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1. Introduction 

In many special purpose digital signal processing app lications, the cost of 
performing multiplications is significantly greater than that of additions. In 
such situations, algorithms which reduce the number of multiplications, 
perhaps with some increase in additions, may be attractive. Winograd 1 has 
shown that the number of multiplications required to perform certain 
polynomial multiplications related to computation of DFTs and con­
volutions depends on the underlying field of constants. Thus, by working in 
certain algebraic number fields , algorithms with a reduced number of 
multiplications may be devised , although a certain overhead may be 
incurred when transforming data into the new representation. In this paper, 
we describe the application of severa l rings and fields containing a cube 
root of unity to computation of DFTs and convolutions. In particular, we 
consider the applications to a radix-3 FFT which has no multiplications in 
the 3-point DFTs, and to number theoretic transforms. 

2. Arithmetic with a cube root of unity 

Let R be a commutative ring with identity and consider the extension ring 

R(())={a+be:a, bER, 82 +8+1 =0} 

() 1s a cu be root of unity , since () 2 = - () -1 implies () 3 = - () 2 
- () = 1. 
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Operations in R(8) are as follows: 

(a+ bO) + (c +dO)=(a +c)+(b + d)O 

(a+ bO)(c + dO) = (ac - bd) +[ad+ b(c -d)]O 

Multiplication requires three additions and four multiplications in R. It is 
possible to trade additions for multiplications by using the formula 

(a+ bO)(c + dO) = (ac - bd) +[(a+ b)(c + d) - ac - 2bd]O 

which requires six add itions and three multiplications in R. This may be 
useful if a multiplication takes longer than three additions. Also the 
add ition bd + bd = 'l.bd my be implemented as a binary shift if desired. 

3. Radix-3 FFT 

The OFT of N points is given by 

N- 1 

X(k)= I x(n)W"\ k = 0, .. ., N - 1 ( I) 
11 = 0 

where W=exp( - j2n/N) and X(k) and x(n) are sequences of complex 
numbers. Assume that N =3M. A decimation-in-time implementation of 
equation (1) for N = 27 is shown in Fig. 1, using the notation described in 
ref. 2. The 3-point DFTs of Fig. 1 can be computed using four rea l 
multiplications and twelve rea l additions. 3 

If equation (1) is implemented in IR (0), where IR denotes the field of real 
numbers and 

then 

. I j3 . 
0=exp(-J2n/ 3) = - - - - J 

2 2 

The 3-point transforms of Fig. 1 for this number system are shown in detail 
in Fig. 2. These require no multiplications, as shown explicitly by the 
following equations: 

X(O)= [x 1 (O)+ x1 (l)+x 1 (2)] +[x 2(0) +x2(l)+ x2(2)]0 

= [x I (0)- X2(1)x I (2) + X2(2)] 

+ [x2(0) + x 1(1) -x2(1)-x 1 (2)]0 

X(2) = [x 1 (O)-x 1 (1) + x 2(1) -x2(2)] 

+ [x 2(0)-x 1(1)+x 1 (2)-x2(2)]0 

(2) 
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Fig. I. A rad ix-3 in-place decimation- in-time FFT a lgo rit hm. 

where x(n) =x 1(n)+x 2(n)fJ. Equa tio n (2) can be eva lu a ted with fo urteen 
rea l addit io ns. The o nly mu lt iplica tions in the transform are those by the 
" twiddle fact ors" W ; which a re shown in F ig. 1. 

To obta in the D FT of a seq uence of complex numbers using the a bove 
technique, the foll owing equations must be used to transform input and 
o utpu t d a ta between IC and IR (11). 

If either input or output a re kn own to be real, the a ppropria te tran sfor­
mation can be waived . Although we have described the a lgo rithm with 
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Fig. 2. Three-point OFT in IR ill). 

reference to the decimation-in-time implementation of Fig. I, the technique 
app lies to a ll the usual configurations a radix-3 FFT can tak e. 

If the data are real , the above algorit hm can be used to compute the 
OFT of sequences of length 2 x 3M. This is accomplished by computing the 
transform of the length 3M seq uence y(n) = x(2n) + x(2n + 1)8, and manipulat­
ing it in a fashion analogous to that for the complex-valued DFT.4 If the 
transform is to be used to convolve rea l sequences, no data tra nsformation s 
are required. To convolve x(n) and h(n), the transforms X(k ) and H(k) are 
computed in IR (0), multiplied pointwise in IR (0), and then inverse trans­
formed. A technique to convo lve length 2 x 3M real sequences is given in ref. 
5. 

In an N =3M point rad ix-3 FFT, there are (~M - l)N + I non-trivial 
complex multiplications by twiddle factors and MN / 3 three point DFTs. 
Use of the above a lgor ithm eliminates the 4M N /3 real multiplications 
associated with these 3-point DFTs, while leaving the number of rea l 
multiplicati ons associated wit h the twiddle factors fixed. In the limit for 
large N, the number of real multiplications is reduced by a factor of 33!%, if 
multiplication algorithms in IC and IR (0) wit h four real multiplications are 
used , and by a facto r of 40%, if multiplication algorithms in C and IR (0) 
with three real multiplications are used . However the number of additions is 
increased and the tota l computation savings depend on the relative costs of 
addition and multiplication on the processor being used. If the cost of a 
multiplication is r times that of an addition , then for la rge N the relative 
cost of the a rithmetic operat ions in the new a lgorithm to those in the 
standard a lgorithm is given by 

2r + S 

3r+4 

if multiplication a lgorithms 111 C and IR (0) with four real multiplications 
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are used . This rat io is shown in Fig. 3 as a function of r; it is unity for r = 1 
and decreases monotonically to l If the multiplicatio n a lgorithms in IC and 
~ (11) with three rea l multiplications are used , the corresponding ratio is 

3r + 13 

Sr+ J 1 

which is unity for r = l and decreases monotonically to ~-
Simi lar comparisons can be made with radix-2 and radix-4 FFTs. 

Restricting the situa tion to the case where multiplication in IC and IR (11) 
requires four rea l multiplications, for large N the relative cost of the 
ar ithmetic operatio ns in the new a lgorithm and in a radix-2 algori thm is 
given by 

8r + 20 S·OSr + 12·62 
log 3 2---=-----

6r+9 6r+9 

This ratio is I· 18 for r = 1, becomes equal to unit y for r = 3·8 1 and decreases 
monotonically to 0·84. For radix-4, the ratio is 

16r+40 20·19r+50-47 
loa 4---

03 18r +33 18r +33 

which is l · 39 at r = I and decreases monotonically to l · 12. These two ratios 
are a lso shown in Fig. 3. The new algorithm can thus be more efficient than 
radix-2 but is less efficient than radix-4. It must be understood that these 
ratios represent relative efficiencies, as a radix-2 and radix -3 algorithm 
cannot both ex ist for the same N. 
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Fig. 3. Relati ve cost of computation between new radix-3 algorithm and (a) standard radix-3, 
(b) radix-2, (c) radix-4 FFT algorithms. 
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To extend thi s technique to higher radices, new bases {(8 1, 8 2)} a re 
needed, for the complex field . The properties desired are: (a) that arithmetic 
in these bases has simplic it y comparable to standard complex arithmetic 
and (b) tha t a p-point OFT has a reduced number of multiplications for 
some p. To d a te the authors have not di scovered any further examples 
sa tisfying these two properties. ln particula r, the basis (I , l/J) where ljJ is a 
primitive pth root of unity does not satisfy them for p > 3. 

4. Application to number theoretic transforms 

A number theoretic transform is a transform defined in a ring R of residues 
of algebraic integers having the OFT structure, which ma ps cyclic con­
vo lution isomo rphicall y int o pointwise product: 6

·
7 

N - l 

U: X(k) = I x(n)c/" , k = O, .. . , N - 1 
n= O 

a nd 
U(x * y)= Ux. Uy 

where x * y denotes cyclic convo lution. A necessa ry co nditio n for these 
properties to ho ld is that a be a primiti ve N th root o f unit y in R. 

Generally, the ring R is chosen to be a ring of integers, or complex 
integers, modulo an integer M. By appropriate choice of M and a, trans­
forms which require no multiplications can be constructed. However, these 
suffer from the di sadvantage that the wordlength required is proporti ona l to 
the sequence length . Thus techniques which can give greate r seq uence 
lengths for given wordlength without introducing multiplications a re of 
interest. 

The most well known moduli used with number theo retic tran sform s are 
Fermat numbers: F, = 22

' + l. Using a= 2, tra nsform lengths of 2' + 1 can be 

achieved and with a=J2~21 - 2 (2 1 - 1 -I) lengths 21 + 2 a re obtained with 
transforms in Zp. By working in the ring Zr(O), these tran sform lengths can 

be increased by ~ factor of 3, 7 using a = W o'r a= fie (other values may be 
more advantageous). Then, for real data, the sequence lengths which can be 
convolved can be further doubled using techn iques described in ref. 8. 
Arithmet ic is carried out as indicated in Section 2. 

For illustration, consider M = 28 +1 and N = 3 x 24
, with a= 2 11 0. (2 1 1 

has order 16, and has the property (2 1 1 
)
3 = 233 = 2.) The tran sfo rm can be 

decomposed as three 16-point transforms with a= (2 1 10)3 = 2, followed by 
sixteen 3-point t ra nsfo rms with a= {2 11 0) 16 = tl. Since 3 and 16 a re 
re latively prime, the prime factor algorithm can be used , obviating the 
need for intermed ia te multiplications by twiddle factors . 

The 3-point transforms can be implemented exactly as in Fig. 2, requiring 
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fourteen additions, as given by equation (2). The f1owgraph for the entire 
transform is shown in Fig. 4, where the 16-point transforms can be 
implemented using any standard radix-2 a lgorithm. 

Useful results can a lso be obtained by taking R to be the ring of Gaussian 
integers modulo M , Z M[i]. In thi s case, transforms in Z M[i](B) can be used 
to convo lve seq uences of complex numbers, giv ing an increase in sequence 
length by a factor of six over comparable a lgorithms in Z M[i]. Thus for 
example, if a transform of length N havi ng no multiplications exists in 
Z~hJ with a= I + i, then one of length 3N exists in ZM[i](O) with a= 
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Fig. 4. Forty-eight-point OFT in Z[O](F,). 
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(1 + i)O, a nd the techniques of ref. 8 can be used to convo lve sequences of 
length 6N. These tran sforms a re most useful with the pseudo-Mersenne and 
pseud o-Fermat transfo rms. 9

· 1° 

5. Conclusion 

Techniques fo r computa tio n of convo lutions and DF Ts using a rithmet ic in 
rings a nd fi elds containing a cube root of uni ty have been described . An 
a lgo rithm for computing the radi x-3 FFT using a rithmetic in IR (0) uses 33t % 
o r 40% fewer multiplica tio ns tha n the conventiona l radi x-3 a lgo rithm . Also, 
number theoretic transfo rms ex hibit ing increased sequence lengths can be 
o btained using t ings of modula r integers conta ining a cube roo t of unity. 
T hese resu lts show tha t use of number systems o ther than the rea l and 
complex fie lds a nd their integers can lead to compu ta ti ona l savi ngs in 
digita l signa l process ing a pplicatio ns. 
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