and
moved on. In this case, R1 resumes the normal activity of a right agent, that
is, it explores to the right using cautious walk.

When it eventually happens that one agent L finds the pebble of the other
agent R at some node p, L’s pebble being at node p − 1, the agent L steals
R’s pebble. (This happens with L being in state Explore-Right.) Having
control on the two pebbles, L becomes a left agent (by switching to state
Ping-Left) and starts to explore left using double cautious walk. This is done
by cycling through the states Explore-Left, Pick-Up-Left, and Ping-Left,
as explained in the last paragraph of Section 3.1. The stage has now an even
number.

When/if R comes back to p in state Pick-Up-Right to retrieve its pebble,
it does not find it. It then goes left in state Pong-Right until it finds a pebble.
Agent R does eventually find a pebble because at the beginning of the stage
there is a pebble at its left (at node p−1), and L never removes a pebble before
putting the other pebble further to the left. Thus R eventually retrieves the
pebble and goes right again in state Ping-Right, resuming exploration to the
right.

When/if L realizes that one of its pebble has been stolen, it changes role
(and the stage changes) and explores to the right using its remaining pebble.
At this point, both agents explore to the right. Again, one agent will find and
steal the pebble of the other.

To ensure progress in exploration, a right agent puts down its pebble only
when it reaches the last visited node to the right it knows (using its variable
Last Right). This is done by staying in state Ping-Right until it reaches
node Last Right. Consequently, the stealing at the end of an odd stage always
occurs at least one node further to the right from two stages before. Hence the
algorithm of Phase 1 is in fact correct by itself, but the number of moves can
be Θ(n2) in the worst case (one explored node every O(n) moves). To decrease
the worst case number of moves to O(n log n), an agent switches to Phase 2
when at least two nodes have been explored to the right.

9

More precisely, this happens when a right agent R1 steals the pebble of
another right agent R2 at some node p with p ≥ 2. Agent R1 starts Phase 2 by
changing role, becoming a left agent. It switches from state Explore-Right

to Halving-From-Right-To-Left (instead of Ping-Left). Agent R2 switches
to the Phase-2 state Halving-Pong-Right (instead of Pong-Right) when/if it
realizes in state Pick-Up-Right that its own pebble has been stolen.

The state transitions of the algorithm used in Phase 1 are summarized
in Figure 1, where dashed arrows correspond to changing role, and dotted
edges correspond to transitions to Phase-2 states. The transitions used by a
right agent to perform cautious walk and the ones used by a left agent to
perform double cautious walk are depicted by bold arrows. The letter on an
arrow indicates the direction of the move associated to the corresponding state
transition. (L and R stand for Left and Right respectively.)

Ping−R

Pong−R

Pick−Up−R

Explore−R

Put−Pebble−R
Ping−L

Pick−Up−L

Explore−L

H−Pong−R H−From−R−to−L

R

R

L

L

L

LL

R

L

R

L

R L

R

R

L

L

Fig. 1 State transitions of Algorithm EnhancedPingPong in Phase 1.

Phase 2. Phase 2 uses the halving technique, based on an idea of [13], but
highly complicated by the absence of whiteboards and by the lack of FIFO.
The idea is to regularly divide the workload (the unexplored part) in two.
One agent has the left half to explore (using variable Goal Left), while the
second agent explores the right half (using variable Goal Right). These ex-
plorations are performed concurrently by using (simple) cautious walk (for a
right agent, in states Halving-Explore-Right, Halving-Pick-Up-Right and
Halving-Ping-Right).

After finite time, exactly one agent finishes its part and joins the other in
exploring the other part, changing role and thus changing the stage number.
W.l.o.g., assume that both agents are right agents. Similarly as in Phase 1,
it eventually happens that one agent A finds the pebble of the other agent B
at some node p, A’s pebble being at node p − 1 (possibly thanks to a move

10

back in state Halving-Put-Pebble-Right). At this point, A steals B’s peb-
ble. For B, it looks like its pebble has been moved by one position away from
him. This pebble move is used to indicate a change of stage to B. Agent A
then computes the new workload, divide it into two parts (using the function
Update Goal Left), and goes and explores its newly assigned part, changing
role again by switching to state Halving-From-Right-To-Left. (This addi-
tional state is used to ignore the presence of a pebble at node p− 1.) This can
happen several times (if B remains blocked by the asynchronous adversary or
if it is dead in the black hole).

When/if Agent B comes back to retrieve its pebble, it does not find it.
It further goes back to retrieve its pebble in state Halving-Pong-Right. The
number of moves it has to perform to find the pebble indicates how many
halvings (pair of stages) it misses. Knowing that, it can compute what the
current unexplored part is and what its current workload is. (In fact, it updates
the goals after every move performed in state Halving-Pong-Right.) It then
starts to explore its part. Since there are at most O(log n) stages of O(n) moves
each, this leads to a total number of moves of O(n log n).

As explained before, the agents use the variables Last Right and Last Left

to detect termination. More precisely, when only one node remains unex-
plored, that is when Last Right − Last Left = n − 2, this remaining node
Last Right+1 (or, equivalently, Last Left−1) is the black hole and the agent
stops. The procedure used for this purpose is called CHECK TERMINATION.

The algorithm starts with a few stages of Phase 1 because Phase 2 needs
some safe nodes to put the pebble that is used as a message to indicate the
current partition of the workload.

Several other technical details and precautions have to be taken because of
asynchrony and lack of FIFO. The code describing all the details of the state
transitions can be found in the Appendix.

3.3 Correctness and Complexity

Let us now prove the correctness of the proposed algorithm and analyze its
complexity. All the proofs refer to the formal pseudocode in the Appendix.

Lemma 1 The algorithm is well defined and the input invariants are correct.

Proof First note that if the input invariant of a state is true, then the algorithm
of this state is well defined. We now prove that the input invariants are correct,
by induction on the step number of any agent in any execution. Clearly, the
input invariant is correct at the first step because the agent effectively starts
the algorithm with a pebble in state Ping-Right. Assume now that the input
invariant is correct for the step i ≥ 1.

The states can be partitioned in two sets: E and W , depending on whether
the input invariant ensures that the agent is empty-handed or that the agent
has a pebble, respectively.

11

Assume first that, at step i, the agent is in state S ∈ E. For every pos-
sible transition to a state S′ ∈ E, by algorithm construction, no pebble is
picked up. For every transition to a state S” ∈ W , the algorithm requires
the agent to pick up the pebble, after having successfully checked that a
pebble is actually present at the current node: line 7 of Explore-Right,
line 2 of Pick-Up-Right, line 7 of Pong-Right, line 2 of Pick-Up-Left, line
10 of Halving-Explore-Right (similarly for Halving-Explore-Left), line 2
of Halving-Pick-Up-Right (similarly for Halving-Pick-Up-Left), line 8 of
Halving-Pong-Right (similarly for Halving-Pong-Left).

Assume now that, at step i, the agent is in state S ∈ W . For every
possible transition from S to a state in W , by construction of the algo-
rithm, no pebble is put down. On the other hand, for every transition to
a state S′ ∈ E, the algorithm specifies that the agent puts down the pebble:
line 7 of Ping-Right, line 1 of Put-Pebble-Right, line 1 of Explore-Left,
line 9 of Halving-Ping-Right (similarly for Halving-Ping-Left), line 1 of
Halving-Put-Pebble-Right (similarly for Halving-Put-Pebble-Left).

Thus, in all cases, the input invariant remains correct for step i + 1. ⊓⊔

As explained before the algorithm consists of up to two phases. The first one
corresponds to the cases where both agents are in one of the eight states not be-
ginning by Halving: Ping-Right, Ping-Left, Explore-Right, Explore-Left,
Pick-Up-Right, Pick-Up-Left, Pong-Right, Put-Pebble-Right. If this is
not the case (i.e. at least one agent is in a state beginning by Halving), we say
that the algorithm is in its second phase. (Note that this phase may not exist
in all possible executions.) An agent is said to be a right, resp. left, agent if its
state ends with -Right, resp. -Left. Using this definition, an agent changes
role if it was a left agent and becomes a right agent or vice versa. Finally,
inside a phase, a stage is a maximal period during which no agent changes
role.

For the purpose of the proofs of the main theorems, we will use the three
following properties.

Property P(p), with p ∈ {0, 1}: There is a left agent L and a right agent R.
The agent L is waiting at node p − 1, where one pebble is located. Agent L
is carrying the other pebble and is in state Ping-Left. Moreover, its variable
Last Right has value p. Agent R, empty-handed, is in one of the following
situations:

– it is dead in the black hole located at node p + 1;
– it is at node p+1 in state Explore-Right and its variable Last Right has

value p;
– it is already back from node p + 1 at node p in state Pick-Up-Right and

its variable Last Right has value p + 1.

Moreover, the termination condition of agent L is not satisfied, and in the last
two cases, the value Last Left is the same for each agent.

Property P ′

L(p, q), with p ≥ 2, q ≤ 0 and p− q < n− 2: There is a left agent
L and a right agent R. There exists some k ≥ 0, with p− k − 1 > q, such that

12

L is waiting at node p−k−1 where one pebble is located. Agent L is carrying
the other pebble and is in state Halving-From-Right-To-Left. Moreover,
its variable Last Right, resp. Last Left, has value p, resp. q. Its variable
Goal Left has value Update Goal Left(p, q, 1). (Its variable Goal Right has
value Goal Left + n − 1.) Agent R, empty-handed, is in one of the following
situations:

– it is dead in the black hole located at node p + 1;
– it is waiting at p + 1 in state Explore-Right and its variable Last Right

has value p;
– it is already back from node p + 1 at node p in state Pick-Up-Right and

its variable Last Right has value p + 1;
– it is waiting at node p+1 in state Halving-Explore-Right and its variable

Last Right has value p; let i = 0;
– it is already back from node p+1 at node p in state Halving-Pick-Up-Right

and its variable Last Right has value p + 1; let i = 0;
– it is waiting at node p − 1 − i in state Halving-Pong-Right, for some

0 ≤ i ≤ k − 1, and its variable Last Right has value p + 1.

Moreover, in the second and third cases, the value Goal Left of Agent L is
equal to Update Goal Left (p, q′, k + 1), where q′ is the value Last Left of
Agent R. In the last three cases, the value Goal Left of Agent L is equal to
Update Goal Left(p, q′, k − i + 1), where q′ equals Goal Left of Agent R.

Property P ′

R(p, q), with p ≥ 2, q ≤ 0 and p− q < n− 2: There is a left agent
L and a right agent R. There exists some k ≥ 0, with q + k + 1 < p, such that
R is waiting at node q+k+1 where one pebble is located. Agent R is carrying
the other pebble and is in state Halving-From-Left-To-Right. Moreover,
its variable Last Left, resp. Last Right, has value q, resp. p. Its variable
Goal Right has value Update Goal Right(p, q, 1). (Its variable Goal Left has
value Goal Right− n + 1.) Agent L, empty-handed, is in one of the following
situations:

– it is dead in the black hole located at node q − 1;
– it is waiting at q − 1 in state Halving-Explore-Left and its variable

Last Left has value q; let i = 0;
– it is already back from node q−1 at node q in state Halving-Pick-Up-Left

and its variable Last Left has value q − 1; let i = 0;
– it is waiting at node q + 1 + i in state Halving-Pong-Left, for some 0 ≤

i ≤ k − 1, and its variable Last Left has value q − 1.

Moreover, in the last three cases, the value Goal Right of Agent R is equal to
Update Goal Right (p′, q, k − i + 1), where p′ is Goal Right of Agent L.

Lemma 2 Consider a n-node ring containing a homebase and a black hole,
and two agents running Algorithm EnhancedPingPong from the homebase. Af-
ter finite time, one of the following situations occurs:

– Stage 2 of Phase 1 begins and Property P(p) holds for some p ∈ {0, 1};

13

– Phase 2 begins and Property P ′

L(p, 0) holds for some integer p such that
2 ≤ p ≤ n − 2;

– all agents of the non-empty set of surviving agents have terminated and
located the black hole.

Moreover, at that time, each edge has been traversed at most a constant number
of times since the beginning of the algorithm.

Proof Let R1 be the first agent to act and let R2 be the other agent.
First assume that R2 starts immediately after R1 and finds R1’s peb-

ble at node 0 at the beginning. Thus R2 moves left to node -1 in state
Put-Pebble-Right. If node -1 is the black hole, then R2 dies and R1 even-
tually visits all nodes from 0 to n − 2 and terminates by correctly locating
the black hole at node n − 1 (or equivalently node -1). If node -1 is not the
black hole, then R2 drops its pebble at node -1 and comes back to node 0 in
state Explore-Right. If R1’s pebble is still there, then R2 steals it and goes
to the left in state Ping-Left, and the stage changes. Moreover Property P(0)
is satisfied, which proves the lemma in this case. If R1’s pebble is not there
anymore, then the situation is exactly the same as if R2 would have not find
R1’s pebble at the beginning because in this case R2 eventually goes back to
node -1 to retrieve its pebble and comes back to node 0, holding the pebble,
in state Ping-Right, with Last Left = 0.

We now assume that R2 does not find R1’s pebble at node 0 at the begin-
ning. However, at some point, one agent will eventually find the pebble of the
other agent. More precisely, one agent RL in state Explore-Right eventually
finds the pebble of the other agent RR and executes its transition function
while RR’s pebble still lies at the current node (the other pebble being at the
previous node on the left). This is always true because such a situation occurs,
at the latest, when one of the agent locates the black hole or dies in it. Indeed,
in both cases, its pebble stays forever at the node u preceding the black hole,
giving the other agent enough time to drop its own pebble at the previous
node on the left thanks to the state Put-Pebble-Right (if this latter pebble
is not already there), to go back to u and to execute its transition function.
Let p be the number of the node where RR’s pebble is found by RL in state
Explore-Right. Note that p ≥ 1.

If the termination condition of RL is satisfied after the update of the vari-
able Last Right, then RL terminates by locating the black hole at its actual
position p + 1 (the only node not explored by RL). Concerning RR, it has
already terminated by locating the black hole at p + 1 (both agents have the
same Last Left value). Otherwise (the termination condition of RL is not sat-
isfied) RL changes role. At this time, if p < 2, then Property P(1) is satisfied,
and if p ≥ 2, then Property P ′

L(p, 0) is satisfied.
Since the beginning of the algorithm, each edge has been traversed at most

a constant number of times. Indeed, the edge between the nodes -1 and 0 is
traversed at most twice and any other edge {x, x + 1}, for x ≥ 0, is traversed
at most 7 times by each agent in the worst case: the first time from left to
right (i.e. from x to x + 1) in state Explore-Right, then twice for retrieving

14

the pebble (if no pebble is found at x + 1), then twice to put the pebble back
(if a pebble appeared meanwhile at x + 1), and finally twice to retrieve again
the pebble (if the pebble disappeared from x + 1). ⊓⊔

Lemma 3 Consider a n-node ring containing a homebase and a black hole,
and two agents running Algorithm EnhancedPingPong from the homebase. As-
sume that at some time t a Phase-1 stage of even number i begins and that
Property P(p) holds for some p ∈ {0, 1}. Then at some time t′ > t one of the
following situations occurs:

– Stage i + 2 of Phase 1 begins and Property P(p′) holds for some integer p′

such that p < p′ ≤ 1 (thus p′ = 1);
– Phase 2 begins and Property P ′

L(p′, q) holds for some integers p′ and q such
that p′ ≥ 2, q ≤ 0 and p′ − q < n − 2;

– all agents of the non-empty set of surviving agents have terminated and
located the black hole.

Moreover, each edge has been traversed at most a constant number of times
between times t and t′.

Proof From the hypothesis of the lemma, Property P(p) holds, with p ∈ {0, 1}.
Let L and R be respectively the left and right agent. The integer p is the
number of the node where L stole R’s pebble at the end of the previous stage.

In the first case of Property P(p), the node p + 1 is the black hole and
Agent R never acts again, as it is dead in it. In this case, Agent L explores the
ring from right to left, using both pebbles, until it reaches node p−n + 2 (i.e.
node p + 2) in state Ping-Left. There, the termination condition is satisfied
for Agent L and it locates the black hole and terminates. Note that L does
explore node p−n+2 in state Ping-Left and thus terminates because p−n+2
is at most p − 1 (a ring has at least three nodes).

In the remaining of the proof we assume that we are not in the first case
of Property P(p) and thus that the node p + 1 is not the black hole. It follows
that Agent R eventually comes back from node p+1 to node p with its variable
Last Right set to p + 1. It then switches to state Pong-Right and goes left
until it finds a pebble. Agent R does eventually find a pebble because at the
beginning of the stage there is a pebble at its left (at node p − 1), and Agent
L never removes a pebble before putting the other pebble further to the left.
Let q be the number of the node where R eventually finds and takes one of
L’s pebbles. Note that q ≤ 0.

At this point, if the termination condition of R is satisfied (i.e. p+1 minus
its new value Last Left equals n−2), then R terminates by locating the black
hole correctly at the only node it never visited (node p + 2, or equivalently
q − 1). Moreover R terminates without taking the found pebble. Therefore, L
eventually continues its exploration to the left, and dies immediately in the
next node q − 1, the black hole (its value Last Right is only p). Hence, the
lemma holds in this case. Note that L may die in the black hole before R
terminates.

15

Otherwise (R does not terminate), Agent R comes back to the right in
state Ping-Right, holding the found pebble. If, at this time, L has already
moved to node q − 1 in state Explore-Left and if this node is the black hole,
then L is dead and the only surviving agent R eventually visits node n+ q− 2
while going right and terminates by locating the black hole at node n + q − 1,
that is q − 1. Otherwise, L eventually retrieves the second pebble (if it does
not hold it already) and goes right in state Ping-Right. As a consequence,
the stage number is now i + 1.

To summarize, both agents eventually go right in state Ping-Right holding
a pebble. Moreover one can show that the value Last Left is the same for each
agent. Indeed, if q − 1 is not smaller than their value of Last Left at time t,
then Last Left still has this value, and otherwise Last Left has now value q
for both agents, even if L went to node q − 1 (L updates its value Last Left

only in state Ping-Left). The remaining of the proof is very similar to the last
two paragraphs of the proof of Lemma 2. Indeed, at some point, one agent RL

in state Explore-Right will eventually find the pebble of the other agent RR

and execute its transition function while RR’s pebble still lies at the current
node p′. (At the latest, this occurs when one of the agent locates the black
hole or dies in it. In both cases, its pebble stays forever at the node preceding
the black hole.) From the description of the algorithm in state Ping-Right

and the fact that one of the agents has visited node p + 1, we know that this
agent will neither drop its pebble nor look at a pebble at node p. Therefore,
we have p′ > p.

If the termination condition of RL is satisfied after the update of the vari-
able Last Right, then RL terminates by locating the black hole at its actual
position p′+1. Concerning RR it has already terminated by locating the black
hole at p′ + 1 (both agents have the same Last Left value). Otherwise (the
termination condition of RL is not satisfied) RL changes role. At this time, if
p′ < 2, then p′ = 1 and Property P(1) is satisfied, and if p′ ≥ 2, then Property
P ′(p′, q′) is satisfied, where q′ = Last Left.

Since the beginning of stage i (time t), each edge has been traversed at
most a constant number of times. Indeed, during stage i, an edge is traversed
at most three times by L and at most twice by R (in fact at most once except
possibly for edge {p, p+1}). In stage i+1, if it exists, each edge is traversed at
most 7 times by each agent for the reasons detailed in the proof of the previous
lemma. ⊓⊔

Lemma 4 Consider a n-node ring containing a homebase and a black hole,
and two agents running Algorithm EnhancedPingPong from the homebase. As-
sume that at some time t a Phase-2 stage of odd number i begins and that either
Property P ′

L(p, q) or Property P ′

R(p, q) holds for some integers p and q such
that p ≥ 2, q ≤ 0 and p − q < n − 2. Then at some time t′ > t one of the
following situations occurs:

– Stage i + 2 of Phase 2 begins and either Property P ′

L(p′, q′) or Property
P ′

R(p′, q′) holds for some integers p′ and q′ such that p′ ≥ p, q′ ≤ q and

n − (p′ − q′ + 1) ≤ ⌈n−(p−q+1)
2 ⌉;

16

– all agents of the non-empty set of surviving agents have terminated and
located the black hole.

Moreover, each edge has been traversed at most a constant number of times
between times t and t′.

Proof We assume that at some time t a Phase-2 stage of odd number i begins
and that Property P ′

L(p, q) holds for some integers p and q. The case when
Property P ′

R(p, q) holds is simpler, as there are fewer cases to consider, and
can be treated similarly. Let p−k−1 be the node where L lies at time t. Note
that the node p−k−2 is not the black hole by definition of Property P ′

L(p, q).
In the first case of Property P ′

L(p, q), the node p + 1 is the black hole and
Agent R never acts again, as it is dead in it. In this case, Agent L explores
the ring from right to left, using the pebble it carried at the beginning of
the stage, until it reaches node Goal Left in state Halving-Explore-Left.
Note that since p − q < n − 2, we have p + 1 − n < Goal Left < q and
thus the node Goal Left is reached safely without dying in the black hole.
There, either the termination condition is satisfied for Agent L (Goal Left =
p + 2 − n) and it locates the black hole and terminates, or the termination
condition is not satisfied. In this latter case, it means that p−q′ < n−2, where
q′ = Goal Left. Therefore L comes back to node q′ + 1 to retrieve its pebble
and heads back toward the node Last Right in state Halving-Ping-Right.
The stage number is now i + 1. Since Agent R does not act anymore, the
pebble at node p− k− 1 is still there. Hence Agent L will eventually find it in
state Halving-Ping-Right and then in state Halving-Explore-Right. There
L steals the pebble, changes role again, and go to node p−k−2 (where the other
pebble lies) in state Halving-From-Right-To-Left. The stage i + 2 begins.
Furthermore one can easily check that Property P ′

L(p, q′) holds. In particular,
we do have that p − k − 2 > q − 1 ≥ q′. Since q′ = Update Goal Left(p, q, 1),
we have n − (p − q′ + 1) ≤ (n − (p − q + 1))/2.

We assume now that we are not in the first case of Property P ′

L(p, q), that
is, p + 1 is not the black hole. Let us consider two cases, depending in which
half lies the black hole.

Case 1: The black hole is in the left half, between node q and node
Goal Left (inclusive).
In this case, the left agent L will never come back to the right part because
it would first visit the black hole and thus die. Hence, when the right agent
eventually wakes up, it goes left in state Halving-Pong-Right and finds the
pebble at node p − k − 1. While going there, it updates its values Goal Left

and Goal Right. Note that, by definition of the algorithm and by hypoth-
esis of Property P ′

L(p, q), both agents now agree on the values Goal Left

and Goal Right. At this point, agent R goes right and explore its half, from
node p to node p′ = Goal Right, which is at least p + 1. If the termination
condition of R is satisfied, then R locates the black hole at its correct po-
sition and terminates. Otherwise it changes role and the stage switches to
i + 1. Similarly as in the proofs of the two previous lemmas one agent RR

in state Halving-Explore-Left will eventually find the pebble of the other

17

agent RL and execute its transition function while RL’s pebble still lies at
the current node q′. (At the latest, this occurs when one of the agent dies
in it because in this case, its pebble stays forever at the node preceding the
black hole.) If the termination condition of RR is satisfied, then RR locates
the black hole at its correct position and terminates. Otherwise it steals the
pebble and goes to node q′ + 1 in state Halving-From-Left-To-Right. The
stage i + 2 begins. Furthermore one can easily check that Property P ′

R(p′, q′)
holds. Since q′ ≤ q and p′ = Update Goal Left(p, q, 1) + n − 1, we have
n − (p′ − q′ + 1) ≤ ⌈(n − (p − q + 1))/2⌉;

Case 2: The black hole is in the right half, between node p and node
Goal Right (inclusive).
In this case, the left agent L will eventually explore its half, from node q to
node q′ = Goal Left, which is at most q − 1. The termination condition of
L is not satisfied because we assumed that p + 1 is not the black hole. Hence
it changes role and the stage switches to i + 1. Agent L heads back toward
the node Last Right in state Halving-Ping-Right while looking at R’s peb-
ble. If meanwhile R did not retrieve the pebble at node p − k − 1, then L
finds this pebble in state Halving-Explore-Right. There L steals the peb-
ble, changes role again, and go to node p − k − 2 (where the other pebble
lies) in state Halving-From-Right-To-Left. The stage i + 2 begins. Further-
more Property P ′

L(p, q′) holds. Otherwise R did come back from node p + 1
to node p − k − 1 and got back the pebble. While going there, it updates
its values Goal Left and Goal Right. Note that, by definition of the algo-
rithm and by hypothesis of Property P ′

L(p, q), both agents now agree on the
values Goal Left and Goal Right. Similarly as before, one agent RL in state
Halving-Explore-Right will eventually find the pebble of the other agent RR

and execute its transition function while RR’s pebble still lies at the current
node p′. If the termination condition of RL is satisfied, then RL locates the
black hole at its correct position and terminates. Otherwise it steals the peb-
ble and goes to node p′−1 in state Halving-From-Left-To-Right. The stage
i + 2 begins. Furthermore one can easily check that Property P ′

R(p′, q′) holds.
Since p′ ≥ p and q′ = Update Goal Left(p, q, 1), we have n − (p′ − q′ + 1) ≤
(n − (p − q + 1))/2.

It remains to bound the number of edge traversals since time t. During
stage i each edge is traversed at most three times by each agent. During stage
i + 1, if it exists, each edge is traversed at most 7 times by each agent, for the
same reasons as detailed in the proof of Lemma 2. ⊓⊔

Theorem 1 Algorithm EnhancedPingPong is correct.
More precisely, consider a n-node ring containing a homebase and a black hole,
and two agents running Algorithm EnhancedPingPong from the homebase. Af-
ter finite time, there remains at least one surviving agent and all surviving
agents have terminated and located the black hole.

Proof From Lemmas 2 and 3, we know that the first phase contains at most
five stages, each one ending after finite time. Furthermore we know that after
finite time, either the algorithm terminates correctly, or Property P ′

L(p, q) or

18

P ′

R(p, q) holds, for some integers p and q such that q ≤ 0 < p and 0 < p− q <
n− 2. From Lemma 4, we know that a stage of Phase 2 ends after finite time.
We also know that if the algorithm does not terminate after two stages i, i+1
in Phase 2, then Property P ′

L(p′, q′) or P ′

R(p′, q′) holds, for some integers p′

and q′ such that the positive value p′−q′ is stricty less than p−q. Hence, after
finite time, neither PL(p, q) nor P ′

R(p, q) can be satisfied and the algorithm
terminates correctly. ⊓⊔

Theorem 2 The total number of moves performed by two agents running Al-
gorithm EnhancedPingPong in a n-node ring is at most O(n log n).

Proof From Lemmas 2 and 3, there are at most five stages in Phase 1 and for
each of them the number of edge traversals performed by each agent is at most
O(n). From Lemma 4, there are at most O(log n) stages in Phase 2 because the
unexplored part is basically halved every two stages. From the same lemma,
we have that for each Phase-2 stage the number of edge traversals performed
by each agent is at most O(n). Hence, overall, the total number of moves
performed by two agents running Algorithm EnhancedPingPong in a n-node
ring is at most O(n log n). ⊓⊔

The optimality of the algorithm follows from the fact that, in a ring, the
problem cannot be solved with fewer agents or (asymptotically) fewer moves
[13], and clearly not with fewer pebbles.

4 Black hole search in arbitrary graphs

We now show how to modify algorithm EnhancedPingPong, designed for ring
networks, so to obtain an algorithm GeneralizedEnhancedPingPong for arbi-
trary networks with the same bounds.

Let G be an arbitrary biconnected graph. Both agents are provided with
a map of G containing all edge labels and a mark showing the position of
the homebase in this network. Thus, each node of the map can be uniquely
identified (for example, by a list of edge labels leading to it from the homebase).
Therefore, each agent is able to know where it lies at any point in the execution
of the algorithm. It also knows where each edge incident to its position leads.

The algorithm GeneralizedEnhancedPingPong we propose for arbitrary
networks is an adaptation of the algorithm EnhancedPingPong that we de-
scribed for rings. To be able to apply EnhancedPingPong in a general graph,
each agent will maintain a cyclic ordering of the network nodes, i.e., a map-
ping between the node numbers used in the ring and the actual nodes in the
network (or its map), such that at any point in time an agent knows what
means “go left” and “go right”. Since the network does not necessarily con-
tain an Hamiltonian cycle, a single edge in the “virtual” ring may correspond
to a longer path in the actual network. In order not to increase too much the
move complexity, the cyclic ordering of the network nodes is constructed by

19

following a DFS traversal of some spanning tree avoiding the current suspi-
cious node (the node where the other agent is apparently blocked). Since the
location of the suspicious node changes throughout the execution of the algo-
rithm, so does the spanning tree and thus the cyclic ordering. (In fact, only
the ordering of the unexplored nodes may change.) This is done carefully in
such a way that both agents agree on the cyclic ordering when it is necessary.

4.1 The Algorithm GeneralizedEnhancedPingPong

This subsection is devoted to Algorithm GeneralizedEnhancedPingPong, that
is, to all the modifications and adaptations performed on EnhancedPingPong

to obtain Algorithm GeneralizedEnhancedPingPong.

The mapping σ. To be able to apply EnhancedPingPong in a general graph,
each agent maintains a bijective mapping σ between the ring node numbers
used in the algorithm EnhancedPingPong and the actual nodes in the network
(or its map). The bijection is constructed as follows.

Initialization
First of all, node σ(0) is defined as the homebase. Node σ(1) is the neigh-
bour of node σ(0) reachable by the smallest edge label, while node σ(−1)
is the neighbour of node σ(0) reachable by the largest edge label.
Then, let T be any tree spanning all nodes except for node σ(−1). Nodes
σ(2) to σ(n− 2) are defined as all the nodes of G except σ(−1), σ(0), σ(1)
taken in the order of their first visit by a depth-first traversal of T starting
at σ(1).

Phase 1: the stage changes from an odd number to an even number
For the agent changing role (the left one): The update is performed when
it changes role, that is just before switching to state Ping-Left. Let p and
q be the values Last Right and Last Left of the agent at this moment.
For the other agent (the right one): The update is performed when it finds
out that its pebble has been stolen, that is just before switching to state
Pong-Right. Let p and q be the values Last Right− 1 and Last Left of
the agent at this moment.
The update: Let T be any tree spanning all nodes except for node σ(p+1).
Nodes σ(q − 2), σ(q − 3), . . . , σ(p + 2− n) are defined as all the nodes of G
except σ(q − 1), . . . , σ(0), . . . , σ(p + 1) taken in the order of their first visit
by a depth-first traversal of T starting at σ(q − 1).

Phase 1: the stage changes from an even number to an odd number
For the agent changing role: The update is performed when it finds out
that its pebble has been stolen, just before changing role, by switching ei-
ther from state Ping-Left to state Ping-Right or from state Pick-Up-Left
to state Pick-Up-Right. Let p and q be the values of Last Right and
Last Left of the agent at this moment.
For the other agent: The update is performed when it retrieves a pebble,

20

that is just before switching to state Ping-Right. Let p and q be the values
Last Right− 1 and Last Left of the agent at this moment.
The update: Let T be any tree spanning all nodes except for node σ(q−1).
Nodes σ(p + 2), σ(p + 3), . . . , σ(q − 2 + n) are defined as all the nodes of G
except σ(q − 1), . . . , σ(0), . . . , σ(p + 1) taken in the order of their first visit
by a depth-first traversal of T starting at σ(p + 1).

Phase 2: at the beginning of each stage of odd number
For each agent: The update is performed after each application of the func-
tion Update Goal Right or Update Goal Left. Let us consider w.l.o.g. the
case when Update Goal Left is applied. Let p, q and g be the values, re-
spectively, of Last Right, Last Left and Goal Left just after the appli-
cation of the function Update Goal Left.
The update: Let {Vex, Vuex} be a partition of the nodes of the graph such
that Vex is the set of nodes {σ(q), σ(q + 1), . . . , σ(p − 1), σ(p)}. From
Lemma 5.2 in [12], Vuex can be partitioned into VR and VL such that
|VL| = q − g, the node σ(p + 1) is in VR, and the graphs GR and GL in-
duced by, respectively, Vex ∪ VR and Vex ∪ VL are connected. Let TR and
TL be spanning trees of GR and GL.
Nodes σ(p + 2), σ(p + 3), . . . , σ(g + n − 1) are defined as all the nodes
of GR except for nodes σ(q), . . . , σ(0), . . . , σ(p + 1) taken in the order
of their first visit by a depth-first traversal of TR starting at σ(p + 1).
Nodes σ(q−1), σ(q−2), . . . , σ(g) are defined as all the nodes of GL except
σ(q), . . . , σ(0), . . . , σ(p) taken in the order of their first visit by a depth-first
traversal of TL starting at σ(q).

Moving in the graph. Assume that the agent is currently lying at node σ(i).
Then moving left, resp. right, simply means moving to node σ(i − 1), resp.
σ(i + 1), by a shortest safe path, that is it means going to that node by a
shortest path in the graph induced by the already visited nodes (i.e. nodes
σ(Last Left) to σ(Last Right)).

Shortcuts. In some cases, it is possible to use (safe) shortcuts to decrease the
number of moves. During Phase 2, each agent maintains an additional variable
Last Seen Pebble that basically memorizes the last place where the agent has
seen the other pebble. When an agent switches to state Halving-Ping-Left,
resp. Halving-Ping-Right, it goes directly to node Last Seen Pebble and if
there are no pebbles at this node, it then goes directly to node Last Left,
resp. Last Right. As usual, this is done by traversing only nodes that are
known to be safe.

4.2 Correctness and Complexity

We will now examine the correctness and complexity of the proposed algo-
rithm.

21

Theorem 3 Algorithm GeneralizedEnhancedPingPong is correct.
More precisely, consider a n-node graph containing a homebase and a black
hole, and two agents running Algorithm GeneralizedEnhancedPingPong from
the homebase. After finite time, at least one agent survives and all surviving
agents have terminated and located the black hole.

Proof Let us first note that, for each agent and at any time, the mapping σ is
well defined and bijective. Moreover, the two agents agree on the definition of
the mapping σ in the following sense.

– Initially, both agents agree on the definition of σ.
– When the stage changes from an odd number to an even number in Phase

1, each agent updates σ as soon as it notices the stage number modification
(when changing role for one, and when finding out that its pebble has been
stolen for the other). Furthermore, both agents use the same values p and
q for updating σ, by Lemmas 2 and 3 and by definition of the algorithm.

– Similarly, when the stage changes from an even number to an odd number
in Phase 1, each agent updates σ as soon as it notices the stage number
modification, and both agents use the same values p and q for updating σ.

– Finally, at the beginning of each stage of odd number in Phase 2, each
agent updates σ as soon as it notices the stage number modification. Note
however that in this case a slow agent may not be aware that the stage
changed many times. It will nevertheless discover it progressively while
moving back in State Halving-Pong-Left or Halving-Pong-Right (if it
is not dead in the black hole). Moreover, by Lemma 4 and by definition
of the algorithm, both agents use the same values for updating σ for the
same stage number modification.

One can additionally note that the function σ always gives the same number
to the same node as soon as this node has been explored by at least one agent.
Indeed, if a node σ(i) is explored, then any subsequent modification of σ will
not redefine σ(i).

To summarize, Algorithm GeneralizedEnhancedPingPong behaves exactly
the same as Algorithm EnhancedPingPong. The only difference is that travers-
ing an edge in the ring may correspond to the traversals of (finitely) many edges
in an arbitrary graph. Nevertheless, since Algorithm EnhancedPingPong is cor-
rect, Algorithm GeneralizedEnhancedPingPong is correct as well. ⊓⊔

Theorem 4 The total number of moves performed by two agents running Al-
gorithm
GeneralizedEnhancedPingPong in a n-node graph is at most O(n log n).

Proof In this proof we call the number of edge traversals performed by an
agent going from node σ(i) to node σ(i + 1) (for −n < i < n − 1) the length
of the virtual edge {σ(i), σ(i + 1)}. We now bound the total number of moves
performed by each agent in each phase.

As in the case of the ring, the first phase consists of at most five stages.
Moreover, the walk resulting from the concatenation of all virtual edges is at

22

most 10n (real) edges long since it results in the worst case from the concate-
nation of at most five DFS traversals of some trees. From Lemmas 2 and 3,
each edge of the network has been traversed at most a constant number of
times during Phase 1. Hence, the total number of moves performed by two
agents running Algorithm GeneralizedEnhancedPingPong is at most O(n) in
the first phase.

From Lemmas 2, 3 and 4, either Property P ′

R(p, q) or Property P ′

L(p, q))
holds, for some integers p and q, at the beginning of a Phase-2 stage of odd
number. Let pi and qi be the two integers corresponding to the stage 2i + 1
of the second phase, for 0 ≤ i ≤ s. Note that s is at most O(log n). Let ps+1,
resp. qs+1, be the right, resp. left, neighbour of the black hole. By definition
of the properties and from the lemmas, we have that qs+1 ≤ · · · ≤ q0 ≤ 0 ≤
p0 ≤ · · · ≤ ps+1. Since the mapping σ is updated when and only when the
goals are updated, and since the redefined elements are taken in the order of
their first visit by a DFS traversal of some tree, we obtain that the sum of all
the lengths of the virtual edges from node σ(pi) to σ(pi+1), and from node
σ(qi) to σ(qi+1), is at most O(n), for 0 ≤ i ≤ s. Moreover, from the previous
paragraph, the sum of all the lengths of the virtual edges from node σ(q0) to
σ(p0) is at most O(n).

Consider a stage 2i+1 of the second phase, for 0 ≤ i ≤ s. Let A be the agent
that started the stage by changing role and let B the other agent. Without
loss of generality, assume that A is a left agent. The total number of moves
performed by A in this stage is at most O(n) because A first goes directly (by
a shortest safe path) to the beginning σ(qi) of its workload, thus in at most n
moves, and then stays between nodes σ(qi) and σ(qi+1), which incurs at most
O(n) moves. If it succeeds to explore its half, then it goes directly to the node
where it left the other pebble (thanks to the variable Last Seen Pebble). If the
pebble is not there anymore, it further goes directly to node σ(pi) and starts
exploring the right half. Hence, in any case, for the same reasons as before, A
performs at most O(n) moves in stage 2i + 2. Concerning B, if it retrieves its
pebble in stage 2i + 1 or 2i + 2, it will perform at most O(n) moves in these
two stages, without counting the moves done in state Halving-Pong-Right.
Indeed, again, exploring a half or going directly to the beginning of it costs at
most a linear number of moves.

It remains to bound the number of moves done while in one of the states
Halving-Pong-Right or Halving-Pong-Left. This is done globally over the
whole second phase. Each edge traversed in one of these two states may cost
up to n moves. However, there are at most O(log n) such traversals because
any of them corresponds to an update of the workloads, which happens only
a logarithmic number of times in the entire algorithm.

One can now conclude that the total number of moves performed by two
agents running Algorithm GeneralizedEnhancedPingPong in a n-node graph
is at most O(n log n). ⊓⊔

23

The optimality of the algorithm follows from the fact that, in an arbitrary
graph, BHS cannot be solved with fewer agents or (asymptotically) fewer
moves [12], and clearly not with fewer pebbles.

5 Open Problems

In this paper, we have proved that the pebble model is computationally as
powerful as the whiteboard model for Bhs in networks of known topology.
There are several research questions and problems that now need to be asked
and studied.

Ftoremost, it is still unknown whether Bhs can be solved with pebbles
if the agents do not have a map of the network. A positive answer to this
question would prove that the computational equivalence, between the two
models of inter-agents communication and interaction, does not depend on
the availability of a priori topological knowledge to the agents. Conversely, a
negative answer would prove that topological knowledge has a crucial impact
on the computability of Bhs.

Another class of open research problems refers to the impact that the
topological structure has on the complexity of Bhs with pebbles. In fact, in
special classes of graphs, the number of moves to locate the black hole can be
reduced from Θ(n log n) to Θ(n) in the whiteboard model; the question arises
of whether similar improvements can be obtained in the pebble model.

Acknowledgements The authors would like to thank the anonymous referees for their
helpful comments.

This work was done during the stay of David Ilcinkas at the University of Ottawa,
as a postdoctoral fellow. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada under Discovery grants and by Dr. Flocchini’s
University Research Chair.

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM Journal on
Computing, 29(4):1164–1188, 2000.

2. M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. P. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation, 176(1):1–21,
2002.

3. J. Cao and S. Das (Eds), Mobile Agents in Networking and Distributed Computing,
John Wiley, 2009.

4. J. Chalopin, S. Das, N. Santoro. Rendezvous of mobile agents in unknown graphs with
faulty links. 21st Conference on Distributed Computing (DISC), 108-122, 2007.

5. C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network using
multiple agents. 10th International Conference on Principles of Distributed Systems
(OPODIS), 320-332, 2006.

6. J. Czyzowicz, S. Dobrev, R. Královic, S. Mikĺık, and D. Pardubská. Black hole search
in directed graphs. 16th International Colloquium on Structural Information and Com-
munication Complexity (SIROCCO), 182–194, 2009.

7. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for a black
hole. Fundamenta Informaticae, 71 (2-3): 229-242, 2006

24

8. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
synchronous tree networks. Combinatorics, Probability & Computing 16: 595-619, 2007.

9. S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of unknown
graphs by multiple agents. Theoretical Computer Science 385(1-3): 34-48, 2007.

10. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory 32
(3): 265–297, 1999.

11. S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous unknown
graph using tokens. 5th IFIP International Conference on Theoretical Computer Sci-
ence (TCS), 131-150, 2006.

12. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks: optimal mobile agents protocol. Distributed Computing 19 (1): 1-19,
2006.

13. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole in
an anonymous ring. Algorithmica 48: 67–90, 2007.

14. S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole search in asynchronous rings
using tokens. 6th International Conference on Algorithms and Complexity (CIAC), 139-
150, 2006.

15. P. Flocchini, D. Ilcinkas, and N. Santoro. Ping Pong in dangerous graphs: Optimal black
hole search with pure tokens. 22nd International Symposium on Distributed Computing
(DISC), LNCS 5218, pages 227-241, 2008.

16. P. Flocchini, M. Kellett, P. Mason, N. Santoro. Map construction and exploration by
mobile agents scattered in a dangerous network. 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 1-10, 2009

17. P. Flocchini and N. Santoro. Distributed Security Algorithms For Mobile Agents. Chap-
ter 5 of [3], 2009.

18. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.
Networks, 48 (3): 166-177, 2006.

19. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345 (2-3): 331-344, 2005.

20. P. Glaus. Locating a black hole without the knowledge of incoming link. 5th Interna-
tional Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSEN-
SORS), LNCS 5804, pages 128-138, 2009.

21. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for black
hole search problems. Networks, 52(4): 216-226, 2008.

22. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation results
for black hole search in arbitrary networks. Theoretical Computer Science 384 (2-3):
201-221, 2007.

23. A. Kosowski, A. Navarra, and C. M. Pinotti. Synchronization helps robots to detect
black holes in directed graphs. 13th International Conference on Principles of Dis-
tributed Systems (OPODIS), LNCS 5923, pages 86-98, 2009.

24. R. Královic, S. Mikĺık. Periodic data retrieval problem in rings containing a malicious
host. 17th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), to appear, 2010.

25. W.Shi. Black hole search with tokens in interconnected networks. The 11th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
pages 670-682, 2009.

i

APPENDIX:
Detailed description of the algorithm

Procedure CHECK TERMINATION

1: if Last Right− Last Left = n − 2 then

2: Black Hole := Last Right + 1 // Or, equivalently, Last Left− 1
3: Terminate
4: end if

Functions Update Goal Right and Update Goal Left:

Update Goal Right(p, q, 0) = p

Update Goal Right(p, q, k) = ⌊ p
′
+q+n

2
⌋ where p′ = Update Goal Right(p, q, k − 1)

Update Goal Left(p, q, 0) = q

Update Goal Left(p, q, k) = ⌈ p+q
′
−n

2
⌉ where q′ = Update Goal Left(p, q, k − 1)

for q ≤ 0 ≤ p and k ≥ 1.

Initial state of Algorithm EnhancedPingPong:

State: Ping-Right
Variables: Last Right = Last Left = 0

A Phase-1 states of Algorithm EnhancedPingPong

A.1 Phase-1 states of a right agent for cautious walk

Ping-Right

Input invariant: The robot has a pebble with him.
1: if current 6= Last Right then // Do not use cautious walk if not necessary
2: Move Right
3: (Stay Ping-Right)
4: else

5: if empty then // Everything seems normal
6: CHECK TERMINATION
7: Put Down Pebble
8: Move Right
9: Become Explore-Right

10: else // An other right robot is preceding me
11: Move Left
12: Become Put-Pebble-Right

13: end if

14: end if

ii

Explore-Right

Input invariant: The robot is empty-handed.
1: Last Right := max{current, Last Right}
2: if empty then // Everything seems normal
3: Move Left
4: Become Pick-Up-Right

5: else // An other right robot is preceding me
6: CHECK TERMINATION
7: Pick Up Pebble // Steal its pebble
8: if Last Right < 2 then // We are still in Phase 1
9: Move Left

10: Become Ping-Left

11: else // Start Phase 2
12: Goal Left := Update Goal Left(Last Right, Last Left, 1)
13: Goal Right := Goal Left + n − 1
14: Move Left
15: Become Halving-From-Right-To-Left

16: end if

17: end if

Pick-Up-Right

Input invariant: The robot is empty-handed.
1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: Move Right
4: Become Ping-Right

5: else // My pebble has been stolen
6: if Last Right < 3 then // We are still in Phase 1
7: Move Left
8: Become Pong-Right

9: else // Start Phase 2
10: Last Right := Last Right− 1
11: Goal Left := Last Left

12: Move Left
13: Become Halving-Pong-Right

14: end if

15: end if

A.2 Other Phase-1 states of a right agent

Put-Pebble-Right

Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Explore-Right

iii

Pong-Right

Input invariant: The robot is empty-handed.
1: if empty then // Pebble not yet found
2: Move Left
3: (Stay Pong-Right)
4: else // Pebble found
5: Last Left := min{current, Last Left}
6: CHECK TERMINATION
7: Pick Up Pebble // Steal back the pebble
8: Move Right
9: Become Ping-Right

10: end if

A.3 Phase-1 states of a left agent for double cautious walk

Ping-Left

Input invariant: The robot has a pebble with him.
1: Last Left := min{current, Last Left}
2: CHECK TERMINATION
3: if not empty then // Everything seems normal
4: Move Left
5: Become Explore-Left

6: else // One of my pebbles has been stolen
7: Move Right
8: Become Ping-Right

9: end if

Explore-Left

Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Pick-Up-Left

Pick-Up-Left

Input invariant: The robot is empty-handed.
1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: Move Left
4: Become Ping-Left

5: else // One of my pebbles has been stolen
6: Move Left
7: Become Pick-Up-Right

8: end if

iv

B Phase-2 states of Algorithm EnhancedPingPong

In the following we describe only the states for a right agent. The states for a left agent are
symmetric.

B.1 Phase-2 states of a right agent for cautious walk

Halving-Ping-Right

Input invariant: The robot has a pebble with him.
1: if not empty then // An other right robot is preceding me
2: Move Left
3: Become Halving-Put-Pebble-Right

4: else

5: if current 6= Last Right then // Do not use cautious walk if not necessary
6: Move Right
7: (Stay Halving-Ping-Right)
8: else // Everything seems normal
9: Put Down Pebble

10: Move Right
11: Become Halving-Explore-Right

12: end if

13: end if

Halving-Explore-Right

Input invariant: The robot is empty-handed.
1: Last Right := max{current, Last Right}
2: if empty then // Everything seems normal
3: Move Left
4: Become Halving-Pick-Up-Right

5: else // An other right robot is preceding me
6: CHECK TERMINATION
7: Last Left := Goal Left

8: Goal Left := Update Goal Left(Last Right, Last Left, 1)
9: Goal Right := Goal Left + n − 1

10: Pick Up Pebble // Steal its pebble
11: Move Left
12: Become Halving-From-Right-To-Left

13: end if

Halving-Pick-Up-Right

Input invariant: The robot is empty-handed.
1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: if Last Right 6= Goal Right then // The current objective is not fulfilled yet
4: Move Right
5: Become Halving-Ping-Right

6: else // The current objective is fulfilled
7: CHECK TERMINATION
8: Move Left
9: Become Halving-Ping-Left

10: end if

11: else // My pebble has been stolen
12: Last Right := Last Right− 1
13: Move Left
14: Become Halving-Pong-Right

15: end if

v

B.2 Other Phase-2 states of a right agent

Halving-From-Left-To-Right

Input invariant: The robot has a pebble with him.
1: Move Right
2: Become Halving-Ping-Right

Halving-Put-Pebble-Right

Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Halving-Explore-Right

Halving-Pong-Right

Input invariant: The robot is empty-handed.
1: Last Left := Goal Left

2: Goal Left := Update Goal Left(Last Right, Last Left, 1)
3: Goal Right := Goal Left + n − 1
4: if empty then // Pebble not yet found
5: Move Left
6: (Stay Halving-Pong-Right)
7: else // Pebble found
8: Pick Up Pebble // Steal back the pebble
9: Move Right

10: Become Halving-Ping-Right

11: end if

