
Computing All the Best Swap Edges Distributively∗

P. Flocchini† L. Pagli‡ G. Prencipe§ N. Santoro ¶

P. Widmayer‖

Abstract

Recently great attention has been given to point-of-failure swap rerouting, an ef-
ficient technique for routing in presence of transient failures. According to this
technique, a message follows the normal routing table information unless the next
hop has failed; in this case, it is redirected towards a precomputed link, called swap;
once this link has been crossed, normal routing is resumed. The choice of the swap
edge is done according to some optimization criteria on the resulting new route.
The amount of precomputed information required in addition to the routing table
is rather small: a single link per each destination. Several efficient serial algorithms
have been presented to compute this information for several optimization criteria
(Fdist, Fsum, Fincr, Fmax). Only the algorithm corresponding to Fdist has been effi-
ciently implemented in a distributed environment, while for the other optimization
criteria no distributed solution has been devised yet. In this paper we present pro-
tocols, based on a new strategy, that allow the efficient distributed computation of
all the optimal swap edges under Fsum, Fincr, Fmax. Although considerably more
difficult than Fdist, these problems can be solved with the same cost. In systems
allowing long messages, we develop solution protocols based on the same strategy
that use only O(n) messages without increasing the total amount of transmitted
data items.

∗Research partially supported by NSERC Canada, TECSIS Co., and the Swiss BBW 03.0378-1 for
EC contract 001907 (DELIS), and “Progetto ALINWEB: Algoritmica per Internet e per il Web”, MIUR,
Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale. A preliminary version of this paper
has been presented at the 8th International Conference on Principles of Distributed Systems (OPODIS
2004).

†University of Ottawa, Canada, flocchin@site.uottawa.ca
‡Università di Pisa, Italy, pagli@di.unipi.it
§Corresponding author: Università di Pisa, Dipartimento di Informatica, Largo Bruno Pontecorvo, 3,

5600 Pisa, Italy, email: prencipe@di.unipi.it, Tel: +39 050 2213148, Fax: +39 050 2212726
¶Carleton University, santoro@scs.carleton.ca
‖ETH, Zurich, Switzerland, widmayer@inf.ethz.ch

1

1 Introduction

In systems using shortest-path routing tables, a single link failure is enough to interrupt
the message transmission by disconnecting one or more shortest-path spanning trees.
The on-line recomputation of an alternative path or of the entire new shortest path trees,
rebuilding the routing tables accordingly, is usually rather expensive and causes long
delays in the message’s transmission (e.g., see [5, 10]).

An alternative approach to the on-line recomputation is to precompute appropriate
information and use it to augment the shortest-path routing tables so to make them
operate when a failure occurs. An example of this approach is to precompute several
edge-disjoint spanning trees for each destination (e.g., see [4]), using existing distributed
algorithms (e.g., [1]). However, with these techniques, the alternative routes would not
satisfy any optimization criterion (such as shortest path) even in the case when, at any
time, only one link (not necessarily the same at all times) might be down.

Another more recent example of this approach is the idea is to precompute, for each
link in the tree, a single non-tree link (the swap edge) able to reconnect the network should
the first fail. The strategy, called point-of-failure swap rerouting is simple: normal routing
information will be used to route a message to its destination. If, however, the next hop
is down, the message is first rerouted towards the swap edge; once this is crossed, normal
routing will resume [2, 5, 7, 8, 11].

Clearly, some swap edges are preferable to others; thus, the selection of the swap edge
is done according to some optimization criteria on the resulting tree. Four main objective
functions have been identified [8], depending on whether the new tree induced by the
swap edge minimizes (i) the distance between the point of failure and the root (Fdist); or
(ii) the sum of distances (Fsum); or (iii) the largest increment in the distance (Fincr); or
(iv) the largest distance (Fmax) of all nodes below the point of failure to the root. Which
function is preferable, and should thus be used, depends clearly on the characteristics of
the systems and of the applications. For example, in systems where failures are transient
and short-lived, Fdist appears to be a reasonable choice. On the other hand, if failures are
long-lived or can be permanent, it would be preferable to take into account in the objective
function all the nodes in the subtree disconnected by the failure, and not just the one
adjacent to the point-of-failure. Thus, Fsum, Fincr, and Fmax would be more reasonable in
those circumstances since they minimize respectively the average, the additional, or the
maximum delivery time of a message issued at any node.

These four objective functions give rise to four different optimization problems. All
four problem have been solved in a sequential setting with different algorithms and costs:
Fdist and Fincr in time O(m ·α(m, n)), Fsum in O(n2), and Fmax in O(n

√
m), where n and

m denote the number of nodes and of links in the network, respectively, and α(m, n) is
the functional inverse of Ackermann’s function [8]. All these bounds have been achieved
using Tarjan’s sophisticated technique of transmuters [12]; there is currently no efficient
distributed implementation of this sequential technique.

From a distributed point of view, only the first of those problems, Fdist, has been
investigated and solved: a simple but non-optimal solution has been developed in [5]; an

2

efficient optimal solution has been recently proposed [3]. No distributed solution exists
to date for the problems Fsum, Fincr, and Fmax.

In this paper, we present efficient solutions for all three problems. In particular, we
propose two general distributed strategies, each solving the three problems with simple
modifications. The first scheme uses O(n∗

r) short messages, where n∗
r is the size of the

transitive closure of Tr \ {r}; note that 0 ≤ n∗
r ≤ 1

2
(n − 1)(n − 2). In the second scheme

the number of messages decreases to O(n) if long messages are allowed. Both schemes
use an overall data complexity of O(n∗

r).
The proposed algorithms differ greatly from those used in [3], in spite of their apparent

syntactic analogies. This is due to the fact that, in a distributed setting, the three
optimization problems Fsum, Fincr, and Fmax are quite different in nature from Fdist. In
fact, Fdist is a function of the node adjacent to the failed link and does not take into
account the other nodes in the disconnected subtree; hence, its solution can rely solely
on some locality properties. On the other hand, for Fsum, Fincr, and Fmax more global
information is required and needs to be disseminated accordingly. In other words, the
functions studied here are “less local” and the distributed algorithm will have to take care
of a more involved exchange of information.

Surprisingly, although the three problems considered here are more complex than that
investigated in [3], we are able to solve them with the same cost. Another interesting
fact is that, unlike the sequential case where the algorithms for the three optimization
functions are different and have quite different costs, the proposed distributed solutions
use the same algorithm (with slight modifications) and have the same cost.

2 Terminology and Problems

We will use some standard terminology and definitions as in [8]. Let G = (V, E) be the
2-edge-connected undirected graph, with n = |V | vertices and m = |E| edges, describing
the communication topology of the system. A non negative real number w(e), called
length, is associated to each edge e ∈ E. The length of a path is the sum of the lengths
of all the edges in the path, and the distance between two vertices x and y is the length
of a shortest path between them.

Let r ∈ V be a distinguished node called source, and let T = (V, E(T)) be a given
(shortest-path) spanning tree of G rooted in r. Let dT (u, v) (shortly d(u, v)) denote the
distance between nodes u and v in T . The weight of T , denoted by W (T), is defined
as the sum of the distances from all the nodes to the root; i.e., W (T) =

∑

x∈V d(x, r).
Given a node q ∈ V , let Tq = (V (Tq), E(Tq)) denote the subtree of T rooted in q; let
n(Tq) = |V (Tq)| denote the number of nodes in Tq, and let W (Tq) =

∑

u∈V (Tq) d(u, q)

denote the weight of Tq. For a node u ∈ V , we denote by C(u, Tq), p(u, Tq), and A(u, Tq)
the set of children, the parent and the set of ancestors of u in Tq, respectively; if q = r

(i.e., Tq = T), we will simply write C(u), p(u) and A(u).
Consider an edge e = (x, y) ∈ E(T), and w.l.g. let y = p(x). If such an edge is

removed, the tree is disconnected in two subtrees: Tx and T \ Tx. A swap edge for

3

e = (x, y) is any edge e′ ∈ E \ {e} that connects the two subtrees; its use instead of e

forms a new tree Te/e′ , called swap tree. For two nodes u, v ∈ N , let dTe/e′
(u, v) (shortly

de/e′(u, v)) denote their distance in Te/e′. Let Se denote the set of all possible swap trees
with respect to e.

Depending on the goal of the swapping algorithm, some swap edges are preferable to
others. Given an objective function F over Se, an optimal or best swap edge for a link
e = (x, y) is a swap edge e′ such that F (Te/e′) is minimum. For each choice of F we have a
different optimization problem. Here we are interested in the objective functions studied
in [8] in the sequential setting. Among those functions, only one has been investigated
from a distributed point of view (see [3]) and it is the one that minimizes the distance
between the point of failure and the root (Fdist). The other functions, which we investigate
in this paper, are defined below:

1. (Fsum problem) Choose a swap edge e′ that minimizes the sum of the distances
from all nodes in Tx to r when replacing e with e′ :
min Te/e′∈Se{Fsum(Te/e′)}, where Fsum(Te/e′) =

∑

u∈V (Tx) de/e′(u, r)

2. (Fincr problem) Choose a swap edge that minimizes the maximum increment of the
distance from r to any node in Tx when replacing e with e′ :
minTe/e′∈Se{Fincr(Te/e′)} where Fincr(Te/e′) = maxu∈V (Tx)(de/e′(u, r) − d(u, r)).

3. (Fmax problem) Choose a swap edge that minimizes the maximum distance from
the nodes in Tx to r when replacing e with e′ :
minTe/e′∈Se{Fmax(Te/e′)} where Fmax(Te/e′) = maxt∈V (Tx) de/e′(t, r).

As an example, consider the 2-edge-connected graph and its shortest-path spanning-tree
rooted in A shown in Figure 1. The best swap edge for link (D, B) is (E, C) when
considering Fsum or Fincr; (F, B) (D, C) and (E, C) are best swap edges if using Fmax.

3 Solution Protocols

3.1 Algorithmic Shell and Computational Tools

3.1.1 A Generic Algorithm

Consider the problem of computing the best swap edge for link e = (x, p(x)) ∈ E(T),
where p(x) denotes the parent of x in T . We now present a generic distributed algorithm
to perform this computation; the details of its modules depend on the objective function
F and will be described later.

The algorithm is started by x; during its execution, each node z ∈ V (Tx) will determine
the best local swap edge (z, z′) for (x, p(x)), according to the objective function. Among
the local swap edges of all nodes, a swap edge yielding the global minimum cost will be
then selected. More precisely, we define:

4

D

E

3

2

4

4

6

2

3

3

2

1 1

1

1

1

1

1

CB

F

H

I

A

G

1

Figure 1: An example: the thick line represents the starting SPT, rooted in A.

Procedure BSE(F, (x, p(x))

1. Node x determines, among its local swap edges for (x, p(x)), the one that minimizes F .
As we will see, x is the only node that can do so without any additional information.

2. After this, x sends to each child the enabling information the child needs to compute the
best among its local swap edges for (x, p(x)).

3. Upon receiving the enabling information from its parent, a node computes the best among
its local swap edges for (x, p(x)); it then sends enabling information to its children. This
process terminates once the leaves of Tx are reached.

4. The leaves then start a minimum finding process to determine, among the swap edges
chosen by the nodes in Tx, the one that minimizes the objective function F .

5. The optimal swap edge for (x, p(x)) is thus determined at node x.

This procedure finds the best swap edge for link (x, p(x)) (according to F). Thus, the
generic algorithm to find all the best swap edges is

Algorithm Best F -Swap

1. Pre-processing(F)

2. ∀x 6= r: BSE(F, (x, p(x)))

5

(7, 6)

(1, 1)

(3, 2)
(4, 4)

(5, 5)

(2, 8)

(6, 7)

(8, 3)

Figure 2: Labelling of the nodes.

where Pre-processing(F) is a preliminary process to be executed only if the nodes do
not have the required initial information.

3.1.2 Identifying Swap Edges

Before proceeding with the instantiation of the generic algorithm for each of the objective
functions, we describe a tool that allows a node u to distinguish, among its incident
edges, the ones that are swap edges for (x, p(x)). This tool, introduced in [3], will be used
regardless of the objective function, and it is based on the fact that, in a rooted tree, the
partial order induced by the relation “parent” has dimension at most 2, as shown below.

Consider the following labeling λ : V → {1, . . . , n}2 of the nodes: for u ∈ V let
λ(u) = (au, bu), where au is the numbering of u in the preorder traversal of T , and bu is
the numbering of u in the inverted preorder traversal of T (i.e., when the order of the visit
of the children is inverted).

Consider the dominance relationship ≥ among pairs: let λ(u) = (au, bu) and λ(v) =
(av, bv), then λ(u) ≥ λ(v) if au ≥ av and bu ≥ bv). The pairs of numbers given by the
labeling under the dominance relationship ≥ form a partial order (λ,≥). The “dominance”
relationship between these pairs completely characterizes the relationship “descendant”
in the tree:

Property 1 A node v is descendant of a node u in T if and only if λ(u) ≥ λ(v).

Based on Property 1, we can now see how the labeling can be used by a node u to
recognize its incident swap edges for a given link (x, p(x)) (refer to Figure 2).

Property 2 An edge (u, v) ∈ E \E(T) is a swap for (x, p(x)) ∈ E(T) if and only if only
one of u and v (but not both) is a descendant of x in T .

Thus, node u ∈ Tx will be able to tell whether its incident edge (u, v) is a swap edge for
(x, p(x)) simply by comparing λ(v) with λ(x): (u, v) is not a swap edge for (x, p(x)) if
and only if λ(v) ≥ λ(x).

6

In our algorithms, we will assume that this labeling is available to the nodes, and that
every node knows what are its incident swap edges. If not available, such a labeling will
be given to the tree in the preprocessing phase. Given the labeling, the information of
which incident links are swap, if not available, can be easily acquired by having each node
exchange the information with its neighbors. The cost of the entire preparation phase is
at most O(|E|) messages.

3.2 The Fsum problem.

In Problem Fsum, the optimal swap edge for link e = (x, p(x)) is one which minimizes
the sum of the distances from all nodes in Tx to the root r, in the new spanning tree
T ′ = Te/e′. Note that any swap edge (u, v) solving Fsum will also minimize the average
distance of all the nodes belonging to Tx from the root r, since the size of Tx is the same
for all the swap edges for x. This problem is also known as average stretch factor [2].

3.2.1 Enabling Information

To solve the Fsum problem, we require each node z to possess the following a-priori
information: its distance d(z, r) from the root; the number of nodes n(Tq) in Tq for each
of its children q; and the sum of the distances of all nodes in Tq to z for each of its children
q. If this information is not initially available, it can be easily acquired by the nodes in a
pre-processing phase, composed by the following simple convergecast in T , executed only
once at the beginning of the algorithm.

Given a subtree Tz and an edge (u, v), with u ∈ V (Tz) and v ∈ V \ V (Tz), let
sum(Tz, (u, v)) denote the sum of distances in Tz ∪ (u, v) from all nodes of Tz to v.

Pre-processing(Fsum)

1. The root r sends down a message to each child q containing a request-for-sum and a
value k = w(r, q).

2. The message is propagated down to the leaves (adding to k the length of each traversed
edge so that each node z in the tree knows its distance d(z, r) to the root).

3. When a leaf l receives the message, it starts a convergecast up to the root to propagate
the needed information: it sends to its parent p(l) the values sum(Tl, (l, p(l))) = w(l, p(l))
and n(Tl) = 1. Note that, since l is a leaf, W (Tl) = 0.

4. An internal node z, after receiving the values W (Tv) and n(Tv) from each child v, will
compute the values

n(Tz) =
∑

v∈C(z)

n(Tv) + 1, and sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)),

and will send them to its parent p(z).

7

The correctness of the pre-processing is proven by the following:

Lemma 1 Let z be a node in T .

1. The total number of nodes in Tz is: n(Tz) =
∑

v∈C(z) n(Tv) + 1.

2. The sum of the distances from all nodes in Tz to p(z) is:

sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)).

Proof. Part 1. is obvious. Let us consider Part 2. By definition, sum(Tz, (z, p(z))) =
∑

u∈V (Tz) d(u, p(z)). Thus,

sum(Tz, (z, p(z))) =
∑

u∈V (Tz)

d(u, z) +
∑

u∈V (Tz)

w(z, p(z)) = W (Tz) + n(Tz) · w(z, p(z)).

Note that W (Tz) =
(

∑

v∈C(z) W (Tv) + w(v, z)
)

; that is, W (Tz) can be computed with

the W (Tv) it receives from its children. Once all the information is available to the nodes,
each node will exchange its local information with the neighbors in G. The number of
messages exchanged during the preprocessing phase is then: O(|E|).

3.2.2 The BSE-Fsum Algorithm.

Let z be a node in Tx that needs to compute the cost of a candidate swap edge e′ = (z, z′)
for e (see Figure 3). Let T ′ = Te/e′.

Lemma 2 The sum of the distances in T ′ from all nodes in Tx to r is:

Fsum(T ′) = sum(T ′
z, (z, z

′)) + n(Tx) · d(z′, r) = W (T ′
z) + n(T ′

z) · w(z, z′) + n(T ′
z) · d(z′, r).

Proof. By definition we know that

Tx \ Tz

z

z′

q

p(z)

x

Figure 3: Structure of the subtree Tx with respect to the swap edge (z, z′).

8

Fsum(T ′) =
∑

t∈V (Tx) de/e′(t, r) =
∑

t∈V (Tx)[de/e′(t, z
′) + d(z′, r)] =

=
∑

t∈V (Tx) de/e′(t, z
′) +

∑

t∈V (Tx) d(z′, r)

which is equal to sum(T ′
z, (z, z

′)) + n(Tx) · d(z′, r). Noticing that sum(T ′
z, (z, z

′)) =
W (T ′

z) + n(T ′
z), ·w(z, z′), and that n(T ′

z) = n(Tx), the lemma follows.

Notice that W (T ′
z) = W (Tz) + sum(Tx \ Tz, (p(z), z)) and n(T ′

z) = n(Tz) + n(Tx \ Tz)
(see Figure 3). Thus, of the information required to compute the cost of the candidate
swap edge (z, z′), there are two components that a node z (z 6= x) does not have locally
available: sum(Tx\Tz, (p(z), z)) and n(Tx\Tz). Only x has all the information immediately
available and can locally compute the cost of its candidate swap edges; any other node z

in Tx requires this additional information.
To instantiate the generic algorithm BSE for Fsum we have to specify what is the

enabling information to be propagated. On the basis of the above reasoning, the enabling
information that any node z has to send down to its child q is composed of: the sum
sum(Tx \ Tq, (z, q)) of the distances from q to the nodes in the subtree Tx \ Tq; and the
number n(Tx \ Tq) of nodes in this subtree.

The algorithm for finding the best swap edge for (x, p(x)) according to Fsum is as
follows:

9

BSE(Fsum, (x, p(x)))

(* Algorithm for node z *)

1. If z = x
(a) Compute the cost of each local candidate swap edge: for each e′ = (x, x′),

Fsum(Te/e′) = sum(T ′
x, (x, x′)) + n(Tx) · d(x′, r) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r).

(b) Select the best candidate

(c) For each child q: compute the enabling information sum(Tx\Tq, (x, q)) and n(Tx\Tq)
and send it to q. (* It will be shown that x can compute locally this information *)

(d) Wait for the results of minimum finding from all children; determine the best swap
edge for (x, p(x)).

2. Else (* z 6= x *) Receiving enabling info < s, n > for (x, p(x)) from p(z)
(a) Compute cost of each local candidate swap edge: for each e′ = (z, z′),

Fsum(Te/e′) = s + W (Tz) + (n + n(Tz)) · (w(z, z′) + d(z′, r)) = s + sum(Tz, (z, z′)) +
(n + n(Tz)) · d(z′, r) + n · w(z, z′). (* It will be shown that this information can be
computed locally *)

(b) Select best candidate.

(c) If I am a leaf: start minimum finding.

(d) If I am not a leaf

i. for each child q: compute the enabling information sum(Tx \ Tq, (z, q)) and
n(Tx \ Tq) > and send it to q.

ii. participate in minimum finding (wait for info from all children, select the best
and send to parent).

Lemma 3 Let e = (x, p(x)). Each node z ∈ Tx can correctly compute:

1. the best local swap edge for e,

2. the value sum(Tx \ Tq, (z, q)) for each q ∈ C(z),

3. the value n(Tv \ Tq) for each q ∈ C(z).

Proof. First observe that, after the preprocessing phase, a node z has available: the
labeling λ(y) of each of its neighbors y; the distance d(y, r) to r from each of its neighbors
y; the sum of the distances sum(Tq, (q, z)) of all nodes in Tq to itself and the number of
nodes n(Tq) in Tq for each of its children q. The proof of the lemma is by induction on
the number of nodes in the path from z to of x.

Basis. z = x; i.e., the link to be swapped is (z, p(z)). By Lemma 2 we know that, for each
swap edge (x, x′),

∑

u∈V (Tx) de/e′(u, r) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r). Since x

is the root of Tx, all the needed information is available at x after the preprocessing
phase. Thus, x can locally compute all the swap edges and choose the minimum.
Moreover x can compute, by using only local information, sum(Tx \ Tq, (x, q)) and
n(Tx \ Tq) for each q ∈ C(x).

10

Induction step. Let the lemma hold for p(z) and consider its child z in T . By Lemma
2 we know that, for each swap edge (z, z′),

Fsum(T ′) = sum(T ′
z, (z, z

′)) + n(Tx) · d(z′, r).

Moreover,

sum(T ′
z, (z, z

′)) =
∑

q∈C(z,T ′) sum(T ′
q, (q, z)) +

(

∑

q∈C(z,T ′) n(Tq) + 1
)

· w(z, z′).

Notice that C(z, T ′) consists of all the children of z in T plus the parent of z in T ;
i.e., C(z, T ′) = C(z)∪ {p(z)}. The values of sum(T ′

q, (q, z)), and n(T ′
q) for q ∈ C(z)

have been computed in the preprocessing phase and are locally available. Since, by
induction hypothesis, p(z) has computed the locally best swap edge and the values
of sum(Tx \Tz, (p(z), z)) and n(Tx \Tz), and since it has sent to z these information,
z can now correctly compute the cost of all its local swap edge and choose the
minimum. Moreover, it can now compute sum(Tx \ Tq, (z, q)) and n(Tx \ Tq) for
each of its children q ∈ C(z).

3.3 The Fmax and Fincr Problems

In Problem Fmax, the optimal swap edge e′ for link e = (x, p(x)) is any swap edge such
that the longest distance of all the nodes in Tx from the root r is minimized in the new
spanning tree Te/e′ ; in Fincr, it is any swap edge such that the maximum increment in the
distance from the nodes in Tx to the root r is minimized in the new spanning tree Te/e′.

The algorithm for computing the best swap edges with respect to Fmax and Fincr have
the same structure as the one for Fsum. What differs is: (i) the information propagated
in the preprocessing phase, and (ii) the “enabling information” to be sent to the children
during the algorithm.

3.3.1 Enabling Information.

Given a subtree Tz and an edge (u, v) ∈ E(G), with u ∈ V (Tz) and v ∈ T \Tz, let D(Tz, v)
denote the maximum distance in Tz ∪ (u, v) from the nodes in Tz to v.

For solving the Fmax and the Fincr problems we require each node z to possess the
following information: its distance d(z, r) from the root, and the maximum distance
D(Tq, z) to z from a node in Tq for each q ∈ C(z). This will be accomplished with a
basic convergecast like in the previous section. In this case, Lines 3. and 4. of protocol
Pre-processing change as follows:

11

In the Pre-processing

3. A leaf l sends D(Tl, p(l)) = w(l, p(l)) to its parent p(l).

4. An internal node z after receiving from each of its children q, the values D(Tq, z) computes

D(Tz, p(z)) = max{D(Tq, z)} + w(z, p(z))

and sends it to its parent p(z).

3.3.2 The BSE-Fmax and BSE-Fincr Algorithms

Let z be a node in Tx that needs to compute the cost of a candidate swap edge e′ = (z, z′)
for e = (x, p(x)), and let T ′ = Te/e′.

Lemma 4 The maximum distance Fmax(T
′) and the maximum distance increment Fincr(T

′)
in T ′ from a node z in Tx to r are:

Fmax(T
′) = max

q∈C(z,T ′)
{D(Tq, z)} + w(z, z′) + d(z′, r)

Fincr(T
′) = max

q∈C(z,T ′)
{D(Tq, z) + w(z, z′) + d(z′, r)} − d(z, r)

Proof. By definition we know that

Fmax(T
′) = maxt∈V (Tx) de/e′(t, r) = maxt∈V (Tx) de/e′(t, z) + w(z, z′) + d(z′, r).

Noticing that Tx = z ∪ {Tq} (for all q ∈ C(z, T ′)), and by definition of D(Tq, z), we
have that: maxq∈C(z,T ′){D(Tq, z)} = maxt∈V (Tx) de/e′(t, z), and the first part of the lemma
follows. The second part follows in a similar way, by definition and again by observing
that Tx = z ∪ {Tq} (for all q ∈ C(z, T ′)).

To instantiate the generic algorithm of Section 3.1 for the Fmax and the Fincr objective
functions we have now to specify what is the enabling information that needs to be
propagated so that all the nodes can make their local choice. As it will be shown, in both
cases the enabling information that a node z has to send down to its child q is composed
of the maximum distance D(Tx \ Tq, q) of the nodes in the subtree Tx \ Tq to q. The
algorithm for node z is then the same as the one for Fsum, where the computation of the
cost of the local candidate swap edges and the enabling information changes as follows:

12

Changes: BSE-Fmax and BSE-Fincr Algorithms

1. The cost of each local candidate swap edge is computed as follows:

• If z = x, for each e′ = (z, z′),
Fmax(Te/e′) = maxq∈C(x){D(Tq, x)} + w(x, x′) + d(x′, r),
Fincr(Te/e′) = maxq∈C(x){D(Tq, x) + w(x, x′) + d(x′, r)} − d(x, r).

• Else (* z 6= x *) Receiving enabling info m for (x, p(x)):
Fmax(T ′) = max{m,maxq∈C(z){D(Tq, z)}} + {w(z, z′) + d(z′, r)},
Fincr(T

′) = max{m,maxq∈C(z){D(Tq, z)} + {w(z, z′) + d(z′, r)} − d(z, r)}.

2. The enabling information to be sent is D(Tx \ Tq, q).

Lemma 5 Given e = (x, p(x)), each node z ∈ Tx correctly computes:

1. the local best swap edges for e,

2. the value D(Tq, z) for each q ∈ C(z).

Proof. The values w(z, z′) and d(z′, r) are locally available because they have been com-
puted in the preprocessing phase. We know that C(z, T ′) = C(z) ∪ {p(z)}. If q ∈ C(z),
then max(Tq, z) is locally available because it has also been computed in the preprocessing
phase. On the other hand, if q = p(z), max(Tq, z) has to be computed; but this is exactly
the enabling information sent to z by p(z) during the algorithm.

3.4 Correctness and Complexity

Let us first examine the correctness of the proposed algorithms.

Lemma 6 After the execution of Algorithms BSE(Fsum), BSE(Fmax), and BSE(Fincr),
x finds the best swap edge for (x, p(x)) according to the corresponding objective function.

Proof. By Lemmas 3 and 5 respectively, every node correctly computes its local best
swap edge for e. By the correctness of the minimum finding, the global best swap edge
will be communicated to x.

Thus, by executing these algorithms for each edge (x, p(x)) of T , we have

Theorem 1 Algorithms BEST Fsum-Swap, BEST Fmax-Swap, and BEST Fincr-Swap,
correctly solve problems {r,

∑

}, {r, δ}, and {r, max}, respectively.

Let us now examine the complexity of the proposed algorithms. Let n∗ be the number
of edges of the transitive closure of Tr \ {r}; the following simple properties hold by
definition:

13

Property 3

(i)
∑

x∈V |V (Tx)| − 2n + 1 = n∗

(ii)
∑

x |A(x)| = n∗

(iii) 0 ≤ n∗ ≤ (n−1)(n−2)
2

Theorem 2 The message and the data complexity of the Algorithms BEST Fsum-Swap,
BEST Fmax-Swap, and BEST Fincr-Swap is O(n∗).

Proof. The preprocessing phase is executed on T once and its complexity is O(n)
messages. During the execution of the algorithm for (x, p(x)), the number of mes-
sages transmitted is 2|V (Tx)|; thus, by Property 3, in total we have:

∑

x 6=r 2|V (Tx)| =
2(n∗ +2n−1)−2n = 2(n∗ +n−1) = O(n∗). Since each message contains only a constant
number of data items, the overall data complexity is of the same order of magnitude, i.e.,
O(n∗).

4 Solution Protocols with O(n) Messages

In this section, we present a different approach suitable when long messages are allowed.
In this case, the proposed protocols use only O(n) messages without increasing the data
complexity.

4.1 Algorithmic Shell and Tools

The basic idea is that each node x simultaneously computes the best swap edges not only
for (x, p(x)), but also for each (a, p(a)), where a ∈ A(x) is an ancestor of x in T . At a
high level, the algorithm consists simply of a broadcast phase started by the children of
the root, followed by a convergecast phase started by the leaves.

14

Best F -Swap-Long (BSL)

[Broadcast]

1. Each child x of the root starts the broadcast by sending to its children a list containing
its name, its label, and its distance from the root.

2. Each node y, upon receiving from its parent p(y) the list of ancestors A(y), their labels,
and their distances from the root, appends its name, its label, and d(y, r) to the list and
sends it to its children.

[Convergecast]

1. Each leaf l first computes the best local swap edge for (l, p(l)); then for each ancestor
u ∈ A(l), it computes the best local candidate swap for (u, p(u)); finally it sends the list
of those computed edges to its parent p(l) (if different from r).

2. An internal node y waits until it receives from each of its children the list of the computed
swap edges. Based on the received information and on its local swap edges, it computes its
best swap edge for (y, p(y)); it then computes for each ancestor v ∈ A(y) the best candidate
for (v, p(v)); finally, it sends the list of those edges to its parent p(y) (if different from r).

To instantiate this generic algorithmic structure to solve the three different problems,
we need to specify (i) how the computation of the best swap edge is performed during
the convergecast phase, and (ii) the additional information to be communicated to the
ancestors together with the computed swap edges.

For a node y ∈ V , we will denote by ASL(y) the ancestors’ swap edges list of y;
specifically, ASL(y) is a list of records < node, edge, value, information >, one for each
ancestor u ∈ A(y) (the node), indicating the best swap edge e′ (the edge) for e = (u, p(u))
in Tx, the value (value) of the objective function in Te/e′ , and where information a list
of parameters to be specified for the particular problem being solved; we shall denote by
ASL(y)[u] the record associated to u ∈ A(y).

Let us describe in details the operations executed by node x. First of all x computes the
best swap edge for (x, p(x)); then it computes ASL(x). Recall that, during the converge
cast, x receives ASL(y) from each child y ∈ C(x). Since A(y) = A(x) ∪ {x}, this list
includes the best swap edge in Ty for (x, p(x)), as well as the best swap edge in Ty for
each (u, p(u)), u ∈ A(x). Hence,

15

Convergecast Computation

(* Algorithm for node x *)

1. To compute the best swap edge for (x, p(x)), x selects, among the local swap edges for
(x, p(x)) and those sent by its children y ∈ C(x) in ASL(y)[x], the one that minimizes the
objective function.

2. To construct ASL(x): for each ancestor u ∈ A(x), x selects, among the local swap edges
for e = (u, p(u)) and those sent by the children y ∈ C(x) in ASL(y)[u], the edge e′ that
minimizes the objective function; it then sets ASL(x)[u] =< u, e′, F (Te/e′),information>.

Finally, note that the information collected in the broadcast phase is sufficient for each
node to determine which of its incident edges are swap edges for itself and its ancestors.
In fact, during the broadcast, each node x receives the set A(x) of its ancestors (except
r) and their labellings; thus (by Property 2), x can determine which of its local edges are
swap edges for (x, p(x)) and for (u, p(u)), u ∈ A(u).

4.2 The Fsum Problem

To solve the Fsum problem, each node z requires some additional information: the weight
W (Tz) of the subtree Tz; the number of nodes n(Tz) in such a subtree; and its distance
dTe/e′

(z, r) from the root for each swap edge e′ for e = (z, p(z)). This is achieved by having

the information field of each record of ASL(x) contain the values (i) W (Tx), (ii) n(Tx),
and (iii) dT(x,p(x))/ex

(x, r) where ex denotes the best swap edge for (x, p(x)).
With this information, z can easily compute the values n(Tz) and W (Tz) from the

values sent by its children zj in the convergecast. Namely: If z is a leaf, then n(Tz) = 1
and W (Tz) = 0; otherwise,

1. n(Tz) =
∑

zi∈C(z) n(Tzi
) + 1

2. W (Tz) =
∑

zi∈C(z) W (Tzi
) +

∑

zi∈C(z) n(Tzi
)w(z, zi).

Once this information is available, z can compute the new values of Fsum and of
dTe/e′

(z, r), as indicated by the following Lemma.

Lemma 7 Consider an edge e = (z, p(z)).

(i) Let e′ = (z, y) be a swap edges for e. Then Fsum(Te/e′) = W (Tz) + n(Tz) · (w(z, y)+
dTe/e′

(y, r).

(ii) Let zi ∈ C(z) be a child of z, let ei = (zi, z), and let the record in in ASL(zi)[z] sent
by zi to z be < z, e′i 6= NIL, Fsum(Tzi

), {dT ′(zi, r), W (Tzi
), n(Tzi

)} >. Then

(a) dTe/e′
i
(z, r) = w(z, zi) + dTe/e′

i
(zi, r)

(b) Fsum(Te/e′i
) = Fsum(Tei/e′i

) + dTe/e′
i
(z, r) +

∑h
j=1,j 6=i(W (Tzj

) + n(Tzj
)(w(z, zj) +

w(z, zi) + dTe/e′
i

(zi, r))).

16

z1 zi zh

r

z

ei

Figure 4: Case (ii) in Lemma 7: the computation of Fsum(T(z,p(z))/e′i
) via the swap edge

ei. The thick line represents the path to the root via ei.

Proof. Case (i) follows by Lemma 2. The scenario of Case (ii) is better understood look-
ing at Figure 4. If a swap edge ei belonging to Tzi

is considered, all the nodes in Tzi
main-

tain their distance from the root, hence they contribute to Fsum(Te/e′i
) only for Fsum(Tei/e′i

).
Node z contributes for dTe/e′

i
(z, r). All the other nodes in Tzj

, 1 ≤ j ≤ h, j 6= i, to get the

root, follow a path through edges (zj , z), (z, zi), and through the swap edges ei.

We finally have:

Lemma 8 Each node z 6= r:

(i) correctly computes its best swap edge for (z, p(z));

(ii) determines for each ancestor u 6= r the best swap edge for u in Tz.

Proof. The proof is by induction on the height h(z) of the subtree Tz.

Basis. h(z) = 0; i.e., z is a leaf. In this case, one component contains only z, while the
other contains all the other nodes. In other words, the only possible swap edges are
incident on z. Thus, z can correctly compute its best swap edge by computing the
value of the distance as stated in point (i) of Lemma 7, thus proving (i). It can
also immediately determine the swap edges with respect to all of its ancestors and
compute for them the value of the parameters as stated in point (ii) of Lemma 7,
and select, for each ancestor, the best swap edge in Tz.

Induction step. Let the theorem hold for all nodes z with 0 ≤ h(z) ≤ k − 1; we will
now show that it holds for z with h(z) = k. By inductive hypothesis, z receives
from each child q ∈ C(z) the best swap edge in Tq for each ancestor of q, including
z itself. Hence, based on these lists and on the local swap edges, by Lemma 7, z

can correctly determine the optimal swap edge in Tz for itself and for each of its
ancestors.

17

4.3 The Fmax and Fincr Problems

In both problems, the value to be minimized is the maximal distance from the nodes in Tz

to the root via a swap edge ei. To achieve this goal, each node z requires some additional
information: its distance dTe/e′

(z, r) from the root for each swap edge e′ for e = (z, p(z)),

and the maximal distance D(z, q) from the nodes in Tq to z for each child q ∈ C(z); let
us denote by D(z) = maxq∈C(z) D(z, q). We will have the information field of each record
of ASL(x) contain the values (i) D(x) and (ii) dT(x,p(x))/ex

(x, r) where ex denotes the best
swap edge for (x, p(x)).

Let us now show how, using this information, z compute the new values of the param-
eters. We have:

Lemma 9 Let C(z) = {z1, ..., zh}. Let D(z) = D(z, zk), 1 ≤ k ≤ h; and let D2(z) =
maxj 6=k(D(z, zj).

(i) Let e′ = (z, l) be a swap edge for e = (z, p(z)). Then

(a) Fmax(Te/e′) = maxq∈C(z,T)(D(q, z) + w(z, l) + dTe/e′
(l, r)).

(b) dTe/e′
(z, r) = w(z, l) + d(l, r), and

(ii) Let zi ∈ C(z) be a child of z, let ei = (zi, z), and let the record ASL(zi)[z] sent by
zi to z be < z, e′i 6= NIL, Fmax(Tei/e′i

), {dTei/e′
i
(zi, r), D(zi) >. Then

(a) dTe/e′
i

(z, r) = w(z, zi) + dTe/e′
i

(zi, r)

(b) if i = k, then Fmax(Te/e′i
) = max{Fmax(Tei/e′i

), D2(z) + dTe/e′
i
(z, r)};

otherwise Fmax(Te/e′i
) = max{Fmax(Tei/e′i

), D(z) + dTe/e′
i

(z, r)}

Proof. Assume that the children of z have already terminated their computation and
transmitted their lists to z. From these values z can compute the maximum distance of
a node in Tz, and Case (i) follows immediately. For Case (ii), if the swap edge ei does
not belongs to Txk

, the maximal distance is given by the the largest between Fmax(Tei/e′i
)

and (D(z) + dTe/e′
i

(z, r)). Otherwise, all the nodes in Tzk
maintain their distance from

the root; for all the nodes in Tzj
, j 6= k, called far nodes, to get to the root the path

goes through edges (zj , z), (z, zk), and through the swap edge e′i. Hence, in this case, to
compute the distance of the far nodes we have to consider the maximal distance to z from
the descendent of z not belonging to Txk

, i.e. D2(z).

Thus, following an inductive argument similar to the one used to prove Lemma 8, it
follows that:

Lemma 10 Each node x 6= r:

18

(i) correctly computes the best swap edge for (x, p(x)) according to Fmax;

(ii) determines for each ancestor u 6= r the best swap edge in Tx for (u, p(u)).

When the function is Fincr, the corresponding protocol is obtained with simple mod-
ifications to the one we have described for Fmax, and the analogous properties follow in
the say way.

4.4 Correctness and Complexity

Concerning the correctness of the proposed algorithms, we state the following

Theorem 3 Algorithms BEST Fsum-Swap-Long, BEST Fmax-Swap-Long, and BEST
Fincr-Swap-Long correctly solves {r,

∑

}, {r, max}, and {r, δ}, respectively.

Proof. By Lemmas 8 and 10, every node correctly computes the best swap edge for
itself and all of its ancestors. Therefore, the correctness follows by the correctness of the
convergecast procedure.

Let us now analyze the number of messages and the amount of data transferred by
these new protocols.

Theorem 4 The message complexity of Algorithms BEST Fsum-Swap-Long, BEST
Fmax-Swap-Long, and BEST Fincr-Swap-Long is O(n); the data complexity is O(n∗

r)

Proof. The basic structure is a broadcast followed by a convergecast, both performed in
T ; hence the total number of messages is O(n). In the broadcast, every node x (except the
root) receives a message that contains a constant amount of data items for each ancestor
of x; similarly, in the convergecast, each node x (except the children of the root) sends a
constant amount of data items for each ancestor of x. Thus in total, the number of data
items transmitted in the algorithms is O(

∑

x |A(x)|); since
∑

x |A(x)| = n∗ (Property 3),
the theorem follows.

5 Conclusions

The computation of the optimal swap edges for a shortest-path tree is a crucial preliminary
step to enable the point-of-failure swap rerouting technique proposed in the literature. Ef-
ficient algorithms for this computations existed only in the serial setting. In this paper,
we have shown how to efficiently compute the optimal swap edges in a distributed setting
under several optimization criteria. These protocols are based on a new strategy, different
from the serial one. We have also shown how this strategy can be used to develop so-
lution protocols that use only O(n) messages in systems allowing long messages without
increasing the total amount of transmitted data items.

An interesting open problem is whether the data complexity can be decreased by
employing a different strategy. In other words, the open question is whether or not Ω(n∗)
is a lower bound on the number of data items that must be transferred.

19

References

[1] Y. Afek and M. Ricklin. Sparser: a paradigm for running distributed algorithms.
Journal of Algorithms, 14:316-328, 1993.

[2] A. Di Salvo and G. Proietti. Swapping a failing edge of a shortest paths tree by mini-
mizing the average stretch factor. Proc. of 10th Colloquium on Structural Information
and Communication Complexity (SIROCCO 2004) 2004.

[3] P. Flocchini, T. Mesa, L. Pagli, G. Prencipe, and N. Santoro. Point-of-failure
shortest-path rerouting: computing the optimal swap edges distributively. IEICE
Transactions on Information and Systems, E89-D (2):700–708, 2006.

[4] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
Information and Computation, 79:43-59, 1988.

[5] H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro. Single backup table schemes for
shortest-path routing. Theoretical Computer Science, 333:347-353, 2004.

[6] H. Mohanty and G.P. Bhattacharjee. A distributed algorithm for edge-disjoint path
problem Proc. of 6th Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), 44-361, 1986.

[7] E. Nardelli, G. Proietti, and P. Widmayer. Finding all the best swaps of a minimum
diameter spanning tree under transient edge failures. Journal of Graph Algorithms
and Applications, 2(1):1–23, 1997.

[8] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica, 35:56–74, 2003.

[9] P. Narvaez, K.Y. Siu, and H.Y. Teng. New dynamic algorithms for shortest path
tree computation IEEE Transactions on Networking, 8:735–746, 2000.

[10] L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach, 3rd Edi-
tion. Morgan Kaufmann, 2003.

[11] G. Proietti. Dynamic maintenance versus swapping: An experimental study on
shortest paths trees. Proc. 3rd Workshop on Algorithm Engineering (WAE 2000),
207–217, 2000.

[12] R. E. Tarjan. Application of path compression on balanced trees. Journal of ACM,
26:690–715, 1979.

20

