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Abstract
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Diana Inkpen

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2004

Current natural language generation or machine translation systems cannot distinguish

among near-synonyms—words that share the same core meaning but vary in their lexical nu-

ances. This is due to a lack of knowledge about differences between near-synonyms in existing

computational lexical resources.

The goal of this thesis is to automatically acquire a lexical knowledge-base of near-synonym

differences (LKB of NS) from multiple sources, and to show how it can be used in a practical

natural language processing system.

I designed a method to automatically acquire knowledge from dictionaries of near-synonym

discrimination written for human readers. An unsupervised decision-list algorithm learns pat-

terns and words for classes of distinctions. The patterns are learned automatically, followed

by a manual validation step. The extraction of distinctions between near-synonyms is entirely

automatic. The main types of distinctions are: stylistic (for example, inebriated is more formal

than drunk), attitudinal (for example, skinny is more pejorative than slim), and denotational

(for example, blunder implies accident and ignorance, while error does not).

I enriched the initial LKB of NS with information extracted from other sources. First, infor-

mation about the senses of the near-synonym was added (WordNet senses). Second, knowledge

about the collocational behaviour of the near-synonyms was acquired from free text. Col-

locations between a word and the near-synonyms in a dictionary entry were classified into:

preferred collocations, less-preferred collocations, and anti-collocations. Third, knowledge
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about distinctions between near-synonyms was acquired from machine-readable dictionaries

(the General Inquirer and the Macquarie Dictionary). These distinctions were merged with

the initial LKB of NS, and inconsistencies were resolved.

The generic LKB of NS needs to be customized in order to be used in a natural language

processing system. The parts that need customization are the core denotations and the strings

that describe peripheral concepts in the denotational distinctions. To show how the LKB of

NS can be used in practice, I present Xenon, a natural language generation system system

that chooses the near-synonym that best matches a set of input preferences. I implemented

Xenon by adding a near-synonym choice module and a near-synonym collocation module to

an existing general-purpose surface realizer.

iv



Dedication

To my beloved husband Tim, who has faith in me.

v



Acknowledgements

I wish to thank the following people:

� Graeme Hirst, my academic adviser, for all his guidance, for helping with many things,
from research to job hunting, and for making me feel that I am part of a family.

� Suzanne Stevenson for helping when I got stuck with my research.

� Gerald Penn for his tough questions and for encouraging me.

� John Mylopoulos for being in my thesis committee.

� Irene Langkilde-Geary for letting me use HALogen and the input construction tool,
and for her suggestions about how to integrate my modules with HALogen.

� Ol’ga Feiguina for being an enthusiastic research assistant, and for implementing the
programs from Chapter 5.

� Philip Edmonds for his earlier work on near-synonyms and for the I-Saurus code.

� My officemate Cosmin Munteanu for his support and for helping with proofreading.

� Ramona and Cosmin Truta for their moral support.

� Greg Kondrak and Iluju Kiringa for discussions about research and job hunting.

� Vivian Tsang, Afsaneh Fazli, and Afra Alishahi for their support and for tolerating my
weekly visits to their office.

� Faye Baron for her support and affection.

� Melanie Baljko and Natalia Modjeska for their sharing the struggle of finishing a PhD.

� Eric Joanis, Jane Morris, Alex Budanitsky, and Tristan Miller for helping in the judging
tasks; to Jane and Eric also for interesting discussions.

� Christopher Collins, Neil Graham, Yun Niu, Jane Li, Amber Wilcox-O’Hearn, Ken-
neth Hoetmer, Preetam Maloor, and Robert Swier for their collegial support.

� My husband, Tim Inkpen for listening to my whining about the thesis and for his love
and patience.

� Tudor Muresan for teaching me Prolog and for pushing me to apply for a PhD.

� My parents, Mariana and Ilie Zaiu, for supporting me morally and financially when I
was an undergraduate student in Romania.

vi



Contents

1 Introduction 1

1.1 Near-synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Distinctions among near-synonyms . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The class hierarchy of distinctions . . . . . . . . . . . . . . . . . . . . 5

1.3 The clustered model of lexical knowledge . . . . . . . . . . . . . . . . . . . . 6

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Building lexical resources . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Work involving near-synonyms . . . . . . . . . . . . . . . . . . . . . 12

1.5 Overview of contributions of thesis . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Building the Lexical Knowledge-Base of Near-Synonym Differences 19

2.1 Preprocessing the dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The decision-list learning algorithm . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Classification and extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Semi-automatic acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Disambiguating the Senses of the Near-Synonyms in a Dictionary Entry 35

3.1 Indicators of word sense relevance . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Using a decision tree to combine indicators . . . . . . . . . . . . . . . . . . . 39

vii



3.3 Building a standard solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Comparison with related work . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Adding Collocational Knowledge from Free Text 47

4.1 Extracting collocations from free text . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Differential collocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Comparison with related work . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Adding Knowledge from Machine-Readable Dictionaries 67

5.1 Adding knowledge from the General Inquirer . . . . . . . . . . . . . . . . . . 67

5.2 Adding knowledge from the Macquarie Dictionary . . . . . . . . . . . . . . . 69

5.3 Adding knowledge from WordNet . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Consistency checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Using the Lexical Knowledge-Base of Near-Synonym Differences 77

6.1 Lexical choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Customizing the LKB of NS . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Customizing the core denotations . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Customizing the peripheral concepts . . . . . . . . . . . . . . . . . . . 81

6.2.3 Evaluation of the Xenon customization module . . . . . . . . . . . . . 83

6.2.4 The final LKB of NS customized for Xenon . . . . . . . . . . . . . . . 84

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



7 Xenon: An NLG System that Uses Knowledge of Near-Synonym Differences 87

7.1 Meta-concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Near-synonym choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Similarity of distinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Similarity of conceptual configurations . . . . . . . . . . . . . . . . . . . . . . 95

7.6 Integrating the knowledge of collocational behaviour . . . . . . . . . . . . . . 99

7.7 Evaluation of Xenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.7.1 Evaluation of the near-synonym choice module . . . . . . . . . . . . . 106

7.7.2 Evaluation of the near-synonym collocation module . . . . . . . . . . . 122

7.7.3 Evaluation of the two modules in interaction . . . . . . . . . . . . . . 126

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusion 129

8.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . 132

A List of Abbreviations 137

B Example of Generic LKB of NS for the Near-Synonyms of error 139

C Example of Customized English LKB Entry for the Near-Synonyms of error 145

D Example of French LKB Entry for the Near-Synonyms of erreur 149

E Implementation Notes 153

Bibliography 155

ix



Indices 166

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Citation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

x



List of Tables

1.1 Examples of near-synonymic variations. . . . . . . . . . . . . . . . . . . . . . 2

2.1 Labeled precision and labeled recall of the baseline and of my algorithm. . . . 31

3.1 Accuracy of disambiguation for different combinations of indicators. . . . . . . 42

3.2 Accuracy of disambiguation per part-of-speech. . . . . . . . . . . . . . . . . . 43

4.1 Contingency table for daunting task. . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Some of the collocations ranked 1 by MI. . . . . . . . . . . . . . . . . . . . . 53

4.3 Some of the collocations ranked 1 by Dice. . . . . . . . . . . . . . . . . . . . 53

4.4 First 10 collocations selected by LL. . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Some of the collocations ranked 1 by χ2. . . . . . . . . . . . . . . . . . . . . . 54

4.6 Some of the collocations ranked 1 by Fisher. . . . . . . . . . . . . . . . . . . . 55

4.7 Example of counts, mutual information scores, and t-test scores for the collo-

cate daunting with near-synonyms of task. . . . . . . . . . . . . . . . . . . . . 58

4.8 Example of collocations extracted for the near-synonym task. . . . . . . . . . . 59

4.9 Example of results for collocations of near-synonyms . . . . . . . . . . . . . . 59

4.10 Accuracy of the main steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Example of entries in the General Inquirer for the word correct. . . . . . . . . 68

6.1 Coverage and correctness of the customization rules. . . . . . . . . . . . . . . 83

7.1 The functions that map symbolic values to numeric values. . . . . . . . . . . . 94

xi



7.2 Example of values for logarithms of probabilities in the language model (uni-

grams and bigrams). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Xenon evaluation experiments for simple input. . . . . . . . . . . . . . . . . . 112

7.4 Xenon’s machine translation evaluation experiments and their results. . . . . . 118

7.5 Xenon’s accuracy for “non-default” cases. . . . . . . . . . . . . . . . . . . . . 121

7.6 The results of the evaluation of Xenon’s collocations module (the lexical nu-

ances module is disabled for this experiment). . . . . . . . . . . . . . . . . . . 124

7.7 Correct near-synonym choices for the baseline system (HALogen only), for

HALogen with each module of Xenon separately, and for HALogen with both

modules of Xenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xii



List of Figures

1.1 A page from Choose the Right Word (CTRW). . . . . . . . . . . . . . . . . . . 3

1.2 The class hierarchy of distinctions. . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The hierarchical model of lexical knowledge. . . . . . . . . . . . . . . . . . . 7

1.4 The clustered model of lexical knowledge. . . . . . . . . . . . . . . . . . . . . 8

1.5 Edmonds’s representation for the cluster error, mistake, blunder, slip, lapse,

howler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The two modules of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Example of distinctions extracted from CTRW. . . . . . . . . . . . . . . . . . 21

2.3 The architecture of the extraction module. . . . . . . . . . . . . . . . . . . . . 21

2.4 Example of text from CTRW with XML markup. . . . . . . . . . . . . . . . . 22

2.5 The decision-list learning algorithm. . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Context vectors in a 2D space. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Simplified decision tree for the combination of indicators. . . . . . . . . . . . . 40

5.1 Example of distinctions extracted from the General Inquirer. . . . . . . . . . . 69

5.2 Example of entry in the Macquarie Dictionary for the word burlesque. . . . . . 71

5.3 Example of distinctions extracted from the Macquarie Dictionary. . . . . . . . 72

5.4 Example of conflict in the merged lexical knowledge-base. . . . . . . . . . . . 73

6.1 Lexical analysis and choice in MT. . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Example of input and output to I-Saurus. . . . . . . . . . . . . . . . . . . . . . 79

xiii



6.3 Examples of peripheral concepts in I-Saurus. . . . . . . . . . . . . . . . . . . 82

6.4 Fragment of the initial representation of the error cluster. . . . . . . . . . . . . 85

6.5 The final representation of the error cluster. . . . . . . . . . . . . . . . . . . . 86

7.1 The architecture of HALogen. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 The architecture of Xenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Example of input and output of Xenon. . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Interlingual representation for the sentence “The dog eats a meaty bone”. . . . 89

7.5 Interlingual representation for the sentence “The boy need not go”. . . . . . . . 89

7.6 The interlingual representation from Figure 7.3 after expansion by the near-

synonym choice module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7 Examples of computing the similarity of lexical distinctions. . . . . . . . . . . 95

7.8 Examples of computing the similarity of conceptual configurations. . . . . . . 97

7.9 Fragment of the lexical knowledge-base of near-synonym collocations. . . . . . 100

7.10 The architecture of Xenon extended with the Near-Synonym Collocation module.101

7.11 An example of forest representation. . . . . . . . . . . . . . . . . . . . . . . . 102

7.12 The textual representation of the forest from Figure 7.11. . . . . . . . . . . . . 103

7.13 Algorithm for left and right neighbours in the AND-OR tree. . . . . . . . . . . 104

7.14 The architecture of DevSimple and TestSimple. . . . . . . . . . . . . . . . . . 106

7.15 Examples of test cases from the test set DevSimple. . . . . . . . . . . . . . . . 107

7.16 Example of output for the first test case from Figure 7.15. . . . . . . . . . . . . 108

7.17 Near-synonyms used in the evaluation of Xenon (DevSimple). . . . . . . . . . 108

7.18 Near-synonyms used in the evaluation of Xenon (TestSimple, TestSample, and

TestAll). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.19 Examples of parallel sentences used in TestAll, extracted from the Canadian

Hansard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.20 The architecture of TestSampleFr and TestAllFr (French-to-English). . . . . . . 114

7.21 Fragment of a cluster of French near-synonyms. . . . . . . . . . . . . . . . . . 115

xiv



7.22 The architecture of TestSampleEn and TestAllEn (English-to-English). . . . . . 116

7.23 Example of test case from TestAll (English input). . . . . . . . . . . . . . . . . 117

7.24 The architecture of tests for evaluating the near-synonym collocation module. . 123

xv



xvi



Chapter 1

Introduction

1.1 Near-synonyms

Near-synonyms are words that are almost synonyms, but not quite. They are not fully inter-

substitutable, but rather vary in their shades of denotation or connotation, or in the components

of meaning they emphasize; they may also vary in grammatical or collocational constraints.

Examples of near-synonymic variations are given in Table 1.1 [Hirst, 1995]. Most of these

examples are self-explanatory, except maybe the last two: foe emphasizes active warfare more

than enemy does [Gove, 1984]; the distinction between forest and woods is a complex combi-

nation of size, proximity to civilization, and wildness (as determined by the type of animals

and plants therein) [Room, 1981].

There are very few absolute synonyms, if they exist at all. The so-called “dictionaries of

synonyms” actually contain near-synonyms. This is made clear by dictionaries such as Web-

ster’s New Dictionary of Synonyms [Gove, 1984] and Choose the Right Word (hereafter CTRW)

[Hayakawa, 1994], which list clusters of similar words and explicate the differences between

the words in each cluster. A page from CTRW is presented in Figure 1.1. These dictionaries

are in effect dictionaries of near-synonym discrimination. Writers often turn to such resources

when confronted with a choice between near-synonyms, because choosing the wrong word can

1



2 CHAPTER 1. INTRODUCTION

Type of variation Example
Collocational task : job w.r.t. daunting
Stylistic, formality pissed : drunk : inebriated
Stylistic, force ruin : annihilate
Expressed attitude skinny : thin : slim
Emotive daddy : dad : father
Continuousness seep : drip
Emphasis on different aspects of meaning enemy : foe
Fuzzy boundary woods : forest

Table 1.1: Examples of near-synonymic variations.

be imprecise or awkward, or convey unwanted implications. These dictionaries are made for

human consumption and they are available only on paper, not in electronic format.

Understanding the differences between near-synonyms is important for fine-grained dis-

tinctions in machine translation. For example, when translating the French word erreur to

English, one of the near-synonyms mistake, blooper, blunder, boner, contretemps, error, faux

pas, goof, slip, solecism could be chosen, depending on the context and on the nuances that

need to be conveyed. Another application where knowledge of near-synonyms is vital is lexical

choice in natural language generation systems. Such a system takes a non-linguistic input (se-

mantic representation) and generates text. When more than one word can be used, the choice

should be based on some explicit preferences. A third application is an intelligent thesaurus,

which assists writers not only with lists of possible synonyms, but also with the nuances they

carry.

1.2 Distinctions among near-synonyms

Near-synonyms can vary in many ways. DiMarco et al. [1993] analyzed the type of differences

adduced in dictionaries of near-synonym discrimination. They found that a limited number

of types occurred frequently, but an unlimited number were used [DiMarco and Hirst, 1993].

A detailed analysis of the types of variation is given by Edmonds [1999]. Some of the most
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abjure. Do not confuse the verb abjure (renounce under oath) with the verb adjure (urge solemnly).

abrogate. Do not confuse the verb abrogate (cancel or repeal) with the verb arrogate (claim a power,
privilege, etc., unduly).

absorb, assimilate, digest, imbibe, incorporate, ingest
These verbs, all relatively formal, indicate the taking in of one thing by another. Absorb is slightly

more informal than the others and has, perhaps, the widest range of uses. In its most restricted sense
it suggests the taking in or soaking up specifically of liquids: the liquid absorbed by the sponge. In
more general uses absorb may imply the thoroughness of the action: not merely to read the chapter,
but to absorb its meaning. Or it may stress the complete disappearance of the thing taken in within the
encompassing medium: once-lovely countryside soon absorbed by urban sprawl. Ingest refers literally
to the action of taking into the mouth, as food or drugs, for later absorption by the body. Figuratively,
it designates any taking in and suggests the receptivity necessary for such a process: too tired to ingest
even one more idea from the complicated philosophical essay she was reading. To digest is to alter food
chemically in the digestive tract so that it can be absorbed into the bloodstream. In other uses, digest
is like absorb in stressing thoroughness, but is even more emphatic. [You may completely absorb a
stirring play in one evening, but you will be months digesting it.]

Assimilate is even more emphatic about the thoroughness of the taking in than either absorb or
digest–in both its specific physiological and general uses. Physiologically, food is first digested, then
absorbed by the bloodstream, and then assimilated bit by bit in each cell the blood passes. In more
general uses, assimilate, unlike the previous verbs, often implies a third agent beside the absorber and the
absorbed–an agent that directs this process: architects who assimilate their buildings to the environment.
The process, furthermore, often implies the complete transformation of the absorbed into the absorbing
medium. Assimilate also suggests a much slower process than digest and certainly than absorb, which
can be nearly instantaneous: It would take the city generations to assimilate the newcomers into the
patterns of a strange life.

Incorporate is the only verb here that does not have a specific use pertaining to the taking in of
liquids or of food, meaning literally embody. It resembles the aspect of assimilate that stresses the
loss of separate identity for the absorbed quantity: incorporating your proposals into a new system that
will satisfy everyone. It is unlike assimilate in lacking that verb’s suggestion of necessarily careful,
time-consuming thoroughness.

Imbibe, while capable of uses comparable to those for assimilate, is mainly rooted still to its
specific use for the taking in of liquids. Even this use, and certainly any others, now sound slightly
archaic and excessively formal: Do you imbibe alcoholic beverages? See EAT. Antonyms: disgorge,
disperse, dissipate, eject, emit, exude.

abstain, forbear, refrain
The verb abstain means withhold oneself from an action or self-indulgence. [There were six votes

in favor, two against, and two abstaining; She abstained from drinking.] Refrain has to do with with-
holding an action temporarily, or checking a momentary desire: He refrained from scolding his child
until the company left. To forbear, in its intransitive sense, is to exercise self-control, often out of
motives of patience or charity. [Though impatient, the customer forbore to upbraid the harried sales
clerk; The teacher forbore to report Johnnie’s misbehavior to his parents.] See FORGO, FORSWEAR.
Antonyms: BEGIN, PERMIT.

Figure 1.1: A page from Choose the Right Word (CTRW) by S.I. Hayakawa. Copyright
c

�
1987. Reprinted by arrangement with HarperCollins Publishers, Inc.
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relevant types of distinctions, with examples from CTRW, are presented below.

Denotational Distinctions Near-synonyms can differ in the frequency with which they ex-

press a component of their meaning (e.g., Occasionally, invasion suggests a large-scale but

unplanned incursion), in the latency (or indirectness) of the expression of the component (e.g.,

Test strongly implies an actual application of these means), and in fine-grained variations of

the idea itself (e.g., Paternalistic may suggest either benevolent rule or a style of government

determined to keep the governed helpless and dependent). The frequency is signaled by words

such as always, usually, sometimes, seldom, never. The latency is signaled by many words in

CTRW, including the obvious words suggests, denotes, implies, and connotes. The strength of

a distinction is signaled by words such as strongly and weakly.

Attitudinal Distinctions Near-synonyms can convey different attitudes of the speaker to-

wards an entity of the situation. Attitudes can be ����������	�

����� , ������
���	�� , or ��	���������	������ .

Examples of sentences in CTRW expressing attitudes are: Blurb is also used pejoratively to

denote the extravagant and insincere praise common in such writing and Placid may have an

unfavorable connotation in suggesting an unimaginative, bovine dullness of personality. Both

contain information about the pejorative attitude, though they also contain information about

denotational distinctions.

Stylistic Distinctions Stylistic variations of near-synonyms concern their level of ��������	��

����
�� , �����
 !����
�������"�" , ������ �� , �������
��#���
�� , and ��	��$������	%����
�� [Hovy, 1990]. Only the first

three occur in CTRW. Examples of sentences in CTRW expressing stylistic distinctions are:

Assistant and helper are nearly identical except for the latter’s greater informality and Crime

may be used as an abstract noun to suggest all illegal activity. Words that signal the degree

of ��������	�����
�� include formal, informal, formality, and slang. The degree of �����& !����
�������"�" is

signaled by words such as abstract, concrete, and concretely. ������ �� can be signaled by words

such as emphatic, and intensification.
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Suggestion

Implication

Denotation

Favourable

Neutral

Pejorative

Formality

Force

ConcretenessSTYLE

ATTITUDE

ATTITUDE−STYLE

DISTINCTIONS
DENOTATIONAL

DISTINCTIONS

DISTINCTIONS

+strength

+frequency

+frequency

Figure 1.2: The class hierarchy of distinctions; rectangles represent classes, ovals represent
attributes that a class and its descendants have.

1.2.1 The class hierarchy of distinctions

Following Edmonds’s analysis of the distinctions among near-synonyms, I derived the class

hierarchy of distinctions presented in Figure 1.2. The top-level class DISTINCTIONS consists

of DENOTATIONAL DISTINCTIONS, ATTITUDE, and STYLE. The last two are grouped together

in a class ATTITUDE-STYLE DISTINCTIONS because they are expressed by similar syntactic

constructions in the text of CTRW. Therefore the algorithm described in Section 2.2 treats

them together.

The leaf classes of DENOTATIONAL DISTINCTIONS are ����������"!

����� , � �������% �	�

����� , and

� ���
�!
�	�

�%��� ; those of ATTITUDE are ��	���������	��
��� , ������
���	�� , and ����������	�

����� ; those of STYLE

are ��������	�����
�� , �����
 �����
�������"�" , and ������ �� . All these leaf nodes have the attribute strength,

which takes the values ����� , ����#����%� , and 	&���
	 . All the leaf nodes except those in the class

STYLE have the attribute frequency, which takes the values 	�����	���" , �
"���	������ , "%������

� ����" ,

"�����#���� , and ��������� . Besides what is it shown in the figure, all the classes have as the first

attribute the near-synonym to which the distinction belongs. The DENOTATIONAL DISTINC-

TIONS have an additional attribute for the peripheral concept is suggested / implied / denoted.
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1.3 The clustered model of lexical knowledge

Hirst [1995] and Edmonds and Hirst [2002] show that current models of lexical knowledge

used in computational systems cannot account well for the properties of near-synonyms.

The conventional view is that the denotation of a lexical item is represented as a concept

or a structure of concepts (i.e., a word sense is linked to the concept it lexicalizes), which

are themselves organized into an ontology. The ontology is often language-independent, or

at least language-neutral, so that it can be used in multilingual applications. Words that are

nearly synonymous have to be linked to their own slightly different concepts. For example,

the fragment of a hierarchical model shown in Figure 1.3 needs to make many fine-grained

distinctions to accommodate the near-synonyms of the word error. It needs to branch according

to multiple criteria, such as blameworthiness, significance, stupidity, etc. Hirst [1995] showed

that such a model entails an awkward taxonomic proliferation of language-specific concepts at

the fringes, thereby defeating the purpose of a language-independent ontology. For example, if

French near-synonyms need to be added into the model, the word erreur can be easily attached,

but the word bavure (which means an unfortunate error made by the police) cannot be added

without additional branching. Moreover, some words need to cut across the hierarchy, for

example if a word denotes both a social error and a funny error. The hierarchical model defines

words in terms of necessary and sufficient truth-conditions; therefore it cannot account for

indirect expressions of meaning or for fuzzy differences between near-synonyms.

Edmonds [1999] modified this model to account for near-synonymy. The meaning of each

word arises out of a context-dependent combination of a context-independent denotation and

a set of explicit differences from its near-synonyms. Thus the meaning of a word consists of

both necessary and sufficient conditions that allow the word to be selected by a lexical choice

process and a set of nuances of indirect meaning that may be conveyed with different strengths.

In this model, a conventional ontology is cut off at a coarse grain and the near-synonyms are

clustered under a shared concept, rather than linking each word to a separate concept. The

result is a clustered model of lexical knowledge.
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SITUATION

THING

INSIGNIFICANT-ERROR

GENERIC-ERROR

blooper

lapse
slip FUNNY-ERROR

NONBLAMEWORTHY-ERROR

STUPID-ERROR

BLAMEWORTHY-ERROR

SOCIAL-ERROR

howler

ACTIVITY

blunder

faux pas

mistake error

Figure 1.3: The hierarchical model of lexical knowledge. The solid lines connect concepts in
a IS-A hierarchy, while the dashed lines connect words to concepts they instantiate.
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Fehler

Irrtum

Versehen

Schnitzerimpair

bavure

faux pas
faute

erreurerror

blunder
mistake

slip howler

lapse

Situation Object

Activity

Generic−Error

Thing

Figure 1.4: The clustered model of lexical knowledge. From [Edmonds, 1999]. The solid lines
connect concepts in a IS-A hierarchy, and the dashed lines connect clusters of near-synonyms
to generic concepts. The representation of the differences inside each cluster is not shown in
this figure.

Each cluster has a core denotation that represents the essential shared denotational meaning

of its near-synonyms. The internal structure of each cluster is complex, representing semantic

(or denotational), stylistic, and expressive (or attitudinal) differences between near-synonyms.

The differences or lexical nuances are expressed by means of peripheral concepts (for denota-

tional nuances) or attributes (for nuances of style and attitude).

A clustered model has the advantage that it keeps the ontology language-neutral by rep-

resenting language-specific distinctions inside the cluster of near-synonyms. For example, in

Figure 1.4 there is one concept called “Generic-Error”, and there is a cluster of near-synonym

differences for each language. Fine-grained distinctions can be easily added to each cluster.

The clusters of near-synonyms for each language do not need to be separate clusters. They can

be part of one bigger cluster, but the separation is good for modularity.

Inside each cluster of near-synonyms, denotational distinctions are captured by using pe-

ripheral concepts. For example, the structure for the near-synonyms of the word error, built

by hand by Edmonds [1999], is shown in Figure 1.5. In this model, a cluster includes the

following fields:
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� "����
" – a list of near-synonyms in the cluster;

�  ������ – the core denotation, or essential shared meaning of the near-synonyms in the

cluster, represented as a configuration of concepts;

� ������� ��	 – a set of peripheral concepts that extend the core denotation, and pertain to

the differentiation of the near-synonyms;

� #
�%"�

� �& �

�����&" – the actual distinctions between near-synonyms.

The distinctions field in Figure 1.5 contains a list of distinctions (instances of a distinction

class). Each distinction has a type (the class name could be Suggestion, Implication, Denota-

tion, Favourable, Neutral, Pejorative, Formality, Force, or Concreteness), a near-synonym to

which the distinction refers, and a strength with which the distinction is expressed. Depending

on the class of distinction, there are additional attributes: the frequency of expression for de-

notational and attitudinal distinctions, and the peripheral concept for denotational distinctions.

Building such representations by hand is difficult and time-consuming, and Edmonds com-

pleted only nine of them. My goal is to automatically extract the content of all the entries in

a dictionary of near-synonym discrimination. In order to build a practical lexical knowledge-

base, I use a simplified form of Edmonds’s representation for the content of a cluster.

1.4 Related work

I discuss here related work on building lexical resources, and related work involving near-

synonyms. A comparison of my word-sense disambiguation experiments to related work is

presented in Section 3.5. A comparison of my collocation extraction experiments to related

work is presented in Section 4.5.
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Figure 1.5: Edmonds’s representation for the cluster error, mistake, blunder, slip, lapse,
howler.
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1.4.1 Building lexical resources

Lexical resources are vital for developing natural language processing (NLP) applications.

They can be acquired by various means, depending on the type of resource.

One important resource is the lexicon. Lexicographers have developed lexicons for NLP

applications manually, semi-automatically, and automatically. The ACQUILEX1 Project ex-

plored the utility of constructing a multilingual lexical knowledge-base (LKB) from machine-

readable versions of conventional dictionaries. Ide and Véronis [1994] argue that it is not pos-

sible to build a lexical knowledge-base from a machine-readable dictionary (MRD), because

the information it contains may be incomplete, or it may contain circularities. But it is possible

to combine information from multiple MRDs, or to enhance an existing LKB. According to

them, human supervision may be needed.

Other types of knowledge can enhance existing lexicons. Information extracted from cor-

pora augments existing lexicons with frequency information, or with knowledge about collo-

cations (the COBUILD2 project). Other corpus-based research concerns learning subcatego-

rization frames and selectional restrictions [Korhonen, 2002], inducing morphology for new

languages from parallel corpora [Yarowsky and Wicentowski, 2000], and lexical tuning (learn-

ing new word senses from corpora) [Wilks and Catizone, 2002].

Automatically extracting world knowledge from MRDs was attempted by projects such as

MindNet at Microsoft Research [Richardson et al., 1998], and Barièrre and Popowich’s project

[Barrière and Popowich, 1996] that learns from children’s dictionaries. IS-A hierarchies were

learned automatically from MRDs [Hearst, 1992] and from corpora ([Caraballo, 1999] among

others).

Work on merging information from various lexical resources is related to my work in the

sense that the consistency issues to be resolved are similar. One example is the construction of

1http://www.cl.cam.ac.uk/Research/NL/acquilex/acqhome.html
2http://titania.cobuild.collins.co.uk/
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UMLS (Unified Medical Language System)3 [Lindberg et al., 1993], in the medical domain.

UMLS takes a wide range of lexical and ontological resources and puts them together as a

single resource. Most of this work is done manually, at the moment.

The lexical resource I acquire in this thesis contains a new type of knowledge: lexical

nuances of near-synonyms. It is meant to be used together with some of the resources men-

tioned above. The method I use is different. As explained in Chapter 2, my algorithm for

automatically acquiring knowledge from the dictionary of near-synonym differences combines

ideas from Collins and Singer [1999], who classify proper names, and from Riloff and Jones

[1999], who acquire domain-specific lexicons. In their turn, these researchers were inspired by

Yarowsky [1995], who presents an unsupervised word sense disambiguation algorithm.

1.4.2 Work involving near-synonyms

My work is based on that of Edmonds and Hirst [2002] and Hirst [1995], in particular the

model for representing the meaning of the near-synonyms presented in Section 1.3, and the

preference satisfaction mechanism used in Chapter 7.

Other related research involving differences between near-synonyms has a linguistic or

lexicographic flavour, rather than computational.

Apresjan built a bilingual dictionary of synonyms, more specifically a dictionary of English

synonyms explained in Russian [Apresjan et al., 1980]. It contains 400 entries selected from

the approximately 2500 entries from Webster’s New Dictionary of Synonyms, but reorganized

by splitting or merging clusters of synonyms, guided by lexicographic principles described by

Apresjan [2000]. An entry consists of: headwords, explication (equivalent to the core mean-

ing in my work), translation, meaning (semantic similarities and differences), notes, syntax,

co-occurrence constraints, and illustrations. From these, the part called meaning includes the

following types of differences: semantic, evaluative, associative and connotational, and dif-

ferences in emphasis or logical stress. These differences are similar to the ones used in my

3http://www.nml.nih.gov/research/umls/
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work. The semantic differences refer to: the subject of the action, property, or state; the object

or content; the addressee; the instrument or operative part; the cause and effect; the purpose;

the motivation; time; manner, nature; degree; properties (states) or their external manifesta-

tions; permanent or temporary state; active or passive mode; static or dynamic mode; mind

or emotion; physical or spiritual aspects; intentional or unintentional action. This list is open-

ended; therefore we could include the elements of this list in a computational representation of

near-synonym differences, but we still need to allow for additional types of differences.

Gao [2001] studied the distinctions between near-synonym verbs, more specifically Chi-

nese physical action verbs such as verbs of: cutting, putting, throwing, touching, and lying.

Her dissertation presents an analysis of the types of semantic distinctions relevant to these

verbs, and how they can be arranged into hierarchies on the basis of their semantic closeness.

Arppe [2002] studied the relation between Finnish morphology and near-synonymy. He

showed that synonymous words can have different behaviour, depending on their inflectional

form, in a language with a very rich morphology.

There is related work on representing the distinctions between near-synonyms, concerned

not with a general model, but rather with the linguistic analysis of particular words, in more

than one language. Wierzbicka [1997] presents a detailed analysis of the words freedom and

homeland in a couple of languages, with emphasis on differences that reflect cultural differ-

ences. Mel’čuk and Wanner [2001] present a detailed semantic representation, in the style

of the Text Meaning Theory, for a class of nouns. They exemplify their representation on

near-synonyms of the word appeal in German and Russian. Their main goal is to facilitate

lexical choice in transfer-based machine translation. They suggest a computational implemen-

tation using unification of feature structures. Their complex representations have to be build

manually by a lexicographer. Their mechanism for choosing the best near-synonym has some

similarity to my method in Chapter 7, especially the idea to use collocations of near-synonyms

in the choice process.

There is related work that investigates the question of which words are considered near-
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synonyms, without interest in their nuances of meaning. In my work, the words that are con-

sidered near-synonyms are taken from CTRW. A different dictionary of synonyms may present

slightly different views. For example a cluster may contain some extra words, some missing

words, or sometimes the clustering could be done in a different way. Ploux and Ji [2003] merge

clusters of near-synonyms from several dictionaries and represent them in a geometric space.

They experiment with French and English near-synonyms, looking at clusters in each language

and at bilingual clusters. A different approach is to automatically acquire near-synonyms from

free text. Lin et al. [2003] acquire words that are related by contextual similarity, and then filter

out the antonyms. They detect antonyms by using a small set of manually determined patterns

(such as “either X or Y”) to construct Web queries for pairs of candidate words. The problem

of this approach is that it still includes words that are in relations other than near-synonymy.

Compared to lexical resources such as WordNet [Miller, 1995] (where the words in synsets

are considered “absolute” synonyms, ignoring any differences between them) or thesauri (Ro-

get’s [Roget, 1852] and Macquarie [Bernard, 1987] – which contain hierarchical groups of

similar words), the lexical knowledge-base of near-synonym differences I acquired includes,

in addition to the words that are near-synonyms, explicit explanations of differences between

these words.

1.5 Overview of contributions of thesis

In this thesis I show that it is possible to automatically acquire knowledge about the differences

between near-synonyms. Denotational, attitudinal, and stylistic differences are extracted from a

special dictionary of synonyms and from machine-readable dictionaries. Knowledge about the

collocational behaviour of the near-synonyms is acquired from free text. The resulting lexical

knowledge-base of near-synonym differences is useful in many natural language processing

applications. I show how a natural language generation system can use it in order to choose

the best near-synonym that matches a set of input preferences. If the preferences are lexical



1.5. OVERVIEW OF CONTRIBUTIONS OF THESIS 15

nuances extracted by the analysis component of a machine translation system, the translation

quality would be higher: it would preserve not only the meaning of the text, but also its nuances

of meaning.

To accomplish these goals, I develop a method for automatically acquiring knowledge of

differences between near-synonyms, from multiple sources. I build a lexical knowledge-base

of differences between English near-synonyms that can be used in NLP applications such as:

natural language generation, machine translation, and writing assistance programs. I show

how the LKB of NS can be used for lexical choice in Xenon, an NLG system that extends an

existing sentence realization program with a near-synonym choice module and a near-synonym

collocation module. The contributions of this research are the following:

Extraction patterns and knowledge acquisition I develop a method for extracting knowl-

edge from special dictionaries of near-synonym discrimination. An unsupervised decision-list

algorithm learns extraction patterns for classes of distinctions among near-synonyms. Then,

from each sentence of the dictionary, denotational, attitudinal, and stylistic distinctions are

extracted. The method can potentially be applied to any dictionary of near-synonym discrim-

ination, for any language for which preprocessing tools, such as part-of-speech taggers and

parsers, are available. I build a new lexical resource, an LKB of differences between English

near-synonyms, by applying the extraction method to Choose the Right Word. The method and

the actual acquisition of distinctions between near-synonyms is described in Chapter 2.

Sense disambiguation I apply a combination of existing word sense disambiguation tech-

niques to a new task: disambiguating the senses of the near-synonyms in a dictionary entry.

The dictionary entry provides a strong context for disambiguation. These experiments are pre-

sented in Chapter 3.

Acquisition of collocational knowledge I automatically acquire knowledge of collocational

behaviour of near-synonyms from free text. This knowledge is useful in a lexical choice process
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to ensure that it chooses near-synonyms that generate preferred collocations, and avoids gen-

erating anti-collocations. I classify collocations of near-synonyms in three classes (preferred

collocations, less-preferred collocations, and anti-collocations) on the basis of a differential t-

test computed by using the Web as a corpus. Chapter 4 describes the method for the automatic

learning of differences in the collocational behaviour of the near-synonyms.

Knowledge extraction from MRDs I show that knowledge of differences between near-

synonyms can also be extracted from MRDs. In Chapter 5, I enrich the initial LKB of NS with

attitudinal and stylistic distinctions extracted from special MRDs that mark words for attitude

and style. I extract denotational distinctions from definitions in MRDs, by considering only the

definitions that contain another near-synonym from the same cluster.

Customization of the lexical knowledge-base of near-synonym differences I show how

the generic LKB of NS can be customized for use in a particular NLP system. The only parts

that may require customization are the core denotations and the peripheral concepts, to ensure

that they are expressed in terms of concepts understood by the system. Chapter 6 discusses the

customization needs.

Utility of the lexical knowledge-base of near-synonym differences I present Xenon, an

NLG system that uses the LKB of NS to choose the near-synonym that best matches a set of

input preferences. Xenon extends an existing NLG system with two new modules. The near-

synonym choice module matches input preferences against distinctions. The near-synonym

collocation module uses the knowledge of collocational behaviour to ensure that only near-

synonyms that generate preferred collocations are chosen. Chapter 7 describes the implemen-

tation and evaluation of Xenon.

Evaluation I design suitable evaluation experiments for each of the steps presented above.

The evaluation of the module that extracts knowledge from CTRW is presented in Section 2.4.
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The evaluation of the word sense disambiguation experiments is described in Section 3.4. The

evaluation of the module that learns collocational behaviour of the near-synonyms is presented

in Section 4.4. The evaluation of the module that adapts the LKB of NS to Xenon is presented

in Section 6.2.3. The evaluation of Xenon is done on a subset of French and English near-

synonyms. Xenon’s near-synonym choice module is presented in Section 7.7.1, and Xenon’s

near-synonym collocations module is presented in 7.7.2.
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Chapter 2

Building the Lexical Knowledge-Base of

Near-Synonym Differences

The goal of this chapter is to automatically acquire a lexical knowledge-base of near-synonyms

(LKB of NS) from a dictionary of near-synonym discrimination. Each entry in the dictionary

enumerates a set of near-synonyms and describes the differences among them. I use the term

cluster in a broad sense to denote both the near-synonyms from an entry and their differences.

My goal is not only to automatically extract knowledge from one dictionary of synonym dis-

crimination, but also to discover a general method which can be applied to any such dictionary

with minimal adaptation.

The task can be divided into two phases, treated by two consecutive modules. The first

module, called the extraction module in Figure 2.1, is described in this chapter. The generic

clusters produced by this module contain the concepts that near-synonyms may involve (the

peripheral concepts) as simple strings. This generic LKB of NS can be adapted for use in

any NLP application. The second module customizes the LKB of NS, so that it satisfies the

requirements of the particular system that employs it. This customization module deals with

the core denotations and the peripheral concepts. It transforms the strings from the generic

clusters into concepts in the particular ontology. An example of a customization module is

19
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module
Customization

module
Extraction text

Dictionary
Customized

representations
cluster
representations

Generic
cluster

Figure 2.1: The two modules of the task.

described in Chapter 6.

In order to automatically derive a lexical knowledge-base of near-synonyms from a dictio-

nary of near-synonym discrimination, I rely on the hypothesis that the language of the entries

contains enough regularities to allow automatic extraction of knowledge from them. The dic-

tionary of near-synonym differences that I use is Choose the Right Word [Hayakawa, 1994]

(CTRW).1 A page from this dictionary is presented in Figure 1.1.

CTRW contains 909 clusters, with a total of 14,138 sentences (excluding examples of us-

age), from which I derive the lexical knowledge-base. An example of results of this phase,

corresponding to the second, third, and fourth sentence for the absorb cluster in Figure 1.1 (re-

peated here without the examples of usage: “Absorb is slightly more informal than the others

and has, perhaps, the widest range of uses. In its most restricted sense it suggests the taking in

or soaking up specifically of liquids. In more general uses absorb may imply the thoroughness

of the action.”), is presented in Figure 2.2.

The next sections describe the extraction module, whose architecture is presented in Figure

2.3. It has two main parts. First, it learns extraction patterns; then it applies the patterns

to extract differences between near-synonyms. Earlier versions of this work were previously

published in [Inkpen and Hirst, 2001a] and [Inkpen and Hirst, 2001b].

1I am grateful to HarperCollins Publishers, Inc. for permission to use CTRW in this project.
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Figure 2.2: Example of distinctions extracted from CTRW.

near−synonym differences
Lexical knowledge base of

(scanned in, OCR)
Text of the dictionary Sentence breaker

XML markup
Brill tagger Parser (chunker)

(np, vp, ap, rp)
Frequency counts

Decision−lists algorithm

(coreference, comparisons)
Information extractor

Figure 2.3: The architecture of the extraction module.
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Figure 2.4: Example of text from CTRW with XML markup.

2.1 Preprocessing the dictionary

After OCR scanning of CTRW and error correction, I used XML markup to segment the text of

the dictionary into: cluster name, cluster identifier, members (the near-synonyms in the clus-

ter), entry (the textual description of the meaning of the near-synonyms and of the differences

among them), cluster’s part-of-speech, cross-references to other clusters, and antonyms list.

Sentence boundaries are detected using general heuristics, plus specific heuristics for this

particular dictionary; e.g., examples are in square brackets or after a colon. The tag ��"�� marks

sentences that describe the nuances of meaning, and the tag ���
��� marks examples using the

near-synonyms. Each occurrence of a near-synonym is marked with the tag ������	�� "!����� . An

example of segmented content from Figure 1.1 is given in Figure 2.1.

2.2 The decision-list learning algorithm

Before the system can extract differences between near-synonyms, it needs to learn extraction

patterns. For each leaf class in the hierarchy (Figure 1.2 on page 5) the goal is to learn a set

of words and expressions from CTRW (extraction patterns) that characterizes descriptions of

the class. Then, during the extraction phase, for each sentence in CTRW (or fragment of a

sentence) the program will decide which leaf class is expressed, with what strength and what

frequency.
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I use a decision-list algorithm to learn sets of words and extraction patterns for the classes

DENOTATIONAL DISTINCTIONS and ATTITUDE-STYLE DISTINCTIONS. These are further split

down for each leaf class, as explained in section 2.3.

The algorithm I implemented is inspired by the work of Yarowsky [1995] on word sense

disambiguation. He classified the senses of a word on the basis of other words that the

given word co-occurs with. Collins and Singer [1999] classified proper names as ������"���� ,
� ����	��&����	�

����� , or ���� �	�

���!� using contextual rules (other words appearing in the context of

the proper names) and spelling rules (words in proper names). Starting with a few spelling rules

(some proper-name features) in the decision list, their algorithm learns new contextual rules;

using these rules then it learns more spelling rules, and so on, in a process of mutual bootstrap-

ping. Riloff and Jones [1999] learned domain-specific lexicons and extraction patterns (such

as shot in � x � for the terrorism domain). They used a mutual bootstrapping technique to alter-

nately select the best extraction pattern for a category and add its extractions to the semantic

lexicon; the newly added entries in the lexicon help in the selection of the next best extraction

pattern.

My decision-list (DL) algorithm (Figure 2.5) is tailored for extraction from CTRW. It learns

two different types of rules. Main rules are for words that are significant for distinction classes.

Auxiliary rules are for frequency words, strength words, and comparison words. Mutual boot-

strapping in the algorithm alternates between the two types.

The idea behind the algorithm is that starting with a few main rules (seed words), the

program selects examples containing them and learns a few auxiliary rules. Using these, it

selects more examples and learns new main rules. It keeps iterating until no more new rules

are learned.

My program learns two kinds of rules, similarly to Collins and Singer’s algorithm. More-

over, my program also extracts patterns and relevant words for the classes DENOTATIONAL

DISTINCTIONS and ATTITUDE-STYLE DISTINCTIONS, similar to the domain-specific lexicon

extracted by Riloff and Jones.
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Input: Set E of training examples, class, main seed words for class, part-of-speech (pos) for
words that are to be in mainDL, and pos for words that are to be in auxDL.

Output: Two decision lists for the given class: main decision list (mainDL) and auxiliary
decision list (auxDL), plus list E � of patterns for the class. (Each decision list contains rules of
the form x � h

�
x � , meaning that the word x is significant for that class with confidence h

�
x �

computed by Equation 2.1.)

1. Set N = 10, the maximum number of rules to be induced at each step.

2. Initialization: Set the mainDL to the set of main seed words (with confidence 0.99).
Set E � to empty set.

3. Add to mainDL those words in chunks from E that have the same stem as any words
already in mainDL. (For example, if suggest is in mainDL, add suggests, suggesting,
suggested, suggestion.)

4. Select examples (chunks) from E � E � that contain words in mainDL, and add them to
E � .

5. Use E � to compute more auxiliary rules. For each word x not in any DL, compute the
confidence h

�
x � using Equation 2.1. Take the N highest values and add them to auxDL.

6. Select more examples from E � E � using auxDL, and add them to E � . Stop if E � is
unchanged.

7. Using the new E � , compute more main rules. For each word x not in any DL, compute
the confidence h

�
x � . Take the N highest values and add them to mainDL.

8. Go to step 3 unless E � is unchanged.

Figure 2.5: The decision-list learning algorithm.
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In order to obtain input data, I replace all the near-synonyms in the text of the dictionary

with the term ����	�� "!��� ; then I chunk the text with Abney’s chunker [Abney, 1996]. The train-

ing set E is composed of all the verb phrases, noun phrases, adjectival phrases, and adverbial

phrases (denoted ��� , ��� , 	�� , ��� , respectively) that occur more than t times in the text of the

dictionary (where t � 3 in my experiments). Phrases that occur very few times are not likely

to be significant patterns and eliminating them makes the algorithm faster (fewer iterations are

needed).

The program learns rules of the form: word x is significant for the given class with confi-

dence h
�
x � . All the rules x � h

�
x � for that class form a decision list that allows us to compute

the confidence with which new patterns are significant for the class.

The confidence of a word x is computed with the formula:

h
�
x ��� count

�
x � E � � � α

count
�
x � E � � kα

(2.1)

where E � is the set of patterns selected for the class, and E is the set of all input data. Following

Collins and Singer [1999], k � 2, because there are two partitions (relevant and irrelevant for

the class). α � 0 	 1 is a smoothing parameter. So, I count how many times x is in the patterns

selected for the class versus the total number of occurrences in the training data.

I apply the DL algorithm for each of the classes DENOTATIONAL DISTINCTIONS and

ATTITUDE-STYLE DISTINCTIONS. The input to the algorithm is: the set E of all chunks,

the main seed words, and the restrictions on the part-of-speech (pos) of the words in main and

auxiliary rules. For the class DENOTATIONAL DISTINCTIONS the main seed words are: sug-

gest, imply, denote, mean, designate, connote; the words in main rules are verbs and nouns, and

the words in auxiliary rules are adverbs and modals. For the class ATTITUDE-STYLE DISTINC-

TIONS the main seed words are: formal, informal, pejorative, disapproval, favorable, abstract,

concrete; the words in main rules are adjectives and nouns, and the words in auxiliary rules are

adverbs.

For example, for the class DENOTATIONAL DISTINCTIONS, starting with the rule suggest

� 0 	 99, the program selects examples such as these (where the numbers give the frequency in
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the training data):

� ��� � ��#  �	���� � ��� "���������"!
�������������	� ��� � ��� "%������

� ����"
� � �%� "���������"�
������������

Auxiliary rules are learned for the words sometimes and can with confidence factors given by

the count of these words in the current set of selected examples compared with the count in the

rest of the set of examples. Using the new auxiliary rules for the words sometimes and can, the

program selects more examples such as these:

� ��� � ��#  �	���� � ��� ��� � ��������������
��� ��� � ��# ��	���� � �%� "�������

� ����"
� � �%� � �����������������

From these, new main rules are learned, for the words refer and imply. Using new main rules

more auxiliary rules are selected – for the word may, and so on.

The ATTITUDE and STYLE classes had to be considered together because both of them use

adjectival comparisons. Examples of ATTITUDE-STYLE DISTINCTIONS class are these:

� 	�� � ���&" �
��"�
�� � ��� � ������	��������������� 	�� � ��� ���
 	�� � �
����� �
������� � ��� � ������	������������� 	�� � ���&" �
��"�
�� � ���  %���
 �����
������������

For this example, main rules contain the words formal and concrete, and auxiliary rules much,

more, and most.

2.3 Classification and extraction

After I run the DL algorithm for the class DENOTATIONAL DISTINCTIONS, I manually split the

words in the list mainDL into three classes: ����������"!

����� , � � �����% �	�

�%��� , and
� ������
�	�

���!� .

This sub-classification is manual for lack of a better procedure. Furthermore, some words

can be insignificant for any class (e.g., the word also) or for the given class; during the sub-

classification I mark them as OTHER. I repeat the same procedure for frequencies and strengths

with the words in auxDL. The words marked as OTHER and the patterns which do not contain

any word from mainDL are automatically ignored in the next processing steps.
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After I run the algorithm for the class ATTITUDE-STYLE DISTINCTIONS, I split the words

in the list mainDL into two classes: ATTITUDE and STYLE. I split ATTITUDE into ��	���������	������ ,

������
���	�� , ����������	�

����� . and STYLE into ��������	�����
�� , �����
 !����
�������"�" , ������ �� . Frequencies will

be computed from the auxDL list, and strengths will be computed by a module which resolves

comparisons.

Once I obtained the words and patterns for all the classes, I implemented an automatic

knowledge-extraction component. This program takes each sentence in CTRW and tries to

extract one or more pieces of knowledge from it.

The information extracted for denotational distinctions has the fields: subject (which near-

synonym), frequency, strength, class, and peripheral concept. The class takes the value ����� ����"��



���!� ,
� ������
�	�

���!� , or � � �����% �	�

����� . The peripheral concept is a string extracted from the

sentence. Strength takes the value ����� , ����#����%� , or 	&� � 	 . Frequency takes the value 	�����	���" ,

�
"���	������ , "%������
&� ����" , "�����#���� , or ��������� . Default values ( �
"���	������ and ���%#�� �%� ) are used

when the strength and the frequency are not specified in the sentence.

The information extracted for attitudinal distinctions has the fields: subject, frequency,

strength, and class, where strength and frequency have the same values and significance as in

the case of denotational distinctions, and class can be ��	���������	������ , ������
���	�� , or ����������	�

����� .

The information extracted for stylistic distinctions has the fields: subject, strength, and

class, where the class can be ��������	�����
�� , ������ �� , or �����& !����
�������"�" . Strength has the value

����� , ����#�� ��� , or 	$� �
	 , indicating the level of the stylistic attribute.

The extraction program considers what near-synonyms each sentence fragment is about

(most often expressed as the subject of the sentence), what the expressed distinction is, and

with what frequency and relative strength. If it is a denotational distinction, then the peripheral

concept involved has to also be extracted (from the object position in the sentence). Therefore,

my program extracts the subject of the sentence (the first noun phrase before the main verb) and

the object of the sentence (the first noun phrase after the main verb). This heuristic for extract-

ing information works for sentences that present one piece of information. But there are many
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sentences that present two ore more pieces of information. In such cases, my program splits

a sentence into coordinated clauses (or coordinated verb phrases), by using a parser [Collins,

1996] to distinguish when a coordinating conjunction (and, but, whereas) is conjoining two

main clauses or two parts of a complex VP. For example:

����	%����"!��� � 	� ��%������� 	�	�" 
�� #�� �
��
 	 
�����������"�" � � � ��
��������� �
 	���#
� � �
������" 	�� ���
 %�����
��� ���&�� 
%����"�" 	���# #��%"� !�
� �$� ��	�

����� � � �$����#

�%� 	�	�" 
�� #�� �
��
 	 �%� 	���# � � ��������" ���

From 60 randomly selected sentences, 52 were correctly dealt with (41 needed no split, 11

were correctly split). The 8 mistakes included 3 sentences that were split but shouldn’t have

been, and 5 that needed splitting and they were not. The mistakes were mainly due to wrong

parse trees. Therefore, the accuracy was 86.6%.

When no information is extracted in this way, a few patterns are applied. An example of ex-

traction pattern is: ��� � ��� ��" 
�� ����� ����� . There are also heuristics to retrieve compound-

subjects of the form near syn and near syn or near syn, near syn, and near syn. Once the

class is determined to be either DENOTATIONAL DISTINCTIONS or ATTITUDE-STYLE DIS-

TINCTIONS, the target class (one of the leaves in the class hierarchy in Figure 1.2 on page 5) is

determined by using the manual partitions of the rules in the mainDL of the two classes.

Coreferences and Comparisons Sometimes the subject of a sentence refers to a group of

near-synonyms. For example, if the subject is the remaining words, my program needs to

assert information about the near-synonyms from the same cluster not mentioned yet in the

text.

In order to implement coreference resolution, I applied the same DL algorithm to retrieve

expressions used to refer to near-synonyms or groups of near-synonyms. When running the

algorithm with the seeds noun, word, term, verb, adverb, adjective, the expressions retrieved

look like these:

� ��� � #%
�� 
 	���"���� � ���&" 	%#����� �
&������"
�������������� ��� � #%
�� 
 	���"���� � ���&" �
�����
"
�������������
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� ��� � #%
�� 
 	���"���� � ���&" �������
"
������������	� ��� � #%
 
 	���� � ��� ��
 	������ � ���&" 	%#����� �
&������"
������������ ��� � #%
 
 	���� � ����� ���!��	����&� ����� � ���
" �������
"������������

The auxiliary words include: the, three, both, preceding, previous, remaining, other. Using

these auxiliary words, more coreferences are resolved. Any time the subject is one of the main

words (noun, word, term, verb, adverb, adjective, preposition, nouns, words, terms, verbs, ad-

verbs, adjectives, pair), if there is an auxiliary word, the meaning is modified accordingly. This

is done by manually encoding it into the program. For example, the expression the remaining

verbs will cause the program to compute the set of near-synonyms of that entry not processed

yet to that point.

Another case my extraction program needs to deal with is when stylistic or attitudinal dis-

tinctions are expressed relative to other near-synonyms in the cluster. Such comparisons are

resolved in a simple way, by considering only three absolute values: ( ����� , ����#
� �%� , 	&� � 	 ).

I explicitly tell the system which words represent what absolute values of the correspond-

ing distinction (e.g., abstract is at the low end of �����
 �����
�������"�" ), and how the comparison

terms increase or decrease the absolute value (e.g., less abstract could mean a ����#�� �%� value of

�����& !����
�������"�" ).

2.4 Evaluation

CTRW contains 909 clusters that group 5452 near-synonyms (more precisely near-synonym

senses, because a word can be in more than one cluster). The explanatory text of all the entries

consists of 14,138 sentences (without counting examples of use). My program is able to extract

12,365 distinctions from 7450 of the sentences. The rest of the sentences usually do not contain

directly expressed distinctions. Here is an example of such a sentence: A terror-stricken

person who is drowning may in panic resist the efforts of someone who is trying to save him.

In order to evaluate the final results, I randomly selected 25 clusters as a development set,

and another 25 clusters as a test set. The development set was used to tune the program by
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adding new patterns if they helped improve the results. The test set was used exclusively for

testing. I built by hand a standard solution for each set. The results of my algorithm on the

development and test set need to be compared with the results of a baseline algorithm. The

baseline algorithm chooses the default values whenever it is possible; it is not possible for

peripheral concepts (the direct object in the sentence) and for the near-synonyms the sentence

is about (the subject in the sentence). In this case, the baseline algorithm relies only on tuples

extracted by the chunker to extract the subjects and the objects.

The measures I use for evaluating each piece of information extracted from a sentence frag-

ment are precision and recall. The results to be evaluated have four constituents for ATTITUDE-

STYLE DISTINCTIONS and five constituents for DENOTATIONAL DISTINCTIONS. There could

be missing constituents (except strength and frequency, which take default values). Precision

is the total number of correct constituents found (summed over all the sentences in the test

set) divided by the total number of constituents found. Recall is the total number of correct

constituents found divided by the number of constituents in the standard solution.

For example, for the sentence Sometimes, however, profit can refer to gains outside the

context of moneymaking, the program obtains:

"�������� ����� � ��
� �����	� �
"���	������
"�
��������%
 	
� ����#�� ���
 %��	�"�"�� � ������
�	�

���!�
�����
� ��	�� ��	����
" ����
�"��!#�� 
 	��  %����
�� �%
 � � �&����������	�

� ���
while the solution is:

"�������� ����� � ��
� �����	� "%������
&� ����"
"�
��������%
 	
� ����#�� ���
 %��	�"�"�� � ������
�	�

���!�
�����
� ��	�� ��	����
" ����
�"��!#�� 
 	��  %����
�� �%
 � � �&����������	�

� ���
The precision is .80 (4 correct out of 5 found), and the recall is .80 (4 correct out of 5 in the

standard solution). for simplicity, all the mistakes are equally penalized. Some mistakes could

be more heavily penalized than others. For example, if the extracted frequency is "%������

� ����"

and the solution is ��������� , this mistake is bigger than in the case when the solution is �
"���	������ .
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Baseline algorithm My system (dev. set) My system (test set)
Precision Recall Precision Recall Precision Recall

All constituents .40 .23 .76 .69 .83 .73
Class only .49 .28 .79 .70 .82 .71

Table 2.1: Labeled precision and labeled recall of the baseline and of my algorithm.

Table 2.1 presents the results of the evaluation. The first row of the table presents the results

as a whole (all the constituents of the extracted lexical knowledge-base). My system (on the

development set) increases precision by 36% and recall by 46% over the baseline. The recall

and precision on the test set are similar to the ones on the development set. They are slightly

higher on the test set; this shows that the patterns added during the development stage were

general.

The second row of the table gives the evaluation results only for the class of the distinction

expressed, ignoring the strengths, frequencies, and peripheral concepts. This allows for a more

direct evaluation of the acquired extraction patterns. In this case, the baseline algorithm attains

higher precision than in the case when all the constituents are considered, because the default

class
� �����!
�	�

����� is the most frequent in CTRW. My algorithm attains slightly higher precision

and recall on the development set, probably due to a few cases in which the frequency and

strength were incorrectly extracted, and slightly lower on the test set, probably due to some

cases in which the frequency and strength were easy to extract correctly.

2.5 Semi-automatic acquisition

For some intended uses of the automatically acquired LKB of NS, its quality might not be

enough. If the LKB of NS needs to be 100% correct, then a human lexicographer can partici-

pate in the acquistion process, in a semi-automated manner. The lexicographer would validate

or change each distinction asserted in the LKB. For the acquisition from CTRW, the evaluation

experiment showed estimated precision and recall in the range of 70 - 80%. This means that

the lexicographer will have to validate the automatically extracted knowledge in 70 - 80% of
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the cases, and to manually correct or extract in the rest of the cases.

Future work could investigate the possibility that the extraction algorithm computes confi-

dence factors for each extracted distinction; in this case the lexicographer needs to inspect only

the distinctions for which the confidence factor is low.

Knowledge extracted from additional sources, such as the ones used in Chapter 5, can con-

firm or bring into doubt asserted knowledge. This is done implicitly for stylistic and attitudinal

distinctions by the conflict resolution method in Chapter 5. If the human lexicographer is part

of the system, she can skip inspecting knowledge confirmed by multiple sources.

2.6 Summary

This chapter presented a general method for extracting knowledge from a dictionary of near-

synonym differences. The main idea was to learn words and patterns for the classes of interest

(in this case denotational distinctions and attitude-style distinctions) by using an unsupervised

decision-list algorithm. Then the words and patterns were used for extracting information from

the sentences of the dictionary. The extracted information is: what near-synonym(s) the part

of the sentence is talking about, what class of distinction is expressed, with what frequency

and strength. In the case of denotational distinctions, a peripheral string that shows what is

implied, connoted, or denoted, was also extracted. The method was applied to the dictionary

of near-synonym differences Choose the Right Word. Evaluation of the results was done on a

sample of randomly chosen clusters of near-synonyms. A development set was used for adding

a few patterns; a separate test set was used for evaluation.

The result of this chapter is a generic lexical knowledge-base of near-synonym differences.

It will be later enriched with knowledge from other sources: information about the senses of

the near-synonyms is added in Chapter 3; information about the collocational behaviour of the

near-synonyms is added in Chapter 4; and more distinctions acquired from machine-readable

dictionaries are added in Chapter 5. To be used in a particular NLP system, the generic LKB
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of NS needs to be customized (Chapter 6). Chapter 7 shows how the customized LKB of NS

can actually be used in NLG.
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Chapter 3

Disambiguating the Senses of the

Near-Synonyms in a Dictionary Entry

In this chapter, the lexical knowledge-base of near-synonym differences is extended with infor-

mation about which senses of the near-synonyms are relevant for each cluster (for each entry

in CTRW). This information can be useful if the LKB of NS is integrated into an NLP system

based on WordNet. The sense inventory used in this chapter is WordNet1.7.

Each entry in CTRW explains the differences between the near-synonyms in that cluster.

But some of the near-synonyms are ambiguous words; therefore some particular senses of a

near-synonym are distinguished from some senses of the other near-synonyms. For example,

if the words bank and trust are in a cluster of near-synonyms, the financial sense of bank (and

not the river-bank sense) is distinguished from the financial sense of trust (and not the sense

denoting confidence). The problem of ambiguity is further complicated by polysemy (related

senses grouped together).

The task of automatically disambiguating the meaning of near-synonyms is easier than the

general task of word sense disambiguation (WSD), which consists of selecting one or more

senses in which a word is being used in a particular sentence. But disambiguating the meaning

of the near-synonyms is not a simple task. As will be shown in section 3.3, it is not easy even

35



36 CHAPTER 3. DISAMBIGUATING THE SENSES OF THE NEAR-SYNONYMS

for humans.

I implemented a program that decides for each sense of a near-synonym whether it is rel-

evant for the entry or not. These experiments were previously published in [Inkpen and Hirst,

2003]. For example, the near-synonym acumen from the cluster acumen, acuity, insight, per-

ception has two WordNet senses: 	� �������������� � glossed as “a tapering point”, and 	� ��%�������������

glossed as “shrewdness shown by keen insight”. The decision to be made is that the second

one is relevant for the entry, and the first one is not. More than one sense of a near-synonym

can be relevant for an entry, so the problem is one of binary decisions: for each sense, decide

if is is relevant for the context or not. To disambiguate each sense, a series of indicators are

computed and combined in order to decide if the sense is relevant.

In this task, the context is richer than in the general case of word sense disambiguation:

the full text of each entry (including the cross-references). For each entry in CTRW, all senses

of each near-synonym are considered. The average polysemy for CTRW is 3.18 (for 5,419

near-synonyms there are 17,267 WordNet senses).

3.1 Indicators of word sense relevance

Intersection of text and gloss A main indicator of word sense relevance is the size of the

intersection of the text of the entry with the WordNet gloss of the sense, both regarded as bags

of words. This is a Lesk-style approach. This method [Lesk, 1986] determines the correct word

sense in a context by counting overlaps between the context and the dictionary definitions of

the possible senses of the word. In the intersection of the text and the gloss, the stopwords and

the word to be disambiguated are ignored. (I experimented with stemming the words, but it did

not improve the results.) The other near-synonyms occur in the text of the entry; if they happen

to occur in the gloss, this is a good indication that the sense is relevant.

Sometimes the intersection contains only very common words that do not reflect a real

overlapping of meaning. In order to avoid such cases, each word in the intersection is weighted
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by its tf � idf score. The weight of each word i in the entry j is tf � idfi � j � ni � j log ni
N , where ni � j

is the number of occurrences of the word i in the entry j, ni is the number of entries that

contain the word i, and N is the total number of entries. Then, the weights of the words in the

intersection are summed to produce a score for the intersection. If the score of the intersection

is lower than a threshold, the sense is not relevant. Instead of choosing one such threshold, I

trained a decision tree to choose a series of thresholds (see section 3.2).

As another indicator of sense relevance, I computed the intersection of the text of the entry

with the glosses of words that have a direct WordNet relation with the sense under consid-

eration. The hyponym/hypernym glosses can be expected to work well because some of the

near-synonyms in CTRW are in a hypernymy/hyponymy relation with each other.

Other words in synsets being near-synonyms Another indicator of the relevance of a sense

is the other words in each synset. They reliably indicate a sense being relevant for the en-

try because the near-synonyms in the entry help disambiguate each other. For example, if

the cluster is: afraid, aghast, alarmed, anxious, apprehensive, fearful, frightened, scared,

when examining the senses of anxious, the sense corresponding to the synset 	����������&" ��	 � � ,

	 ������� 	����&"������ ��	 ��� is relevant because the other word in the synset is apprehensive, which is

one of the near-synonyms. If there is such overlap in more than one synset, all the sysnset with

overlap are classified as relevant. For each synset, the value of the indicator is 1 if other words

in synsets are near-synonyms, and zero otherwise.

I also used the words in synsets of related words, where by related words we mean words

connected by a direct WordNet relation. If any of the words in the synsets of the words related

to the sense under consideration happens to be a near-synonym in the same cluster, the sense

can be judged as relevant.

Antonyms The antonyms in the entry are intersected with the antonyms of the sense under

consideration. Figure 1.1 on page 3 shows examples of antonyms for a cluster. If two words

share an antonym, they are likely to be synonyms. By extension, if the examined sense has
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antonyms that intersect the antonyms of the cluster, then the sense is relevant for the cluster.

For each synset, the value of the indicator is 1 if there are antonyms in common, and zero

otherwise.

Context vectors Sometimes, when the intersection of text and gloss is empty, it still could

be the case that they are semantically close. For example, for the sense ����"����%����# ��	 ��� with

the WordNet gloss “marked by self-restraint and reticence”, the intersection with the text of

the CTRW entry aloof, detached, reserved is empty. The text of the entry happens to not use

any of the words in the WordNet gloss, but the entry contains semantically close words such

as reluctant and distant. By considering second-order co-occurrences (words that co-occur in

the BNC with the words of the text or of the gloss) the chance of detecting such similarity

increases [Schütze, 1998]. One problem with this approach is that false positives can be also

introduced.

I collected frequencies from the 100-million-word British National Corpus1 (BNC). I chose

the 2,000 most frequent words as dimensions, and the 20,000 most frequent words as “fea-

tures”. By counting how many times each “feature” word co-occurs with a dimension word in

the BNC, the “feature” words can be represented in the vector space of the dimensions. Then,

the vectors of all “feature” words in an entry (except the near-synonym to be disambiguated)

are summed to compute the context vector for the entry. The vectors of all words in a gloss

are summed to get the context vector for the gloss. The cosine between the two vectors mea-

sures how close the two vectors are. The context vector for the entry will be the sum of many

vectors, and it may be a longer vector than the context vector for the gloss, but this does not

matter because I measure only the angle between the two vectors. Figure 3.1 presents a sim-

plified example of context vectors for the second sense in of acumen. For simplicity, only two

dimensions are represented: plant and mental. Also, from the four content words in the gloss,

three happen to be “feature” words, and only keen and insight are presented in the figure. The

1http://www.hcu.ox.ac.uk/BNC/
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plant

mental

1  2  3 54

1

 3

 2

4

5

insight

alpha

keen

6 7

gloss entry

Figure 3.1: Context vectors in a 2D space for the words keen and insight, for the WordNet
gloss of the second sense of acumen, and for the CTRW entry for the cluster acumen, acuity,
insight, perception.

context vector of the gloss is sum of these two (or more) vectors. In a similar manner the

context vector for the entry is obtained, and the cosine of the angle α between the two context

vectors is used as an indicator for the relevance of the sense. Here, the cosine is 0.909, while

the cosine between the context vector for the entry and the context vector for the first sense

of acumen is 0.539. Probably it would be better to choose as “feature” words, instead of the

2000 most-frequent words in the BNC, but 2000 frequent words that occur in both the BNC

and the WordNet glosses. This may reduce the number of cases when very few “feature” words

occur in the gloss of a synset, making the context vectors of the synsets more reliable. But the

problem may still remain. For example, Niwa and Nitta [1994] show that for their word-sense

disambiguation task, the performance was higher when using co-occurrence vectors from the

1987 Wall Street Journal (20 million words) than when using distance vectors from the Collins

English Dictionary (60,000 head-words and 1.6 million words in definitions).

3.2 Using a decision tree to combine indicators

I use decision tree learning to determine the best combination of indicators. I use C4.52 on

my 904 data points (all the senses of all the near-synonyms), using six attributes (features):

2http://www.cse.unsw.edu.au/ � quinlan/
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Figure 3.2: Simplified decision tree for the combination of indicators.

intersection text and gloss (numerical value), intersection of text and gloss of related words

(numerical value), words in synset (0 or 1), words in synsets of related words (0 or 1), antonyms

(0 or 1), and the cosine between context vectors (numerical value). The classification is binary:

Y/N, meaning relevant or not relevant for the entry. See Figure 3.2 for a simplified decision

tree that combines indicators.

I experimented with manual combinations, but using a decision tree is better because this

learning mechanism has the ability to decide which indicators have more influence on the

classification, and it can completely ignore indicators with low influence. Another advantage of

the decision tree is that it determines the best values for the thresholds for weighted intersection

and for cosine. I use the standard solution built in section 3.3 as training and test data in the

decision-tree learning process. Instead of splitting this data into a training set and a test set, I

did a 10-fold cross-validation, as a better method to estimate the error rate.
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3.3 Building a standard solution

The goal of using human judges in my work was twofold: to get a measure of how difficult the

task is for humans, and to build a standard solution for use in evaluation. The standard solution

also serves as training and test data for the decision tree used in section 3.2.

There were k � 6 judges (native or near-native speakers of English, five of them with com-

putational linguistics background) doing the same job as the WSD program. I randomly se-

lected 50 of the 909 clusters, containing 282 near-synonyms with 904 senses in total. The

judges were presented with the text of the entry for each cluster, including antonyms and cross-

references. For each near-synonym, all the WordNet senses (with their glosses and all the words

in the synset) were listed, and the judges had to decide whether the sense is relevant for the

cluster or not. The judges had no information about hypernyms, hyponyms, or antonyms.

There were 904 decisions the judges had to make. If we consider the decisions as votes,

for 584 decisions, the judges voted 6–0 (or 0–6), for 156 decisions 5–1, and for 108 decisions

4–2. There were 56 ties (3–3).

The percent agreement among our judges was 85%. To get a more accurate measure of the

agreement among the k judges, I used the well-known kappa statistic [Siegel and Castellan,

1988] [Carletta, 1996], that factors in the probability of agreement by chance. For the task at

hand, the chance agreement is 50 	 2%. Therefore the kappa coefficient is κ � 0 	 699. The figures

of agreement between pairs of two judges vary from 90% (κ � 0 	 80) to 78 	 8% (κ � 0 	 57).

The judges met to discuss the ties. The discussion had a very small influence on the

agreement figures (because the number of cases discussed was small), but it helped clarify

the sources of disagreement. Senses which are “instances” or “proper names” (e.g. the sense

“the United States” for the near-synonym union) were rejected by some judges as too specific,

even if they were mentioned in the text of the entry. There was disagreement about intransi-

tive senses of some transitive verbs (or the other way around). Another problem was posed by

mentions of extended senses (literal or figurative senses) in the text. For example, the CTRW

entry for bombastic, orotund, purple, turgid mentions that “these adjectives are used to describe
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Method or combination of methods Accuracy
Baseline (select all senses as relevant for the entry) 53.5%
Antonyms 47.0%
Cosine (decision tree) 52.7%
Words in synsets of hypernyms and hyponyms 56.4%
Intersection text & gloss of hypernyms and hyponyms (tf � idf) 61.0%
Words in synsets of related words 61.3%
Words in synset 67.1%
Intersection text & gloss of related words (tf � idf) (decision tree) 70.6%
Intersection text & gloss (no tf � idf) 76.8%
Intersection text & gloss (tf � idf) (decision tree) 77.6%
Best combination (no decision tree) 79.3%
Best combination (decision tree) 82.5%
Best combination (decision tree – Resnik’s coefficient included) 83.0%

Table 3.1: Accuracy of disambiguation for different combinations of indicators.

styles of speaking or writing”; and later on: “turgid literally means swollen or distended”. The

question the judges had to ask themselves is whether this literal sense is included in the entry

or not. In this particular case maybe the answer is negative. But it is not always clear whether

the extended sense is mentioned by the lexicographer who designed the entry because the ex-

tended sense is very close and should be included in the meaning of the cluster, or whether it is

mentioned so that the reader will be able to distinguish it. Some judges decided to include more

often than exclude, while the other judges excluded the senses when they thought appropriate.

If we omit one of the judges who expressed singular opinions during the discussion, the

agreement is higher: 86 	 8% (κ � 0 	 73).

In the standard solution, I decided to correct a few of the 56 cases of ties, to correct the

apparent bias of some judges. I decided to include senses that are too specific or are instances,

but to exclude verbs with wrong transitivity. I produced two solutions: a more inclusive one

(when a sense is mentioned in the entry it was included) and a more exclusive solution (when a

sense is mentioned, it was included only if the judges included it). The more inclusive solution

was used in my experiments, but the results would change very little with the more exclusive

one, because they differ only in 16 cases out of 904.
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Method All Nouns Verbs Adjectives
All indicators except Resnik’s coefficient 82.6% 81.8% 83.2% 78.3%
All indicators including Resnik’s coefficient 83.0% 84.9% 84.8% 78.3%
Only Resnik’s coefficient 71.9% 84.0% 77.7% –

Table 3.2: Accuracy of disambiguation per part-of-speech.

3.4 Results and evaluation

Table 3.1 presents the results of using each indicator alone and in combinations with other

indicators3. The accuracy of each method is computed by comparison to the standard solution

(Section 3.3 explains how the standard solution was produced).

For the indicators using tf � idf and for the cosine between context vectors I use a decision

tree to avoid manually choosing a threshold; therefore the figures in the table are the results

of the cross-validation. By manually combining indicators, the best accuracy obtained was

79.3% for the attributes: intersection text and gloss (with a fixed threshold), words in synsets,

and antonyms.

I found the best combination of indicators by training a decision tree as described in section

3.2. The best accuracy is 82.5%, computed by 10-fold cross-validation. The indicators that

contribute the most to improving the accuracy are the ones in the upper-part of the decision

tree (Figure 3.2): the intersection of the text with the gloss, the intersection of the text with the

glosses of the related words, the words in the synset, and the words in the synsets of the related

words. The ones in the lower part (CoreLex, and the cosine between context vectors) have little

influence on the results. Their contribution is likely to be included in the contribution of the

other indicators.

If the evaluation is done for each part-of-speech separately (see the first row in Table 3.2),

it can be observed that the accuracy for nouns and verbs is higher than for adjectives. In our

3The standard error was 0.1% in most of the experiments involving cross-validation in decision trees. The
standard error in this case shows how much the result of each test in the cross-validation experiment deviated
from the reported mean.
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data set of 50 randomly selected near-synonym clusters, there are 276 noun senses, 310 verb

senses, and 318 adjective senses. There were no adverbs in the test set, because there are only

a few adverbs in CTRW.

Another indicator that I implemented after the previous experiments were done is Resnik’s

coefficient, which measures how strongly a word sense correlates with the words in the same

grouping (in the case when we have groups of similar nouns). The algorithm for computing

this coefficient was originally proposed by Resnik [1999b] in a paper that presented a method

for disambiguating noun groupings, using the intuition that when two polysemous words are

similar, their most informative subsumer provides information about which sense of which

word is the relevant one. The method exploits the WordNet noun hierarchy, and uses Resnik’s

similarity measure based on information content ([Resnik, 1999b], but see [Budanitsky and

Hirst, 2001] for a critique of the similarity measure). I also implemented the same algorithm

for verbs, using the WordNet verb hierarchy.

When Resnik’s coefficient is added as a feature in the decision tree, the total accuracy (after

cross-validation) increases slightly (but not statistically significant), to 83%. If Resnik’s coef-

ficient is included, the accuracy is improved for nouns and verbs (84.9% for nouns and 84.8%

for verbs). The accuracy for adjectives is the same, because Resnik’s coefficient is not defined

for adjectives. If the only feature in the decision tree is Resnik’s coefficient, the accuracy is

high for nouns, as expected, and lower for verbs and for all parts of speech considered together.

In conclusion, the disambiguation method presented here does well for nouns and verbs,

but it needs improvement for adjectives.

3.5 Comparison with related work

The Senseval competition 4 had the goal of evaluating WSD systems. I will refer here only

to the experiments for the English language, in Senseval2, which used WordNet1.7 senses. I

4http://www.itri.brighton.ac.uk/events/senseval/
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cannot compare the Senseval2 results with my results, because the words and texts are different,

due to the nature of my task. Senseval2 had two tasks. One task was to disambiguate all the

content words in the test set. The other task was to disambiguate only selected words (this is

closer to my task). The precision and recall reported by the participating systems were all below

65% (40% for the best unspervised algorithm and 64% for the best supervised algorithm), while

the Lesk-baseline algorithm was 23%.

My WSD program attains 82.5% accuracy, compared to a baseline of 53.5%. My task is

relatively easier than the general WSD task because the text of the dictionary entry and the

other near-synonyms in the same cluster provide a strong context for disambiguation. I report

accuracy figures, but this is equivalent to reporting precision and recall in Senseval. This is

because I disambiguate all the near-synonyms. The accuracy figures I reported are results of

cross-validation experiments, while the Senseval evaluation used a special set test. The value

for inter-annotator agreement (85%) is comparable to that of Senseval2 (85.5% for the English

lexical sample task, according to the Senseval2 webpage).

Combining classifiers for WSD is not a new idea, but it is usually done manually, not on

the basis of a small amount of annotated data. Stevenson and Wilks [2001], among others,

combine classifiers (knowledge-sources) by using a weighted scheme.

An adapted Lesk-style algorithm for WSD that uses WordNet, but in a different manner, is

presented by Pedersen and Banerjee [2002]. They intersected glosses of all words in the context

of a target word. The intersection is done on pairs of words, considering the intersections

between the gloss of the first word and the words related to the second word (by WordNet

relations). They achieve an accuracy of 32%. Unlike Pedersen and Banerjee, I focus only

on the target word (I do not use glosses of words in context), when I use the gloss of a near-

synonym I include examples in the gloss.

Schütze [1998] uses context vectors to cluster together all the contexts in which a word is

used in the same sense. In this way it is possible to distinguish among word senses without

using a sense inventory from a lexical resource. I use the context vectors as a measure of the
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semantic relatedness between the text of an entry and the gloss of a synset. Earlier work on

context vectors for disambiguating word sense in text is [Niwa and Nitta, 1994] and [Wilks,

1993].

3.6 Summary

This chapter discussed the problem of disambiguating the senses of the near-synonyms in a

dictionary entry. The sense inventory used in this chapter was WordNet1.7. The word-sense

disambiguation was based on a Lesk-style algorithm: intersecting the gloss of the sense with

the text of the dictionary entry (which acts as a context for all the near-synonyms in the clus-

ter). In addition to this, other indicators were considered, including other words (and their

glosses) in WordNet that are in direct relation with the sense under consideration. The final

decision whether a sense is relevant or not to a dictionary entry was made by a decision tree.

The evaluations experiments (using cross-validation) on a sample of the data showed 82.5%

accuracy.

The data annotated by human judges showed that usually several WordNet senses are rele-

vant to a dictionary entry. If a near-synonym is part of more than one entry in CTRW, in fact

different subsets of its senses are members of the respective entries. The information about

near-synonym senses is needed when the LKB of NS is used in an NLP system, unless the

system permits the use of near-synonyms without requiring their disambiguation.



Chapter 4

Adding Collocational Knowledge from

Free Text

In this chapter the lexical knowledge-base of near-synonym differences is enriched with knowl-

edge about the collocational behaviour of the near-synonyms. Collocational behaviour can

help in the process of choosing between near-synonyms, because one must not choose a near-

synonym that does not collocate well with the other word choices for the sentence. For ex-

ample daunting task is a preferred collocation, while daunting job is less preferred (it should

not be used in lexical choice unless there is no better alternative), and daunting duty is an anti-

collocation1 (it must not be used in lexical choice). For the purpose of this work, collocations

consist of consecutive words that appear together much more often than by chance. I also in-

clude words separated by a few non-content words (short-distance co-occurrence in the same

sentence).

The focus of this chapter is on differences between collocations, employing a differential

t-test. In order to do this, several steps are necessary. First, I automatically acquire collocates

of all near-synonyms in CTRW, from free text. Then, I acquire knowledge about less-preferred

collocations and anti-collocations. Most of this chapter was previously published in [Inkpen

1This term was introduced by Pearce [2001].
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and Hirst, 2002].

I am interested in how collocations can be used in lexical choice among open-class words.

Therefore I need to extract collocations between open-class words (content words), which do

not contain closed-class words (function words). For example, defeat the enemy is a collocation

that contains the function word the, while defeat enemy is a collocation of interest. For now,

only two-word collocations are considered.

In the experiment described in sections 4.1 and 4.2 (with results in section 4.3, and eval-

uation in section 4.4), knowledge about the collocational behaviour of the near-synonyms is

acquired. In step 1 (section 4.1), potential collocations from the British National Corpus

(BNC)2 are acquired, combining several measures. In section 4.2, the following steps are

presented: (step 2) collocations for the near-synonyms in CTRW are selected; (step 3) the se-

lected collocations are filtered using mutual information on the Web; (step 4) for each cluster,

new collocations are obtained by combining the collocate of one near-synonym with another

near-synonym, and the differential t-test is used to classify them into preferred collocations,

less-preferred collocations, and anti-collocations.

4.1 Extracting collocations from free text

Before being able to look at differences between collocations, I need to automatically acquire

collocations of near-synonyms, from a corpus. I experimented with 100 million words from

the Wall Street Journal (WSJ). Some of the near-synonyms appear very few times (10.64%

appear fewer than 5 times) and 6.87% of them do not appear at all in the WSJ (due to its focus

on business and news). Therefore I needed a more general corpus. I used the 100-million-word

BNC. The BNC is a good choice of corpus for us because it has been tagged (automatically

by the CLAWS tagger). Only 2.61% of the near-synonyms do not occur in the BNC; and only

2.63% occur between 1 and 5 times.

2http://www.hcu.ox.ac.uk/BNC/
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Many of the near-synonyms appear in more than one cluster, with different parts-of-speech.

I experimented on extracting collocations from raw text, but I decided to use a part-of-speech

tagged corpus because I need to extract only collocations relevant for each cluster of near-

synonyms.

I preprocessed the BNC by removing all words tagged as closed-class. To reduce compu-

tation time, words that are not useful for the purpose of this work are removed. For example,

proper names (tagged NP0) are unlikely to help with lexical choice among open-class words.

There are many statistical methods that can be used to identify collocations. Four general

methods are presented by Manning and Schütze [1999]. The first one is based on frequency of

co-occurrence, does not consider the length of the corpus, and uses part-of-speech filtering to

obtain useful collocations. The second method considers the mean and variance of the distance

between two words, and can compute non-rigid collocations [Smadja, 1993] (collocations that

can be interrupted by other words). The third method is hypothesis testing, which uses sta-

tistical tests to decide if the words occur together with probability higher than chance (it tests

whether the null hypothesis that the two words occurred together by chance can be rejected).

The fourth method is (pointwise) mutual information, an information-theoretical measure.

To acquire collocations from the BNC, I used the Ngram Statistics Package3 [Pedersen and

Banerjee, 2003]. NSP is a suite of programs to aid in analyzing N-grams in a corpus. I used it

for bigrams only. The package computes bigram frequencies in a corpus and various statistics

to measure the degree of association between two words: pointwise mutual information (MI),

Dice, chi-square (χ2), log-likelihood (LL), and Fisher’s exact test.

I briefly describe the methods I used in my experiments, for the two-word case. I use

these methods because they were readily available in NSP. The theoretical description of these

methods, taken from Manning and Schütze [1999], is briefly presented below.

Each bigram xy can be viewed as having two features represented by the binary variables

3http://www.d.umn.edu/ � tpederse/nsp.html
In fact I used an earlier version (0.4) of NSP, known as BSP (Bigram Statistics Package).
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y � y

x n11
� 66 n10

� 54 n1
� � 120

� x n01
� 4628 n00

� 15808937 n0
� � 15813565

n � 1
� 4694 n � 0

� 15808991 n ��� � 15813685

Table 4.1: Contingency table for daunting task: x = daunting, y = task).

X and Y . The joint frequency distribution of X and Y is described in a contingency table. Table

4.1 shows an example for the bigram daunting task. n11 is the number of times the bigram xy

occurs; n10 is the number of times x occurs in bigrams at the left of words other than y; n01

is the number of times y occurs in bigrams after words other than x; and n00 is the number

of bigrams containing neither x nor y. In this notation, the first index is for x and the second

for y; 1 indicates presence and 0 indicates absence. In Table 4.1, the variable X denotes the

presence or absence of daunting in the first position of a bigram, and Y denotes the presence

or absence of task in the second position of a bigram. The marginal distributions of X and Y

are the row and column totals obtained by summing the joint frequencies: n � 1 � n11
�

n01,

n1 � � n11
�

n10, and n ��� is the total number of bigrams.

The NSP tool counts for each bigram in a corpus how many times it occurs, how many

times the first word occurs at the left of any bigram (n1 � ), and how many times the second

word occurs at the right of any bigram (n � 1).

The five measures that I used from NSP are described below. I combine them in order to

select potential collocations, as a necessary step towards the final goal of acquiring differences

in the collocational behaviour of the near-synonyms.

Pointwise mutual information, I
�
x;y � , compares the probability of observing words x and

y together (the joint probability) with the probabilities of observing x and y independently (the

probability of occurring together by chance) [Church and Hanks, 1991].

I
�
x;y � � log2

P
�
x � y �

P
�
x � P

�
y �

The probabilities can be approximated by: P
�
x � � n1 �

�
n ��� , P

�
y � � n � 1

�
n ��� , P

�
x � y � �
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n11
�
n ��� . Therefore:

I
�
x;y � � log2

n ��� n11

n � 1n1 �

The motivation behind the mutual information measure comes from the theory of informa-

tion: it roughly measures how much one word tells us about the other. It presents problems

when used of low-frequency words. For example, in Figure 4.2 low frequency words that oc-

cur only in particular collocations are ranked first. The range of values the measure took in

my experiments was from zero to 21.91. Adding a multiplicative factor, P
�
x � y � , improves the

measure by ranking higher more frequent collocations.

The Dice coefficient is closely related to mutual information and therefore suffers from the

same drawbacks. It is calculated as:

Dice
�
x � y � � 2P

�
x � y �

P
�
x � � P

�
y � �

2n11

n � 1
�

n1 �

The range of values for this measure are in the interval
�
0 � 1 � .

The next methods fall under hypothesis testing methods. Pearson’s Chi-square and Log-

likelihood ratios measure the divergence of observed (ni j) and expected (mi j) sample counts

(i � 1 � 0, j � 1 � 0). The expected values are for the model that assumes independence (assumes

that the null hypothesis is true). For each cell in the contingency table, the expected counts are:

mi j �
ni � � n � j

n ��� . The measures are calculated as [Pedersen, 1996]:

χ2 � Σi � j

�
ni j � mi j � 2

mi j

LL � 2 Σi � j
log2 n2

i j

mi j

Log-likelihood ratios [Dunning, 1993] are more appropriate for sparse data than chi-square.

Log-likelihood ratio seems to produce the best collocations (see Table 4.4), with scores ranging

from zero to 123,548. The chi-square scores range from zero to 15,813,684. Log-likelihood

ratio is easier to interpret than chi-square; the former is a number that tells us how much more

likely one hypothesis is then the other.
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Fisher’s exact test is a significance test that is considered to be more appropriate for sparse

and skewed samples of data than statistics such as the log-likelihood ratio or Pearson’s Chi-

Square test [Pedersen, 1996]. Fisher’s exact test is computed by fixing the marginal totals of a

contingency table and then determining the probability of each of the possible tables that could

result in those marginal totals. Therefore it is computationally expensive. The formula is:

P �
n1 � !n0 � !n � 1!n � 0!

n ��� !n11!n10!n01!n00!

The scores for Fisher’s exact test are in the interval
�
0 � 1 � .

Because these five measures rank collocations in different ways (as the results in Tables

4.2–4.6 show), and have different advantages and drawbacks, I decided to combine them in

choosing collocations. I choose as potential collocations for each near-synonym a collocation

that is selected by at least two of the measures. For each measure I need to choose a value T ,

and consider as selected collocations only the T highest-ranked bigrams (where T can differ

for each measure). By choosing lower values for T , I increase the precision (reduce the chance

of accepting wrong collocations). By choosing higher values for T , I increase the recall. If I

opt for lower recall, I may not get many collocations for some of the near-synonyms. Because

there is no principled way of choosing these values, I prefer to include more collocations (the

first 200,000 collocations selected by each measure, except Fisher’s measure for which I take

all 435,000 collocations of rank one) and to filter out later (in step 2) the bigrams that are not

true collocations, using mutual information on the Web. Also, step 2 looks only at collocations

for which one of words participating in the collocation is a near-synonym in CTRW.

The first 10 collocations selected by each measure are presented in tables 4.2–4.6. Note that

some of the measures rank many collocations equally at rank 1: MI 358 collocations; LL one

collocation; χ2 828 collocations; Dice 828 collocations; and Fisher 435,000 collocations (when

the measure is computed with a precision of 10 digits — higher precision is recommended, but

the computation time becomes a problem). The columns in these tables are: the collocation,

the rank assigned by the measure, the value of the measure, the frequency of the collocation in
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Collocation (xy) Rank Score Freq xy Freq x+ Freq +y

source-level/A debugger/N 1 21.91 4 4 4
prosciutto/N crudo/N 1 21.91 4 4 4
rumpy/A pumpy/A 1 21.91 4 4 4
thrushes/N blackbirds/N 1 21.91 4 4 4
clickity/N clickity/N 1 21.91 4 4 4
bldsc/N microfilming/V 1 21.91 4 4 4
chi-square/A variate/N 1 21.91 4 4 4
long-period/A comets/N 1 21.91 4 4 4
tranquillizers/N sedatives/N 1 21.91 4 4 4
one-page/A synopsis/N 1 21.91 4 4 4

Table 4.2: Some of the collocations ranked 1 by MI.

Collocation (xy) Rank Score Freq xy Freq x+ Freq +y

clarinets/N bassoons/N 1 1.00 5 5 5
email/N footy/N 1 1.00 4 4 4
tweet/V tweet/V 1 1.00 5 5 5
garage/parking/N vehicular/A 1 1.00 4 4 4
growing/N coca/N 1 1.00 5 5 5
movers/N seconders/N 1 1.00 5 5 5
elliptic/A integrals/N 1 1.00 8 8 8
viscose/N rayon/N 1 1.00 15 15 15
cause-effect/A inversions/N 1 1.00 5 5 5
first-come/A first-served/A 1 1.00 6 6 6

Table 4.3: Some of the collocations ranked 1 by Dice.

the BNC, the frequency of the first word in the first position in bigrams, and the frequency of

the second word in the second position in bigrams.

4.2 Differential collocations

For each cluster of near-synonyms, I now have the words (collocates) that occur in preferred

collocations with near-synonyms. In this section the focus is on less-preferred collocations
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Collocation (xy) Rank Score Freq xy Freq x+ Freq +y

prime/A minister/N 1 123548 9464 11223 18825
see/V p./N 2 83195 8693 78213 10640
read/V studio/N 3 67537 5020 14172 5895
ref/N no/N 4 62486 3630 3651 4806
video-taped/A report/N 5 52952 3765 3765 15886
secretary/N state/N 6 51277 5016 10187 25912
date/N award/N 7 48794 3627 8826 5614
hon./A friend/N 8 47821 4094 10345 10566
soviet/A union/N 9 44797 3894 8876 12538
report/N follows/V 10 44785 3776 16463 6056

Table 4.4: First 10 collocations selected by LL.

Collocation (xy) Rank Score Freq xy Freq x+ Freq +y

lymphokine/V activated/A 1 15813684 5 5 5
config/N sys/N 1 15813684 4 4 4
levator/N depressor/N 1 15813684 5 5 5
nobile/N officium/N 1 15813684 11 11 11
line-printer/N dot-matrix/A 1 15813684 4 4 4
dermatitis/N herpetiformis/N 1 15813684 9 9 9
self-induced/A vomiting/N 1 15813684 5 5 5
horoscopic/A astrology/N 1 15813684 5 5 5
mumbo/N jumbo/N 1 15813684 12 12 12
long-period/A comets/N 1 15813684 4 4 4

Table 4.5: Some of the collocations ranked 1 by χ2.
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Collocation (xy) Rank Score Freq xy Freq x+ Freq +y

roman/A artefacts/N 1 1.00 4 3148 108
qualitative/A identity/N 1 1.00 16 336 1932
literacy/N education/N 1 1.00 9 252 20350
disability/N pension/N 1 1.00 6 470 2555
units/N transfused/V 1 1.00 5 2452 12
extension/N exceed/V 1 1.00 9 1177 212
smashed/V smithereens/N 1 1.00 5 194 9
climbing/N frames/N 1 1.00 5 171 275
inclination/N go/V 1 1.00 10 53 51663
trading/N connections/N 1 1.00 6 2162 736

Table 4.6: Some of the collocations ranked 1 by Fisher.

and anti-collocations in order to acquire knowledge that will discriminate between the near-

synonyms in the cluster. I need to check how the collocates combine with the other near-

synonyms in the same cluster. For example, if daunting task is a preferred collocation, I check

whether daunting collocates well or not with the other near-synonyms of task.

I use the Web as a corpus for differential collocations. I don’t use the BNC corpus to rank

less-preferred and anti-collocations, because their absence in the BNC may be due to chance. I

can assume that the Web (the portion indexed by search engines) is big enough that a negative

result can be trusted.

I use an interface to the AltaVista search engine to count how often a collocation is found.

(See Table 4.7 for an example search done on 13 March 2002.) A low number of co-occurrences

indicates a less-preferred collocation. But I also need to consider how frequent the two words

in the collocation are. I use the differential t-test to find collocations that best distinguish be-

tween two near-synonyms [Church et al., 1991], but I use the Web as a corpus. The collocations

were acquired from the BNC with the right part-of-speech for the near-synonym, but on the

Web there are no part-of-speech tags; therefore a few wrong instances may be included in the

counts. I approximate the number of occurrences of a word on the Web with the number of

documents containing the word.
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The t-test can also be used in the hypothesis-testing method to rank collocations. It looks

at the mean and variance of a sample of measurements, where the null hypothesis is that the

sample was drawn from a normal distribution with mean µ (the distribution we work with can

be approximated by a normal one if the amount of data is large enough). It measures the

difference between observed ( x̄) and expected means, scaled by the variance of the data (s2),

which in turn is scaled by the sample size (N).

t �
x̄ � µ�

s2

N

The differential t-test can be used for hypothesis testing of differences. It compares the

means of two normal populations:

t �
x̄1 � x̄2�
s2
1

N
� s2

2
N

Here the null hypothesis is that the average difference is µ � 0.Therefore x̄ � µ � x̄ � x̄1 � x̄2.

In the denominator, the variances of the two populations is added.

If the collocations of interest are xw and yw (or similarly wx and wy), then we have the

approximations x̄1 � s2
1 � P

�
x � w � and x̄2 � s2

2 � P
�
y � w � ; therefore:

t �
P

�
x � w � � P

�
y � w ��

P � x � w � � P � y � w �
n ���

�
nxw � nyw�
nxw

�
nyw

If w is a word that collocates with one of the near-synonyms in a cluster, and x is one of the

near-synonyms, the mutual information relative to w can be approximated:

P
�
w � x �

P
�
x � �

nwx

nx

where P
�
w � was dropped because it is the same for various x (the computation cannot be done

if I keep it, because the total number of bigrams on the Web is not known).

I use this measure to eliminate collocations inappropriately selected in step 1. I eliminate

those with mutual information lower than a threshold. I describe the way I chose this threshold
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(Tmi) in section 4.4.

Collocations of a near-synonym with a wrong part-of-speech are not considered (the collo-

cations are tagged). But there is also the case when a near-synonym has more than one major

sense. In this case, collocations for senses other than the one required in the cluster could be

retrieved. For example, for the cluster job, task, duty, etc., the collocation import/N duty/N is

likely to be for a different sense of duty (the customs sense). Therefore the sense of the near-

synonym in a collocation needs to be disambiguated (assuming one sense per collocation). I

experimented with a simple Lesk-style method [Lesk, 1986]. For each collocation, instances

from the corpus are retrieved, and the content words surrounding the collocations are collected.

This set of words is then intersected with the entry for the near-synonym in CTRW. If the in-

tersection is not empty, it is likely that the collocation and the entry use the near-synonym in

the same sense. If the intersection is empty, the collocation is not retained.

In step 3, the collocations of each near-synonym with a given collocate are grouped in

three classes, depending on the t-test values of pairwise collocations. The t-test between each

collocation and the collocation with maximum frequency is computed, and so is the t-test

between each collocation and the collocation with minimum frequency. Table 4.7 presents

an example. The second column shows the number of hits for the collocation daunting x,

where x is one of the near-synonyms in the first column. The third column shows the mutual

information, the fourth column, the differential t-test between the collocation with maximum

frequency (daunting task) and daunting x, and the last column, the t-test between daunting

x and the collocation with minimum frequency (daunting hitch). After the t-test scores are

computed, a set of thresholds is determined to classify the collocations in the three groups:

preferred collocations, less preferred collocations, and anti-collocations. The procedure used

in this step is detailed in section 4.4.
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x Hits MI t max t min

task 63573 0.011662 - 252.07
job 485 0.000022 249.19 22.02

assignment 297 0.000120 250.30 17.23
chore 96 0.151899 251.50 9.80
duty 23 0.000022 251.93 4.80
stint 0 0 252.07 -
hitch 0 0 252.07 -

Table 4.7: Example of counts, mutual information scores, and t-test scores for the collocate
daunting with near-synonyms of task.

4.3 Results

I obtained 15,813,685 bigrams. Of these, 1,350,398 were distinct and occurred at least 4 times.

As mentioned, some of the top-ranked collocations for each measure are presented in Tables

4.2–4.6. I present the rank given by each measure (1 is the highest), the value of the measure,

the frequency of the collocation, and the frequencies of the words in the collocation.

I selected collocations for all 909 clusters in CTRW (5419 near-synonyms in total). An

example of collocations extracted for the near-synonym task is presented in Table 4.8, where

the columns are, in order, the name of the measure, the rank given by the measure, and the

value of the measure.

I filtered out the collocations using MI on the Web (step 2), and then I applied the dif-

ferential t-test (step 3). Table 4.9 presents an example of results for differential collocations,

where
�

marks preferred collocations, ? marks less-preferred collocations, and � marks anti-

collocations.

Before proceeding with step 3, the collocations in which the near-synonym is used in a

different sense could be filtered out, using the Lesk method explained above. For example,

suspended/V duty/N is kept while customs/N duty/N and import/N duty/N are rejected. The

disambiguation algorithm was run only for a subset of CTRW, because hand-annotated data is

needed to evaluate how well it works and because it it very time-consuming (due to the need to
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Collocation Measure Rank Score

daunting/A task/N MI 24887 10.85
LL 5998 907.96
χ2 16341 122196.82

Dice 2766 0.02

repetitive/A task/N MI 64110 6.77
χ2 330563 430.40

Table 4.8: Example of collocations extracted for the near-synonym task. The first collocation
was selected (ranked in the set of first T collocations) by four measures; the second collocation
was selected by two measures.

Collocates
Near-synonyms daunting particular tough
task

� � �
job ?

� �
assignment �

� �
chore � ? �

duty �
�

�

stint � � �

hitch � � �

Table 4.9: Example of results for collocations of near-synonyms (
�

marks preferred colloca-
tions, ? marks less-preferred collocations, and � marks anti-collocations).

retrieve corpus instances for each collocation). It is easier to just skip the disambiguation step,

because the wrong senses in the final lexical knowledge-base of near-synonym collocations

will not hurt. For example, if the collocation customs/N duty/N is associated with the cluster

job, duty, etc., it does not matter because an interlingual input containing the collocation will

replace the near-synonym duty with a different meta-concept than the one for this cluster (if

duty is also a member in a different cluster).

The differential collocation algorithms were run on the whole CTRW to produce a lexical

knowledge-base of near-synonym collocational behaviour. The next section describes evalua-

tion experiments.
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4.4 Evaluation

The evaluation has two purposes: to get a quantitative measure of the quality of the results, and

to choose thresholds in a principled way.

As described in the previous sections, in step 1, I selected potential collocations from the

BNC (the ones selected by at least two of the five measures). Then, I selected collocations for

each of the near-synonyms in CTRW (step 2). I need to evaluate the MI filter (step 3), which

filters out the bigrams that are not true collocations, on the basis of their mutual information

computed on the Web. I also need to evaluate step 4, the three-way classification based on the

differential t-test on the Web.

For evaluation purposes I selected three clusters from CTRW, with a total of 24 near-

synonyms. For these, I obtained 916 collocations from the BNC according to the method

described in section 4.1.

Two human judges (computational linguistics students, native speakers of English) re-

viewed these collocations. They were instructed to mark which of them are true collocations

and which are not. I presented the collocations to the judges in random order, and each collo-

cation was presented twice. The first judge was consistent (judged a collocation in the same

way both times it appeared) in 90.4% of the cases. The second judge was consistent in 88% of

the cases. The agreement between the two judges was 67.5% (computed in a strict way, that

is I considered agreement only when the two judges had the same opinion including the cases

when they were not consistent). The value of the kappa statistic coefficient is κ � 0 	 35. The

consistency and agreement figures show how difficult the task is for humans.

I used the data annotated by the two judges to build a standard solution, so I can evaluate

the results of the MI filter. In the standard solution a bigram was considered a true collocation if

both judges considered it so. I used the standard solution to evaluate the results of the filtering,

for various values of the threshold Tmi. That is, if a bigram had the value of MI on the Web

lower than a threshold Tmi, it was filtered out. I choose the value of Tmi so that the accuracy

of the filtering program is the highest. By accuracy I mean the number of true collocations (as
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given by the standard solution) identified by the program over the total number of bigrams I

used in the evaluation. The best accuracy was 70.7% for Tmi = 0.0017. I used this value of the

threshold when running the programs for all CTRW. In order to evaluate the MI filter, I also

run 10-fold cross-validation experiments, using a decision tree to choose a series of thresholds.

In this case the accuracy on the test set was 68.3%.

As a result of this first part of the evaluation, I can say that after filtering collocations

depending on their MI on the Web, approximately 68.3% of the remaining bigrams are true

collocations. This value is not absolute, because I used a sample of the data for three clusters

of near-synonyms for the evaluation. The 68.3% accuracy is better than the baseline (approxi-

mately 50% for random choice). Table 4.10 summarizes the evaluation results.

Next, I proceeded with evaluating the differential t-test three-way classifier. For each clus-

ter, for each collocation, new collocations were formed from the collocate and all the near-

synonyms in the cluster. In order to learn the classifier, and to evaluate its results, the two

judges manually classified a sample of data into preferred collocations, less-preferred colloca-

tions, and anti-collocations. The data presented to the judges were 2838 potential collocations

obtained for the same three clusters of near-synonyms, from 401 collocations (out of the initial

916) that remained after filtering. The judges were instructed to mark as preferred colloca-

tions all the potential collocations that they consider good idiomatic use of language, as anti-

collocations the ones that they won’t normally use, and as less-preferred collocations the ones

that they are not comfortable classifying in either of the other two classes. I built a standard

solution for this task, based on the classifications of both judges. When the judges agreed, the

class was clear. When they did not agree, I designed simple rules, such as: when one judge

chose the class preferred collocation, and the other judge chose the class anti-collocation, the

class in the solution was less-preferred collocation; when one judge chose the class preferred

collocation, and the other judge chose the class less-preferred collocation, the class in the solu-

tion was preferred collocation; when one judge chose the class anti-collocation, and the other

judge chose the class less-preferred collocation, the class in the solution was anti-collocation.
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Step Baseline My method
Filter (MI on the Web) 50% 68.3%
Dif. t-test classifier 71.4% 84.1%

Table 4.10: Accuracy of the main steps.

The agreement between judges was 80% (κ � 0 	 54). I used this standard solution as training

data to learn a decision tree4 for the three-way classifier. The features in the decision tree are

the t-test between each collocation and the collocation from the same group that has maximum

frequency on the Web, and the t-test between the current collocation and the collocation that

has minimum frequency (as presented in Table 4.7). I could have set aside a part of the training

data as a test set. Instead, I did 10-fold cross-validation to estimate the accuracy on unseen

data. The average accuracy was 84.1%, with a standard error of 0.5%. The accuracy is higher

than the baseline of 71.4% that always chooses the most frequent class, anti-collocations. I also

experimented with including MI as a feature in the decision tree, and with manually choosing

thresholds (without a decision tree) for the three-way classification, but the accuracy was lower

than 84.1%. The three-way classifier can fix some of the mistakes of the MI filter. If a wrong

collocation remains after the MI filter, the classifier can classify it in the anti-collocations class.

I conclude that the acquired collocational knowledge has acceptable quality.

4.5 Comparison with related work

There has been a lot of work done in extracting collocations for different applications.

Like Church et al. [1991], I use the t-test and mutual information, but unlike them I use the

Web as a corpus for this task (and a modified form of mutual information), and I distinguish

three types of collocations (preferred, less-preferred, and anti-collocations).

I extract collocations for use in lexical choice. There is a lot of work on using collocations

4I used C4.5, http://www.cse.unsw.edu.au/ � quinlan
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in NLG (but not in the lexical choice sub-component). There are two typical approaches: the

use of phrasal templates in the form of canned phrases, and the use of automatically extracted

collocations for unification-based generation [McKeown and Radev, 2000].

Statistical NLG systems (such as Nitrogen [Langkilde and Knight, 1998]) make good use

of the most frequent words and their collocations. But such a system cannot choose a less-

frequent synonym that may be more appropriate for conveying desired nuances of meaning, if

the synonym is not a frequent word.

Finally, there is work related to ours from the point of view of the synonymy relation.

Turney [2001] used mutual information to detect the best answer to questions about syn-

onyms from Test of English as a Foreign Language (TOEFL) and English as a Second Lan-

guage (ESL). Given a problem word (with or without context), and four alternative words, the

question is to choose the alternative most similar in meaning to the problem word (the problem

here is to detect similarities, while in my work differences are detected). His work is based on

the assumption that two synonyms are likely to occur in the same document (on the Web). This

can be true if the author needs to avoid repeating the same word, but not true when the synonym

is of secondary importance in a text. The alternative that has the highest PMI-IR (pointwise

mutual information for information retrieval) with the problem word is selected as the answer.

I used the same measure in section 4.2 — the mutual information between a collocation and

a collocate that has the potential to discriminate between near-synonyms. Both works use the

Web as a corpus, and a search engine to estimate the mutual information scores.

Pearce [2001] improves the quality of retrieved collocations by using synonyms from Word-

Net [Pearce, 2001]. A pair of words is considered a collocation if one of the words significantly

prefers only one (or several) of the synonyms of the other word. For example, emotional bag-

gage is a good collocation because baggage and luggage are in the same synset and � emotional

luggage is not a collocation. As in my work, three types of collocations are distinguished:

words that collocate well; words that tend to not occur together, but if they do the reading is

acceptable; and words that must not be used together because the reading will be unnatural
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(anti-collocations). In a manner similar to Pearce [2001], in section 4.2, I don’t record colloca-

tions in the lexical knowledge-base if they don’t help discriminate between near-synonyms. A

difference is that I use more than frequency counts to classify collocations (I use a combination

of t-test and MI).

My evaluation method was partly inspired by Evert and Krenn [2001]. They collect collo-

cations of the form noun-adjective and verb-prepositional phrase. They build a solution using

two human judges, and use the solution to decide what the best threshold is for taking the N

highest-ranked pairs as true collocations. They compare the performance of various measures,

and conclude that LL is the best in most (but not all) of their experimental settings. In my work,

I combine the various measures. I do not explicitly compare them, but I could say, by inspect-

ing the top-ranked collocations, that LL behaves best. My evaluation has a different focus: I

evaluate the MI filter on the Web, and the differential t-test for judging pairs of collocations.

4.6 Summary

This chapter described the acquisition of a lexical knowledge-base of near-synonym colloca-

tional behaviour. This knowledge can be added to the LKB of NS acquired in Chapter 2, but it

contains a different type of knowledge for the same clusters of near-synonyms.

Collocational behaviour is important in an NLG system: the lexical choice process should

choose near-synonyms that collocate well with the other words to be used in the sentence,

and it should not choose near-synonyms that would create anti-collocations in the generated

sentence.

The acquired knowledge is about differences between collocations of the near-synonyms

from the same cluster. The acquisition method first collected collocations from the BNC,

keeping only the ones for the near-synonyms of interest. In the next step they were filtered by

using mutual information on the Web. The results of the filter were good collocations for some

near-synonyms. Then, each near-synonym was replaced with each of the near-synonyms in
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the same cluster, to see how the near-synonyms behave together with the collocate word. The

potential collocations generated in this way were classified into: preferred collocations, less-

preferred collocations, and anti-collocations, by a decision tree that uses as its main attribute

the differential t-test on the Web. A standard solution was built from data annotated by two

human judges. For the MI filter, the solution was used to choose the MI threshold. For the 3-

way classification task using the differential t-test on the Web, the solution was used to choose

thresholds between the 3 classes. The evaluation experiments (cross-validation) estimate that

the acquired collocational knowledge has acceptable quality.
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Chapter 5

Adding Knowledge from

Machine-Readable Dictionaries

Other types of dictionaries besides those explicitly on near-synonyms may contain information

about near-synonym differences. I explored several machine-readable dictionaries (MRDs) and

special-purpose dictionaries. The lexical knowledge-base of near-synonym differences built in

Chapter 2 is extended by adding information automatically extracted from such dictionaries.

This chapter presents the acquisition of additional knowledge from several sources, the

procedure for merging all the knowledge in a final LKB of NS, and the procedure for ensuring

its consistency.1

5.1 Adding knowledge from the General Inquirer

The General Inquirer2 [Stone et al., 1966] is a computational lexicon compiled from several

sources, including the Harvard IV-4 dictionary and the Lasswell value dictionary. It contains

markers that classify each word according to an extendable number of categories. There are

markers for words of pleasure, pain, virtue, and vice; markers for words indicating overstate-

1I am grateful to our research assistant Olga Feiguina for helping with most of the programs in this chapter.
2http://www.wjh.harvard.edu/ � inquirer/

67
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CORRECT#1 H4Lvd Positiv Pstv Virtue Ovrst POSAFF Modif 21% adj: Accurate, proper
CORRECT#2 H4Lvd Positiv Pstv Strng Work IAV TRNGAIN SUPV 54% verb: To make

right, improve; to point out error (0)
CORRECT#3 H4Lvd Positiv Pstv Virtue Ovrst POSAFF Modif 25% adv: ”Correctly”

– properly, accurately
CORRECT#4 H4Lvd Virtue TRNGAIN Modif 0% adj: ”Corrected” – made right

Table 5.1: Example of entries in the General Inquirer for the word correct.

ment and understatement; markers for places and locations; etc. The definitions of each word

are very brief. Examples of entries in this dictionary are presented in Table 5.1.

The category of interest to my work is Positiv/Negativ. The abbreviations Pstv/Ngtv are

earlier versions of Positiv/Negativ. There are 1,915 words marked as Positiv (not including

words for yes, which has been made a separate category of 20 entries). There are 2,291 words

marked as Negativ (not including the separate category no in the sense of refusal). For each

near-synonym in CTRW, if it is marked as Positiv or Negativ, an attitudinal distinction is as-

serted. A positive word corresponds to a favourable attitude; a negative one corresponds to a

pejorative attitude. Before the extraction from the General Inquirer, disambiguation needs to

be done. First, only the desired parts-of-speech are chosen. Second, if there is more than one

entry (several senses) for the same word, the knowledge is asserted only if the majority of its

senses have the same marker (either Positiv or Negativ). It is not possible to actually disam-

biguate which senses are the relevant ones for each near-synonym because the definitions of

the sense in the General Inquirer are very short, and a Lesk-style disambiguation algorithm

will not succeed. Therefore all the senses with the right part-of-speech are taken into account.

An example of distinctions extracted in this step is presented in Figure 5.1. The number of

attitudinal distinctions acquired from the General Inquirer was 5358.
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Figure 5.1: Example of distinctions extracted from the General Inquirer.

5.2 Adding knowledge from the Macquarie Dictionary

The most common machine-readable dictionaries contain definitions for each word in isolation,

unlike the CTRW, which explains groups of near-synonyms. Nonetheless, MRDs may contain

useful information about near-synonyms.

I experimented with the Macquarie Dictionary3 [Delbridge et al., 1987], because this dic-

tionary contains all the near-synonyms of interest and it was available for my work. Other

machine-readable dictionaries could have been used. There is a large body of work that ex-

ploits the content of LDOCE (Longman Dictionary of Contemporary English)4. It proved

useful in word sense disambiguation and other tasks [Wilks et al., 1996]. It has a controlled

vocabulary for the definitions, and contains information such as Activator (about 1000 cate-

gories) and subject codes (approximately 200 subject codes). LDOCE was not available for

my research. For the task of extracting information from definitions, LDOCE would have been

3http://www.macquariedictionary.com.au/
4http://www.longman.com/dictionaries/research/resnlapp.html
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useful only if at least one near-synonyms from each cluster is part of the controlled language.

From the SGML-marked text of the Macquarie Dictionary, the definitions of the near-

synonyms in CTRW are extracted. A fragment of an SGML-marked entry for the word bur-

lesque is presented in Figure 5.2. The definitions for the expected part-of-speech are extracted.

Only the definitions that contain another near-synonym from the same cluster are retained, be-

cause these are definitions of the desired senses and express a distinction relative to another

near-synonym. For example, for the cluster: caricature, burlesque, mimicry, parody, takeoff,

travesty, one definition extracted for the near-synonym burlesque is: any ludicrous take-off or

debasing caricature. Another relevant definition, for the near-synonym parody, is: a burlesque

imitation of a musical composition. The result of the extraction is presented in Figure 5.3. The

other near-synonym will be later deleted from the peripheral string, during the customization

phase (Section 6.2.2). The last distinction in the figure contains only another near-synonym,

not new information; therefore it will not be useful for further processing.

The number of new denotational distinctions acquired by this method was 5731. They have

the same format as the denotational distinctions acquired from CTRW in the initial LKB of NS

(which contained 10,789 denotational distinctions).

5.3 Adding knowledge from WordNet

In WordNet some word senses are marked as informal, in a parenthesis at the beginning of

their glosses. For example, the gloss for ����� ��	 � � (the first sense of the adjective wee) is
� �
"���# � � � ������	������ � ������� " ��	�������� 	 ����� 
��!
�� . I extracted this information for the near-

synonyms of interest. Word sense disambiguation is necessary to keep only the right senses of

the near-synonyms, therefore I used the WSD module described in Chapter 3.

The knowledge about informal near-synonyms acquired in this way is useful. Unfortu-

nately, it turned out that this kind of information is not very frequently expressed in WordNet.

Only 11 new distinctions for near-synonyms were acquired. Future work will investigate other
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Figure 5.2: Example of entry in the Macquarie Dictionary for the word burlesque.



72 CHAPTER 5. ADDING KNOWLEDGE FROM MACHINE-READABLE DICTIONARIES

�����&"�
������  �	%���% �	�
�������� ����������"�������� �$� �$�% !���	� ��	�����#��	� 
�	�
���� � � � 
���	�����"�
��

"�������� ����������" ������ �����	� �
"���	������
"�
��������%
 	
� ����#�� ���
 %��	�"�"�� � ������
�	�

���!�
�����
� ��	�� 	���� � � � ����#��� !�����
"�� ��� 
�	�
������ ��� ����� ��� ����� #�����	�"�� ��� ���	
��  �	��
�% �	�
%�����	�����

"�������� ��	�����#��� �����	� �
"���	������
"�
��������%
 	
� ����#�� ���
 %��	�"�"�� � ������
�	�

���!�
�����
� ��	�� 		� � � ����������" �����	� ��� � �$��
�	�

����� ����� � � ���!� 	�� � � ���
"��% �	���� ���  ���� ����"���

����� �����

"�������� ��	�����#��� �����	� �
"���	������
"�
��������%
 	
� ����#�� ���
 %��	�"�"�� � ������
�	�

���!�
�����
� ��	�� 		� � � 
���	�����"�
�� �����

Figure 5.3: Example of distinctions extracted from the Macquarie Dictionary.

MRDs that might specify which words are formal / informal.

5.4 Consistency checking

After extracting knowledge from multiple sources, the next step is to merge all the knowledge

together. The merging program merges knowledge acquired from two sources at a time. For

each near-synonym cluster in the first LKB, it copies in the resulting LKB the name of the

cluster and the distinctions, and if there are distinctions for the same cluster in the second LKB,

it copies them too. I applied the merging program first on the LKB of NS acquired from CTRW

and the LKB acquired from one of the other sources, let’s say the Macquarie Dictionary. Then,

I merged the resulting LKB with the LKB extracted form the General Inquirer. Then the small

LKB extracted from WordNet (about informal near-synonyms) is added.

During the merging process, each piece of knowledge (each distinction) is preserved to-
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Figure 5.4: Example of conflict in the merged lexical knowledge-base.

gether with a string indicating its source. For the distinctions extracted from CTRW, the sen-

tence they were extracted from is provided. For the other sources, a string indicating the name

of the source is added. Figure 5.4 contains an example of a merged LKB with indicators of the

sources. The first two distinctions originate from the CTRW sentence; the source of the third

distinction is the General Inquirer (abbreviated GI).

Figure 5.4 also shows that conflicting information can arise. This can be due to different

sources having a different opinion about a word, or there could be cases in which there is a

conflict coming from one source only (there are a couple of such cases in CTRW). Sometimes

the information is not contradictory, but duplicated. For the example the first two distinctions

in Figure 5.4 are expressing the same distinction, extracted from the two parts of the CTRW

sentence.
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The consistency-checking program detects conflicts and resolves them. The algorithm for

resolving conflicts is a kind of voting scheme. It is rather ad-hoc, based on the intuition that

neutral votes should have less weight than votes for the two extremes. If the conflict is over

a stylistic distinction ( ��������	�����
�� , ������ �� , or �����
 !����
�������"�" ) than the values for the strength

features ( ����� , ���%#�� �%� , or 	&� �
	 ) are collected for the two or more conflicting distinctions. Let

Nlow, Nmedium, and Nhigh be the number of times that each strength feature occurs. If one of the

three numbers is higher than the other two, that feature is the clear winner. If there are ties,

then the algorithm is as follows:

if Nlow � Nhigh then winner = ����#
� �%� ,

if Nlow � Nmedium and Nlow � Nhigh then winner = ��� � else winner = 	&� �
	 ,

if Nhigh � Nmedium and Nhigh � Nlow then winner = 	&���
	 else winner = ����� .

Conflicts for attitudinal distinctions arise when the same near-synonym has distinctions for

more than one of the classes ����������	�

����� , ������
���	�� , and ��	���������	��
��� (as in Figure 5.4). In

this case, the counts are stored in Npejo, Nneutral, and Nfavo. The conflict resolution strategy is

similar: when one of the numbers is higher than the other two, the corresponding class wins.

If there are ties, then the algorithm is as follows:

if Npejo � Nfavo then winner = ������
���	�� ,

if Npejo � Nneutral and Npejo � Nfavo then winner = ����������	�
&����� else winner = ��	���������	������ ,

if Nfavo � Nneutral and Nfavo � Npejo then winner = ��	���������	������ else winner = ����������	�

����� .

The strength feature for the winning class is decided by applying the algorithm presented above

for stylistic distinctions, for all the distinctions that have the winning attitude. For example,

in Figure 5.4 the winning class is ����������	�

����� and there are two pejorative distinctions with

strength ����#����%� ; therefore the winning strength is ����#
� �%� .

For denotational distinctions there is no conflict detection. This is left for future research.

Semantic similarity measures could help to detect when two concepts are opposites, but more

processing is needed (such as detecting negation, antonyms, etc.). If the same information

is asserted multiple times, duplicates can be eliminated. But if very similar information is
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asserted multiple times, it is not clear what value for the similarity should be considered high

enough to decide that the distinction was already asserted.

If the same attitudinal or stylistic distinction is asserted more than once, duplicates are

eliminated. This is done implicitly by the conflict resolution algorithm: when the same infor-

mation is repeated, two of the three numbers computed by the algorithm are zero; therefore,

the repeated distinction is the winner and it is be asserted to replace the repetitions.

The number of conflicts detected by the consistency-checking program was 302 for the

merged LKB of 23,469 distinctions. After conflict resolution, 22,932 distinctions remained.

The consistency-checking program produces a new LKB of NS without conflicts or dupli-

cate knowledge. It also provides a list of the conflicts together with the proposed solution. This

list can be easily inspected by a human who can change the solution of the conflict in the final

LKB of NS, if desired.

5.5 Summary

This chapter acquired knowledge about distinctions between near-synonyms, from machine-

readable dictionaries. Attitudinal distinctions were extracted from the General Inquirer. De-

notational distinctions were acquired from the Macquarie Dictionary. In order to select only

the right senses of the near-synonyms and to make sure a distinction is expressed, only the def-

initions that contain another near-synonym from the same cluster were retained. A few stylistic

distinctions (about informal words) were extracted from WordNet.

This knowledge was easily added to the initial LKB of NS acquired in Chapter 2, because

it has exactly the same format. Inconsistencies that appear in the merged LKB were resolved

(only for attitudinal and stylistic distinctions).

Future work includes applying the extraction programs presented in section 2.3, without

modification, to the usage notes from an MRD such as Merriam-Webster Online Dictionary5.

5http://www.m-w.com/cgi-bin/dictionary
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The distinctions expressed in these usage notes are similar to the explanations from CTRW.



Chapter 6

Using the Lexical Knowledge-Base of

Near-Synonym Differences

The lexical knowledge-base of near-synonym differences, acquired initially from CTRW, en-

riched from machine-readable dictionaries, and extended with knowledge of collocational be-

haviour of the near-synonyms, can be used in several NLP applications.

One possible application is an intelligent thesaurus that offers a writer a set of alternative

words and can also explain what are the differences between them. Automatic choice of the

best alternative can be envisioned.

Another possible application, the one I will focus on, is lexical choice in natural language

generation and machine translation. The LKB of NS is generic. Depending on the NLP system

that uses it, customization of some aspects of the LKB of NS may be needed.

6.1 Lexical choice

The clustered model of lexical knowledge is applicable to both the lexical analysis and lexical

choice phases of a machine translation system. Figure 6.1 shows that during the analysis

phase, the lexical knowledge-base of near-synonym differences (LKB of NS) in the source

77
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Figure 6.1: Lexical analysis and choice in MT. Adapted from [Edmonds and Hirst, 2002].
The solid lines show the flow of data: input, intermediate representations, and output; the
dashed lines show the flow of knowledge from the knowledge sources to the analysis and the
generation module. The rectangles denote the main processing modules; the rest of the boxes
denote data or knowledge sources.

language is accessed, together with the context, to determine a set of nuances expressed by the

source language text. During the generation phase, these nuances become preferences for the

lexical choice process. The target language text has to express the same meaning as the source

language text (necessary condition). In addition, the choice of words for the target language

text should try to satisfy the preferences as much as possible. In this section, I focus on the

generation phase of an interlingual machine translation (MT) system, specifically the lexical

choice process.

Two examples of systems that use knowledge of near-synonym differences are I-Saurus

and Xenon.

I-Saurus is a prototype NLG system that uses a hand-crafted ontology, just enough to allow

the integration of a small, manually developed LKB of NS (for 9 clusters of NS). I-Saurus was

implemented by Edmonds [1999]. It is based on MOOSE [Stede, 1998] (a system designed

for paraphrasing verb alternations) and it uses the surface realizer named Penman [Penman

Natural Language Group, 1989] for actually generating text. The output varies with the input

preferences. An example of input and output to I-Saurus is presented in Figure 6.2.

I-Saurus implements a two-tiered lexical choice process. First, it chooses a set of clus-
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Figure 6.2: Example of input and output to I-Saurus.

ters that cover the meaning expressed by the semantic representation. Then for each possible

cluster option, it chooses the near-synonym that maximizes the degree of satisfaction of the

preferences.

Xenon is a a general-purpose NLG system that exploits my LKB of NS. To implement

Xenon, I modified the lexical choice component of a pre-existing NLG system (HALogen

[Langkilde, 2000], [Langkilde and Knight, 1998]) so that it handles the knowledge about the

near-synonym differences. Xenon will be described in detail in Chapter 7.

The difference between I-Saurus and Xenon is that I-Saurus works for a small hand-coded

LKB of NS (9 clusters) and a small hand-crafted ontology, while Xenon uses the automatically-

built LKB of NS (909 clusters), and a large-scale ontology. There is, in principle, no restriction

on the kind of text Xenon can produce.

6.2 Customizing the LKB of NS

The initial LKB of NS built in the Chapter 2 (and enriched in Chapter 5) is a general one, and

it can be used in any NLP system. Most likely it will need some adaptation in order to be

integrated with the other components of the NLP system. In particular, it has to be integrated

with the ontology employed by the NLP system.



80 CHAPTER 6. USING THE LKB OF NS

There are two aspects of the LKB of NS that might need adaptation: the core denotations,

and the peripheral concepts. They might or might not need to be put in correspondence with

concepts in the main ontology of the system, depending on the requirements of the system. The

NLP system might use a general-purpose ontology, such as Cyc [Lenat, 1995] and WordNet,

or an ontology specially built for the systems (such as Mikrokosmos [Mahesh and Nirenburg,

1995] or domain-specific ontologies).

In the next sections I discuss the customization task in general, and after that specific solu-

tions adopted in particular systems.

6.2.1 Customizing the core denotations

In most NLP systems, the core denotation of each cluster of near-synonyms needs to be ex-

plicit. The clustered model of lexical knowledge views the core denotation as a generic concept.

In I-Saurus, because of its hand-crafted ontology, the core denotations are concepts manually

declared in the Loom knowledge representation system1. In Xenon, the core denotation of

a cluster is an OR of all the concepts that could correspond to the near-synonyms in a clus-

ter. For example, if the cluster contains the near-synonyms: mistake, blooper, blunder, boner,

contretemps, error, faux pas, goof, slip, solecism, the WordNet senses that remain after disam-

biguation are:

�$�%"!
�	�
�� �%��� � � ������� ����� ����� � � ��������#���� ����� � � �������%� ����� � � ��������� ����� � �� 	�� � ��	�" ����� � � "%��� ���%��� � � "%��� ����������� "%������ ��%" ������� �

Xenon uses Sensus [Knight and Luk, 1994] as its ontology. Sensus was built by combining

WordNet1.5 with the Penman Upper Model (a top-level ontology used in Penman) and with

information from Longman Dictionary of Contemporary English (LDOCE)2. Because my dis-

ambiguation experiments (see Chapter 3) use the WordNet 1.7 sense inventory, I implemented

a mapping from WordNet1.7 to Sensus that puts a WordNet sense (synset) in correspondence

1http://www.isi.edu/isd/LOOM/LOOM-HOME.html
2http://www.longman.com/ldoce/
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with a Sensus concept. My mapping uses the inverse of the mapping from WordNet 1.5 to 1.6

to 1.7 developed by Rigau et al. [1998] to map senses from WordNet 1.7 to 1.6 to 1.5. Then,

I map WordNet1.5 senses to Sensus concepts on the basis of the Sensus source files. After

mapping to Sensus concepts, the core denotation from the previous example looks as follows:

�  %����� � � � � � �����������% ���$�%"�
�	 
��������� � ��� � 	����!
	� �%����������� �������%����� ��	 ��� ����� "%��� ������� �

Sensus concepts correspond to WordNet1.5 synsets; in addition, they have distinct names,

consisting on one or more words, delimited by vertical bars. For example, � � 	��
�!
	� ����������� is

the name of a Sensus concept.

In fact, in the actual implementation of Xenon, the core denotations are represented as

meta-concepts that are later expanded in an OR of all the near-synonyms of the cluster. The

name of a meta-concept is formed by the prefix “generic”, followed by the name of the first

near-synonym in the cluster, followed by the part-of-speech. For example, if the cluster is lie,

falsehood, fib, prevarication, rationalization, untruth, the name of the cluster is “generic lie n”.

The names have to be distinct. For example, the part-of-speech helps to distinguish between

lie as a noun and lie as a verb, if they both happen to name a meta-concept. If there are

cases where there could still be conflicts after differentiating by part-of-speech, the name of

the second near-synonym should help. For example, “stop” is the name of two verb clusters,

therefore the two clusters are renamed: “generic stop arrest v” and “generic stop cease v”.

6.2.2 Customizing the peripheral concepts

A peripheral concept is a concept from the ontology (or a configuration of concepts) that is

implied, suggested, or denoted by the near-synonyms. The peripheral concepts are initially

expressed as strings. The adaptation module can include parsing the strings, and then mapping

the syntactic representation into a semantic representation.

In I-Saurus a small number of peripheral concepts were implemented manually in Loom.

Examples of peripheral concepts for the near-synonyms of lie are shown in Figure 6.3.
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Figure 6.3: Examples of peripheral concepts in I-Saurus.

In Xenon, I implemented a set of simple rules that extract the actual peripheral concepts

from the initial peripheral strings. The peripheral concepts are represented in the same repre-

sentation language used to describe inputs to Xenon (the ISI interlingua). A transformation rule

takes a string of words annotated with part-of-speech information and extracts a main word,

several roles, and fillers for the roles. The fillers can be words or recursive structures. In Xenon

the words used in these representation are not sense disambiguated.

Here are two examples of input strings and extracted peripheral concepts:

%F8 � �(���28����E8�	*	��F�E��������8���
 ���C���2���������*��� %
4�� %��5-������*8���
 !���� � �����������������=!�
)���C�(���28��*�E8�	*	����E�21

%T���58
� �#�
�28��*��8E	*	���������� 8
:���:�8��*9D�E���#���*���
����� %
4�� %��5-D�E�*�����������
���=!�
)���?%���
 �(���28����E8�	*	��F�E��8�:���:�8���9
1�1

The roles used in these examples are part of the set of roles of the ISI interlingua: MOD

(modifier) and GPI (generalized possession inverse).

The rules that were used for these two examples are these:

�*9��*���
�2�( �� J������S� ����J������2;I4�� %��C-IJ����*� � !���� � J����*��;?!�
������*9��*���
�2�( ���1

�*9��*���
�2�( ��2� ��� ��9����E�
���� ���; J������ 4�� %��5-OJ����*� !�
)���&%���
��*9����E� �2�� ��
�&�*9����E� �2�� ���;E1*1
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Algorithm Coverage Correctness
Baseline 100% 16%

Rules on development set 79% 68%
Rules on test set 75% 55%

Table 6.1: Coverage and correctness of the customization rules.

6.2.3 Evaluation of the Xenon customization module

To evaluate the customization for Xenon, I built by hand a standard solution for a set of pe-

ripheral strings: 139 strings to be used as a test set, and 97 strings to be used as a devel-

opment set. I used the development set to figure out what rules should be added. I imple-

mented about 22 transformation rules (more rules can be easily added). They cover 79% of

the strings in the development set, with a correctness of 68%. The correctness is defined as the

percent of times the extracted peripheral concept is the one expected in the solution. Some-

times a rule may extract only a fragment of the expected configuration of concepts and still

provide useful knowledge in the final LKB of NS. Such cases are not considered correct for

the evaluation done in this section. The evaluation is strict: for simplicity reasons, it does

not allow credit for partial correctness. For example, if the near-synonym command denotes


 	���� � � "�
�	�
���# ����
 #��!��	���# ����� � � ���!� 	�� � � "��������
����� � � � , the expected peripheral con-

cept is:
� � � � #��!��	���# � ��� � "������%������� � � � � "!
�	�
���# � . If the program extracts only

� ��� �

#��!��	���# � ��� � "�������������� � , the result is not considered correct, but the information may still

help in a system that uses the LKB of NS.

The test set was used for evaluation to make sure the rules work in general, not only for

the development set. The results of the evaluation are presented in Table 6.1. The coverage for

the test set is 75% and the correctness 55%. To have a base for comparison, if the rules are

extremely simple, taking the first word in each string as the peripheral concept, we can cover

all the strings, but with a correctness of 16%.
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6.2.4 The final LKB of NS customized for Xenon

I customized the generic LKB of NS for use in Xenon. The core denotations and the peripheral

concepts are obtained as described in the previous sections. Figure 6.4 presents a fragment of

the knowledge extracted for the near-synonyms of error in the generic LKB of NS. The knowl-

edge extracted for all the near-synonyms in this cluster can be viewed in Appendix B. The

customization programs produce the final representation of the cluster in a form that is under-

stood by Xenon (see Figure 6.5 for the full customized representation for the near-synonyms

of error and Appendix C for more examples of customized clusters). The peripheral concepts

are factored out, and the list of distinctions contains pointers to them. This allows peripheral

concepts to be shared by two or more near-synonyms.

6.3 Summary

This chapter discussed the customization of the LKB of NS acquired in Chapter 2 and enriched

in the subsequent chapters. The main parts that need to be customized in order to be used

in a particular NLP system are the core denotations of each cluster of near-synonyms, and

the peripheral strings from the denotational distinctions. The peripheral strings need to be

transformed into concepts or configurations of concepts that are understood by the NLP system.

The problem was discussed first in general, with examples from the prototype NLG sys-

tem I-Saurus. Then, the customization for my NLG system, Xenon (presented in Chapter 7)

was explained. The core denotations were meta-concepts consisting of an OR of all the near-

synonyms in a cluster. The peripheral strings were transformed into configurations of concepts

by using a set of rules. The correctness and coverage of the rules were evaluated on a sample of

the data. A development set was used to figure out what rules need to be added, and a separate

set was used for testing.
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Cluster: mistake=blooper=blunder=boner=contretemps=error=faux pas=goof=slip=solecism=
...
a near syn(blunder) is a blatant near syn(error), usually one involving behavior or judgment, and
implying an ignorant or uninformed assessment of a situation

subj: blunder
freq: usually
strength: medium
class: Implication
periph: an/DT ignorant/JJ or/CC uninformed/JJ assessment/NN of/IN a/DT situation/NN

near syn(slip) emphasizes the accidental rather than ignorant character of a near syn(mistake) and is
often used to mean the careless divulging of secret or private information

subj: slip
freq: usually
strength: high
class: Denotation
periph: the/DT accidental/JJ rather/RB than/IN ignorant/JJ character/NN of/IN a/DT NS mistake/NN

subj: slip
freq: usually
strength: medium
class: Denotation
periph: the/DT careless/JJ divulging/VBG of/IN secret/JJ or/CC private/JJ information/NN

near syn(blooper), an informal term, is usually applied to particularly infelicitous mix-ups of speech,
such as ”rit of fellus jage” for ”fit of jealous rage”

subj: blooper
freq: usually
strength: medium
class: Denotation
periph: to/TO particularly/RB infelicitous/JJ mix-ups/NNS of/IN speech/NN ,/, such/JJ as/IN rit/NN
of/IN fellus/JJ jage/NN for/IN fit/NN of/IN jealous/JJ rage/NN

subj: blooper
freq: usually
strength: low
class: Formality
...

Figure 6.4: Fragment of the initial representation of the error cluster.
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Figure 6.5: The final representation of the error cluster.



Chapter 7

Xenon: An NLG System that Uses

Knowledge of Near-Synonym Differences

This chapter presents Xenon, a large-scale NLG system that uses the lexical knowledge-base

of near-synonyms customized in Chapter 6. Xenon integrates a new near-synonym choice

module with the sentence realization system named HALogen1 [Langkilde, 2000], [Langkilde

and Knight, 1998]. HALogen is a broad-coverage general-purpose natural language sentence

generation system that combines symbolic rules with linguistic information gathered statisti-

cally from large text corpora. The internal architecture of HALogen is presented in Figure

7.1. A former version of the system, called Nitrogen, builds a lattice of all possible sentences

(combinations of words), and then ranks all the sentences in the lattice according to an N-gram

language model, in order to choose the most likely sentence as output. HALogen replaces

the lattice with a forest of trees, where the shared parts of the lattice are not duplicated. It

implements a faster and more reliable ranking algorithm.

Figure 7.2 presents Xenon’s architecture. The input is a semantic representation and a set

of preferences to be satisfied. The final output is a set of sentences and their scores. A concrete

example of input and output is shown in Figure 7.3. Note that HALogen may generate some

1http://www.isi.edu/licensed-sw/halogen/
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Figure 7.1: The architecture of HALogen.

Near-synonym choice module
Modified
interlingual 
representation

English
text

Sensus

realization

HALogen

Sentence 

Lexical knowledge-base of near-synonyms

Interlingual

Preferences

representation

Figure 7.2: The architecture of Xenon.

ungrammatical constructs, but they are assigned lower scores. The first sentence (the highest-

ranked) is considered to be the solution.

7.1 Meta-concepts

The semantic representation that is one of Xenon’s inputs is represented, like the input to

HALogen, in an interlingua developed at ISI.2 As described by Langkilde-Geary [2002b], this

language contains a specified set of 40 roles, whose fillers can be words, concepts from Sensus

[Knight and Luk, 1994], or complex interlingual representations. The interlingual represen-

tations could be underspecified: if some information needed by HALogen is not present, the

generator will make choices using the knowledge accumulated from the corpora. Figures 7.4

2http://www.isi.edu/licensed-sw/halogen/interlingua.html
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Figure 7.3: Example of input and output of Xenon.
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Figure 7.4: Interlingual representation for the sentence “The dog eats a meaty bone”.
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Figure 7.5: Interlingual representation for the sentence “The boy need not go”.



90 CHAPTER 7. XENON

and 7.5 present examples of semantic representations using the ISI interlingua. The example

in Figure 7.5 contains the Sensus concept � ���� ���"�"�	�������� �����
��
�	������ � , which expresses an

inevitable action.

Xenon extends this representation language by adding meta-concepts corresponding to the

core denotation of the clusters of near-synonyms. For example, in Figure 7.3, the meta-concept

is “generic lie n”. As explained in Section 6.2.1, they may be seen as an OR of all the senses

of the near-synonyms of the cluster.

7.2 Near-synonym choice

The near-synonym choice module has to choose the best near-synonym from each cluster. The

choice of clusters is already made: it is given in the input, in the semantic representation.

Near-synonym choice involves two steps: expanding the meta-concepts, and choosing the

best near-synonym for each cluster according to the preferences. I implemented this in a

straightforward way: the near-synonym choice module computes a satisfaction score for each

of the near-synonyms in a cluster; then satisfaction scores become weights; in the end, HAL-

ogen makes the final choice, by combining the weights with the probabilities from its language

model. For the example in Figure 7.3, the expanded representation is presented in Figure 7.6.

The near-synonym choice module gives higher weight to fib because it satisfies the preferences

better than the other near-synonyms in the cluster, lie, falsehood, fib, prevarication, rational-

ization, and untruth.

Section 7.3 will explain the algorithm for computing the weights. HALogen simply adds

these weights to N-gram probabilities from the language model (more precisely, the negative

logarithms of these values) before choosing the highest-ranked sentence.
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Figure 7.6: The interlingual representation from Figure 7.3 after expansion by the near-
synonym choice module.

7.3 Preferences

The preferences that are input to Xenon could be given by the user, or they could come from an

analysis module if Xenon is used in a machine translation system (corresponding to nuances

of near-synonyms in a different language, see Figure 6.1). The formalism for expressing pref-

erences and the preference satisfaction mechanism is taken from I-Saurus [Edmonds, 1999].

The preferences, as well as the distinctions expressed in the LKB of NS, are of three types:

attitudinal (express a favourable, neutral, or pejorative attitude), stylistic (express a certain

formality, force, or abstractness level), and denotational (connote a particular concept or con-

figuration of concepts).

� Denotational preferences have the form: ( ����
 	���# �����
� ��	�����	����� %�!�
 �� ��
 ), where ����
 	���#

takes the values "���������"�
 , � � ����� , #������!
�� .

� Attitudinal preferences have the form: ( "!
�	��
 �� ����

��
�� ), where "�
�	��& �� takes the

values
� 	�������� , ������
���	�� , #
�%" � 	�������� .

� Stylistic preferences have the form: ( "�
��������%
 	 "�
������%"�

�� �� � ��	�
%����� ).

All the preferences can be preceded by an importance factor, which is taken into consider-

ation during the near-synonym choice process. The importance factors are numbers between 0
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and 1, and show that some preferences should be weighted heavier than others. By default all

the preferences are 1 and do not need to be specified. Examples of preferences are:
� ����� � ������	�����
�� �� #
�%" � 	�������� � 	
������
 �� � � ����� � � � 	�"�"���"�" ������
 � � � � � � � ��� � � � ����������	���
 ���&� � � ��������# ��� .

As mentioned in Section 1.2, the form of the distinctions in the LKB of NS is the following:

� Denotational distinctions

( ����	%����"!���
������� � �����������
 �� "�
��������%
�	 �%	�
����
 �� �����
� ��	�����	����� %�!�
 �� ��
 ).

� Attitudinal distinctions

( ����	%����"!���
������� � �����������
 �� "�
��������%
�	 	�
�

��
%��#�� ����

��
�� ).

� Stylistic distinctions

( ����	%����"!���
������� "�
��������%
 	 "�
������%"�

�� �� � ��	�
%����� ).

In Xenon, preferences are transformed internally into pseudo-distinctions that have the

same form as the corresponding type of distinctions. In this way, the preferences can be directly

compared with the distinctions.

The pseudo-distinctions corresponding to the previous examples of preferences are:
� � ����� ��������	�����
�� �� � 	�����	���" 	&� �
	 ����������	�

����� � 	
������
 �� � 	�����	���" ����#����%� � � ������ �	�

���!�� ����	�"�"���"�" ������
 � � � � � � � � � � � ���
����	���
 ���&� � � ��������# � � .
The algorithm that computes the degree of satisfaction of preferences for a given sentence

plan differs from the algorithm implemented in I-Saurus, because of the different nature of

the generators used for surface realization. A sentence plan corresponds in my system to the

input semantic representation in which lexical choice has been partly made (near-synonyms

were assigned weights according to their degree of satisfaction of preferences). For each near-

synonym NS in a cluster, a weight is computed by summing the degree to which the near-

synonym satisfies each preference from the set P of input preferences:

Weight
�
NS � P � � ∑

p � P

Importance
�
p �

�
P
� Sat

�
p � NS � 	 (7.1)
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The weights are transformed through an exponential function:

f
�
x ��� exk

e � 1
(7.2)

The main reason this function is exponential is that differences between final weights of near-

synonyms from a cluster need to be numbers that are comparable with the differences of prob-

abilities from HALogen’s language model. More explanation about the form of this function

and the method for choosing the optimal value of k are presented in Section 7.7.1, page 110.

For a given preference p � P, the degree to which it is satisfied by NS is reduced to comput-

ing the similarity between each of NS’s distinctions and a pseudo-distinction d
�
p � generated

from p. The maximum value over i is taken (where di
�
w � is the i-th distinction of NS):

Sat
�
p � NS � � maxi Sim

�
d

�
p � � di

�
NS � � 	 (7.3)

The computation of Sim is explained in the next section.

7.4 Similarity of distinctions

The similarity of two distinctions, or of a distinction and a preference (transformed into a

distinction), is computed using the formulas from I-Saurus:

Sim
�
d1 � d2 � �

��������� ��������

Simden
�
d1 � d2 � if d1 and d2 are denotational distinctions

Simatt
�
d1 � d2 � if d1 and d2 are attitudinal distinctions

Simsty
�
d1 � d2 � if d1 and d2 are stylistic distinctions

0 otherwise

(7.4)

Distinctions are formed out of several components, represented as symbolic values on cer-

tain dimensions. In order to compute a numeric score, each symbolic value has to be mapped

into a numeric one. The numeric values and their possible ranges (see Table 7.1) are not as

important as their relative difference.The weights are in the interval [0,1]. They are propor-

tionally transformed so that the maximum weight becomes 1.0 by dividing all of them with the

highest value. This step does not change the relative differences.
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Frequency Latency Attitude Strength Style
never 0.00 Suggestion 2 Pejorative � 2 low � 1 low 0.0
seldom 0.25 Implication 5 Neutral 0 medium 0 medium 0.5
sometimes 0.50 Denotation 8 Favourable 2 high 1 high 1.0
usually 0.75
always 1.00

Table 7.1: The functions that map symbolic values to numeric values.

If the two distinctions are incommensurate (they are not the same type of distinction), their

difference is zero. For stylistic distinctions, the degree of similarity is one minus the absolute

value of the difference between the style values.

Simsty
�
d1 � d2 � � 1 	 0 � �

Style
�
d2 � � Style

�
d1 � � (7.5)

For attitudinal distinctions, similarity depends on the frequencies and on the attitudes. The

similarity of two frequencies is one minus their absolute differences. For the attitudes, the

attitudes are combined with their strengths and the result is normalized by the length of the

range of values – 6, in this case.

Simatt
�
d1 � d2 � � Sfreq

�
d1 � d2 ��� Satt

�
d1 � d2 � (7.6)

Sfreq
�
d1 � d2 � � 1 	 0 � �

Frequency
�
d2 � � Frequency

�
d1 � � (7.7)

Satt
�
d1 � d2 � � 1 	 0 � �

Att
�
d2 � � Att

�
d1 � � � 6 (7.8)

Att
�
d � � Attitude

�
d � � sign

�
Attitude

�
d � ��� Strength

�
d � (7.9)

The similarity of two denotational distinctions is the product of the similarities of their three

components: frequencies, latencies, and conceptual configurations. The first score is calculated

as for the attitudinal distinctions. The second score combines the latency (indirectness) with the

strength and the result is normalized by 8, the length of the range of values. The computation

of conceptual similarity (Scon) is discussed in the next section.
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if d1 �
�
lex1 low Formality �

d2 �
�
lex2 medium Formality �

then Sim
�
d1 � d2 � � 1 � �

0 	 5 � 0
�

� 0 	 5

if d1 �
�
lex1 always high Favourable :agent �

d2 �
�
lex2 usually medium Pejorative :agent �

then Sim
�
d1 � d2 � � Sfreq

�
d1 � d2 ��� Satt

�
d1 � d2 �

�
�
1 � �

0 	 75 � 1
� ��� �

1 � � � � 2 � 0 � � �
2
�

1 � � � � 6

� 0 	 125

if d1 �
�
lex1 always medium Implication P1 �

d2 �
�
lex2 seldom medium Suggestion P1 �

then Sim
�
d1 � d2 � � Sfreq

�
d1 � d2 ��� Slat

�
d1 � d2 ��� Scon

�
d1 � d2 �

�
�
1 � �

0 	 25 � 1
� ��� �

1 � �
2
�

0
�

5
�

0 � � 8 ��� 1

� 0 	 031

Figure 7.7: Examples of computing the similarity of lexical distinctions.

Simden
�
d1 � d2 � � Sfreq

�
d1 � d2 ��� Slat

�
d1 � d2 ��� Scon

�
d1 � d2 � (7.10)

Sfreq
�
d1 � d2 � � 1 	 0 � �

Frequency
�
d2 � � Frequency

�
d1 � � (7.11)

Slat
�
d1 � d2 � � 1 	 0 � �

Lat
�
d2 � � Lat

�
d1 � � � 8 (7.12)

Lat
�
d � � Latency

�
d � � Strength

�
d � (7.13)

Examples of computing the similarity between distinctions are presented in Figure 7.7.

7.5 Similarity of conceptual configurations

Peripheral concepts are complex configurations of concepts. In Xenon, they are full-fledged

interlingual representations, containing concepts (or words) and roles that are filled by com-

plex concepts. The conceptual similarity function Scon is in fact the similarity between two
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interlingual representations t1 and t2. Examples of computing the similarity of conceptual con-

figurations are presented in Figure 7.8. The formula for computing the similarity of conceptual

configurations from I-Saurus was adapted to work for this type of representation. The formula

for Scon is taken from I-Saurus, while the formula for S is new.

Scon
�
t1 � t2 ���

��� �� S
�
concept

�
t1 � � concept

�
t2 � � if N

�
t1 � t2 � � 0

α S
�
concept

�
t1 � � concept

�
t2 � � � β 1

N � t1 � t2 � ∑s1 � s2
Scon

�
s1 � s2 � otherwise

(7.14)

In equation 7.14, concept
�
C � , where C is a interlingual representation, is the main concept (or

word) in the representation. For example, for the interlingual representation for Figures 7.4

and 7.5 on page 89, the main concepts are ��	�
 and � ���� ���"�"�	���� ��� �����&��
�	����%��� , respectively.

Equation 7.14 computes similarity by simultaneously traversing the two representations.

The first line corresponds to the situation when there are only main concepts, no roles. The

second line deals with the case when there are roles. There could be some roles shared by both

representations, and there could be roles appearing only in one of them. N
�
t1 � t2 � is the sum

of the number of shared roles and the number of roles unique to each of the representations

(at the given level in the interlingua). s1 and s2 are the values of any shared role. α and β

are weighting factors. If α � β � 0 	 5, the sub-structure corresponding to the roles is weighted

equally to the main concepts.

The similarity function S is different from the one implemented in I-Saurus. It deals with

the case in which the main concepts are atomic (words or basic concepts) and when they

are an OR or AND of complex concepts. It is assumed that the order of the constituents in

disjunctions and conjunctions does not matter. For example, (OR embarrassing awkward) is

equivalent to (OR awkward embarrassing). This assumption is needed in cases when the same

knowledge come from different sources, where lexicographers used slightly different language

to express the same distinction. If we have two disjunctions, C1 �
�
OR C11 � � � C1n � , and
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C1 = (C1 / departure :MOD (M / physical) :PRE-MOD unusual)
C2 = (C2 / departure :MOD (M / physical))
Scon

�
C1 � C2 ��� 0 	 5 � 1

�
0 	 5 � 1

�
2 �

�
0 	 5 � 1 � � 0 	 625

C1 = (C1 / person :AGENT OF (A / drinks :MOD frequently))
C2 = (C2 / person :AGENT OF (A / drinks))
Scon

�
C1 � C2 ��� 0 	 5 � 1

�
0 	 5 � 1

�
1 �

�
0 	 5

�
0 	 5 � 1

�
2 � 1 � � 0 	 875

C1 = (C1 / occurrence :MOD (M / (OR embarrassing awkward)))
C2 = (C2 / occurrence :MOD (M / awkward))
Scon

�
C1 � C2 ��� 0 	 5 � 1

�
0 	 5 � 1

�
1 � 1 � 1 	 0

C1 = (C1 / (AND spirit purpose) :MOD (M / hostile))
C2 = (C2 / purpose :MOD (M / hostile))
Scon

�
C1 � C2 ��� 0 	 5 �

�
1
�

0 � � 2
�

0 	 5 � 1 � 0 	 75

Figure 7.8: Examples of computing the similarity of conceptual configurations.

C2 �
�
OR C21 � � � C2m � , then

S
�
C1 � C2 ��� maxi � j Scon

�
C1i � C2 j � 	

The components could be atomic or they could be complex concepts; that’s why the Scon

function is called recursively. If one of them is atomic, it can be viewed as a disjunction

with one element, so that the previous formula can be used. If both are conjunctions, then

the formula computes the maximum of all possible sums of pairwise combinations. If C1 �

�
AND C11 C12 � � � C1n � , and C2 �

�
AND C21 C22 � � � C2m � , then the longest conjunction is taken.

Let’s say n
�

m (if not the procedure is similar). All the permutations of the components of C1

are considered, and paired with components of C2. If some components of C1 remain without

pair, they are paired with null (and the similarity between an atom and null is zero). Then the

similarity of all pairs in a permutation is summed and divided by the number of pairs, and the

maximum (from all permutations) is the resulting score:

S
�
C1 � C2 � � maxp � permutations

1
n

m

∑
k � 1

Scon
�
C1pk � C2k � �

n

∑
k � m � 1

Scon
�
C1k � null �

Here is a simple example to illustrate this procedure.

Scon
� �

AND a b c � �
AND b a � � � 1

3
max

�
Scon

�
a � b � � Scon

�
b � a � � Scon

�
c � null � � Scon

�
a � a � �
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�
Scon

�
b � b � � Scon

�
c � null � ��� 1

3
max

�
0
�

0
�

0 � 1
�

1
�

0 � � 0 	 66

The similarity of two words or two atomic concepts is computed from their positions in

the ontology of the system. A simple approach would be this: the similarity is 1 if they are

identical, 0 otherwise. But we have to factor in the similarity of two words or concepts that

are not identical but closely related in the ontology. There are off-the-shelf semantic similarity

packages, such as the one provided by Patwardhan and Pedersen3 or Alexander Budanitsky

[Budanitsky and Hirst, 2001], implement various similarity measures. Most of the measures

work only for nouns, except the Lesk measure and the Hirst and St-Onge measure, which tend

to run rather slow. Similarity measures based on thesauri [Jarmasz and Szpakowicz, 2003]

might work well for all parts of speech. But it would be time-consuming to call an external

package from Xenon.

Therefore, I implemented a measure of similarity for all the words, using the Sensus ontol-

ogy. Two concepts are similar if there is a link of length one or two between them in Sensus.

The degree of similarity is discounted by the length of the link.

S
�
C1 � C2 ���

������ �����
1 	 0 if C1 and C2 are the same concept

0 	 75 if there is a link of length 1 between C1 and C2

0 	 50 if there is a link of length 2 between C1 and C2

(7.15)

The similarity between a word and a concept is given by the maximum of the similarities

between all the concepts (senses) of the word and the given concept. The similarity of two

words is given by the maximum similarity between pairs of concepts corresponding to the

words. Before looking at the concepts associated with the words, the Porter stemmer4 is used

to see if the two words share the same stem, in which case the similarity is 1. Similarity across

part-of-speech is therefore possible due to the stem checking and to the fact that the lexicon

that Sensus comes with has some derivational information incorporated from LDOCE.

3http://search.cpan.org/dist/WordNet-Similarity/
4http://www.tartarus.org/ � martin/PorterStemmer/index.html
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7.6 Integrating the knowledge of collocational behaviour

In Chapter 4, knowledge about the collocational behaviour of the near-synonyms was acquired.

For each cluster of near-synonyms, there are preferred collocations, less-preferred collocations,

and anti-collocations. Integrating this information into the near-synonym choice module is im-

portant because the system should not choose a near-synonym that causes an anti-collocation

to appear in the generated sentence, and it should give priority to a near-synonym that produces

a preferred collocation. A fragment of the lexical knowledge-base of near-synonym colloca-

tions is presented in Figure 7.9. The preferred collocations have no markup, the less-preferred

collocations are marked by � , and the anti-collocations are marked by
�
.

Knowledge of collocational behaviour is not usually present in NLG systems; adding it in-

creases the quality of the generated text, making it more idiomatic. Unlike other NLG systems,

Xenon already incorporates some collocational knowledge encoded in HALogen’s language

model (bigrams or trigrams). But this includes mainly collocations between content words and

function words. Therefore, the knowledge acquired in Chapter 4 is useful, since it includes col-

locations between near-synonyms and other content words (not function words). This means

that sometimes the near-synonym and the collocate word can be separated by several function

words (in practice one or two). Also, it is important whether the near-synonym is on the left-

side or on the right-side of the collocation. If the near-synonym can be on either side, both

collocations are in the knowledge-base.

There are several ways to approach the integration of the near-synonym collocation module

into Xenon. The first idea is to modify the initial weights associated with the near-synonyms

before the extended interlingual representation is fed into HALogen, in a similar manner to

the treatment of preferences / lexical nuances in the near-synonym choice module. But this

does not work, because the lexical choice is not made yet and therefore it would be hard to

detect possible collocations and anti-collocations. The interlingual representation may contain

Sensus concepts; and even if it contains words, they might not be yet in their inflected forms.

What makes the detection of possible collocations and anti-collocations even harder is the fact
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Figure 7.9: Fragment of the lexical knowledge-base of near-synonym collocations.

that the interlingual representation does not necessarily encode the order of the constituents. If

a word forms a preferred collocation or an anti-collocation with a near-synonym, most often

the collocation is formed when the word is on the left or on the right of the near-synonym, but

not both.

The second idea is to implement a collocational filter that takes the sentences produced

by HALogen, and removes the ones that contain anti-collocations. This approach would not

increase the rank of sentences that contain preferred collocations. By increasing the scores

of such sentences, ungrammatical constructions might be promoted. This is the case because

HALogen overgenerates: some of the generated sentences may be ungrammatical; but they

are not usually ranked first by the statistical ranker. The main reason that such a filter would

not work is that HALogen does not generate all the possible choices (because it would be too

computationally expensive); therefore the preferred collocations may have been already elimi-

nated by the time HALogen finishes generation. HALogen encodes all the possible sentences

in a packed representation called a forest. Then it has a statistical ranker which traverses the

structure to find the optimal path. But in order to make the computation feasible, only the paths

that could potentially maximize the final score of the sentence are considered, while the paths

that guarantee lower scores are pruned.
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Figure 7.10: The architecture of Xenon extended with the Near-Synonym Collocation module.
In this figure the knowledge sources are not shown.

The third alternative, which I implemented, is to integrate the near-synonym collocation

module inside HALogen (see Figure 7.1 for its internal architecture), after lexical choice is

made by the symbolic generator and encoded in the forest representation, but before the forest

representation is ranked by the statistical ranker to produce the ranked sentences. The architec-

ture of Xenon extended with the near-synonym collocation module is presented in Figure 7.10.

HALogen’s symbolic generator applies grammar rules, lexical rules, and other transforma-

tion rules to produce the forest structure. It encodes all the possible sentences in a tree in which

duplicate sub-trees are not allowed. Instead, each subtree is represented the first time it occurs

and subsequent occurrences are labeled with the name of the first sub-tree. The forest structure

is an AND-OR tree, where AND nodes represent a sequence of constituents, and OR nodes

represent a choice between mutually exclusive alternatives. Figure 7.11 shows an example of

forest representation that encodes four sentences:

The dogs eat bones.

Dogs eat bones.

Bones are eaten by the dogs.

Bones are eaten by dogs.

The nodes are labeled with symbols consisting of an arbitrary alphanumeric sequence (most of
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aredogs

NP.6

S.8

Figure 7.11: An example of forest representation from [Langkilde-Geary, 2002b].

them look like category labels), then a period, and a number. The forest is represented textually

as a non-recursive context-free grammar. The nodes labeled OR � in Figure 7.12 are a short

notation for two or more rules with the same left-hand side. For example the rule NP.7 OR �

NP.6 N.2 corresponds to two rules: NP.7 � NP.6 and NP.7 � N.2.

The rules have weights with default value 1. These weights are added to the scores assigned

by HALogen’s statistical ranker. In fact these weights have values other than 1 (for rules that

correspond to lexical items) only if some words or concepts in the interlingual representation

come with values for the feature :WEIGHT (these values are copied unchanged in the forest

structure). The synonym-choice module uses the weights in the interlingual representation to

rank near-synonyms by their degree of satisfying preferences.

The near-synonym collocation module intercepts the forest structure, modifies it, and then

forwards it to the statistical ranking module. The modification is only in the weights of the

rules for near-synonyms and words that collocate with them, if possible preferred collocations

or anti-collocations are detected.

The first step is to detect a cluster of near-synonyms in the forest structure by looking for
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1.0 TOP � S.15
1.0 S.15 OR � S.8 S.14
1.0 S.8 � NP.7 V.3 N.4 P.5
1.0 NP.7 OR � NP.6 N.2
1.0 NP.6 � DT.1 N.2
1.0 DT.1 � “the”
1.0 N.2 � “dog”
1.0 V.3 � “eat”
1.0 N.4 � “bones”
1.0 P.5 � “.”
1.0 S.14 � N.4 VP.12 PP.13 P.5
1.0 V.12 � V.9 V.10
1.0 V.9 � “are”
1.0 V.10 � “eaten”
1.0 PP.13 � B.11 NP.7
1.0 B.11 � ”by”

Figure 7.12: The textual representation of the forest from Figure 7.11.

consecutive rules in the forest structure that contain all the near-synonyms in a cluster from

the LKB of NS. The left-hand sides of these rules appear in the right-hand side of an OR rule,

because of the way the forest was generated from an OR of near-synonyms in the interlingual

representation.

The next step is to detect possible preferred collocations or anti-collocations in the forest

structure. This is done by performing operations on trees. In particular, a word is a possible

collocate if it is a close neighbour of the near-synonyms, at the left or at the right.

Figure 7.13 presents the recursive algorithms for tree operations that retrieve the direct left

and right neighbours of a node in the AND-OR tree, where, by neighbours I mean words on

the leaves of the tree.

To find the neighbours of the meta-concept it is sufficient to find the neighbours of one of

the near-synonyms, by calling the function ��� � 
 �������
	���������" or �
� �
	�
 �������
	���������" having

as argument the node corresponding to the near-synonym. The ��� � 
 �������
	���������" function is

used if the near-synonym is at the right side in the collocation, and the �����
	�
 ����� � 	���������" is

used if the near-synonym is at the left side in the collocation.
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Figure 7.13: Algorithm for left and right neighbours in the AND-OR tree.
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To detect the possible collocations or anti-collocations for the meta-concept, the possible

collocate words are extracted form the knowledge-base. If none of these collocates are in the

forest structure, there are no possible collocations. If some of them are in the forest structure,

then the one that is in the set of the neighbours of the meta-concept is the detected collocate.

Because the collocations are between content words, it is possible to have one or two function

words between the two words in the collocation. Therefore the neighbours that are separated by

one or two words are computed when needed, by using the same functions on the neighbours

and on the neighbours of the neighbours. The module detects one collocate for one cluster of

near-synonyms, but it could be extended to detect all the near-synonym clusters in a sentence

(if more than one is present) and all the possible collocates.

After detection, the weights for the near-synonyms are changed in the forest representa-

tion. The knowledge-base of near-synonym collocations is consulted to see how the collocate

combines with each of the near-synonyms. If it is a preferred collocation, the weight of the

near-synonym is unchanged (usually it is 1 unless it was changed by the near-synonym choice

module on the basis of preferences). If it is an anti-collocation, the weight of the near-synonym

is discounted by Wanti colloc. If it is a less-preferred collocation, the weight of the near-synonym

is discounted by Wless pref colloc. If the collocate is not the only alternative, the other alternatives

should be discounted, unless they also form a preferred collocation. Section 7.7.2 explains how

the discount weights are chosen.

7.7 Evaluation of Xenon

The main components of Xenon are the near-synonym choice module, the near-synonym col-

location module, and the sentence-realization module, HALogen.

An evaluation of HALogen was already presented by Langkilde-Geary [2002a]. HALo-

gen is evaluated for coverage and correctness using a section of the PennTreebank as test set.

HALogen was able to produce output for 80% of a set of 2400 inputs (automatically derived
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Figure 7.14: The architecture of DevSimple and TestSimple.

from the test sentences by an input construction tool). The output was 94% correct when the

input representation was fully specified, and between 94% and 55% for various other experi-

mental settings. The accuracy was measured using the IBM BLEU score [Papineni et al., 2001]

and the string edit distance, by comparing the generated sentences with the original sentences.

This evaluation can be considered as English-to-English translation via meaning representa-

tion.

Therefore, I only need to evaluate the near-synonym choice module, and the near-synonym

collocation module, each of them in interaction with HALogen. I evaluate each module sepa-

rately, and then I evaluate both modules working together.

7.7.1 Evaluation of the near-synonym choice module

For the evaluation of the near-synonym choice module I conducted two kinds of experiments.

The near-synonym collocation module was disabled for these experiments.

The first type of experiment (DevSimple and TestSimple) feeds Xenon with a suite of in-

puts: for each test case, an interlingual representation and a set of nuances. The set of nuances

correspond to a given near-synonym. A graphic depiction of these two tests is shown in Figure

7.14. The sentence generated by Xenon is considered correct if the expected near-synonym was

chosen. The sentences used in this first experiment are very simple; therefore, the interlingual

representations were easily built by hand. In the interlingual representation, the near-synonym

was replaced with the corresponding meta-concept.
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Figure 7.15: Examples of test cases from the test set DevSimple.

The analyzer of lexical nuances for English simply extracts the distinctions associated with

a near-synonym in the LKB of NS. If a near-synonym is ambiguous, i.e., if it is a member

of more than one cluster of near-synonyms, the analyzer needs to disambiguate. This is not

an easy task because the sentence that includes the near-synonym may not provide enough

context for a reliable disambiguation. For the purpose of the evaluation experiments, the dis-

ambiguation is simplified by giving a list of all the clusters that participate in the experiments.

Therefore, if a near-synonym is in more than one cluster, the one from the list is chosen (and

no near-synonym is in more than one cluster from the list).

The analyzer of lexical nuances takes a sentence as input. It simply extracts the nuances of

each near-synonym in a sentence and puts them together. The complex interaction between the

nuances of different words is not modeled, because it is a difficult problem and it is not needed

for the purpose of these experiments. In fact, I limit the evaluation to sentences containing only

one near-synonym.

An example of a set of test cases is presented in Figure 7.15. The first argument of the

Lisp function is the near-synonym whose nuances are the input preferences, and the second

argument is a simple interlingual representation. The output produced by Xenon for the first
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Figure 7.16: Example of output for the first test case from Figure 7.15.

English: benefit, advantage, favor, gain, profit
POS: noun

English:flow, gush, pour, run, spout, spurt, squirt, stream
POS: verb

English: deficient, inadequate, poor, unsatisfactory
POS: adj

English: afraid, aghast, alarmed, anxious, apprehensive, fearful, frightened, scared, terror-
stricken
POS: adj

English: disapproval, animadversion, aspersion, blame, criticism, reprehension
POS: noun

Figure 7.17: Near-synonyms used in the evaluation of Xenon (DevSimple).
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English: mistake, blooper, blunder, boner, contretemps, error, faux pas, goof, slip, solecism
French: erreur, égarement, illusion, aberration, malentendu, mécompte, bévue, bêtise, blague,
gaffe, boulette, brioche, maldonne, sophisme, lapsus, méprise, bourde
POS: noun

English: alcoholic, boozer, drunk, drunkard, lush, sot
French: ivrogne, alcoolique, intempérant, dipsomane, poivrot, pochard, sac à vin, soûlard,
soûlographe, éthylique, boitout, imbriaque
POS: noun

English: leave, abandon, desert, forsake
French: abandonner, délaisser, déserter, lâcher, laisser tomber, planter là, plaquer, livrer, céder
POS: verb

English: opponent, adversary, antagonist, competitor, enemy, foe, rival
French: ennemi, adversaire, antagoniste, opposant, détracteur
POS: noun

English: thin, lean, scrawny, skinny, slender, slim, spare, svelte, willowy, wiry
French: mince, élancé, svelte, flandrin, grêle, fluet, effilé, fuselé, pincé
POS: adj

English: lie, falsehood, fib, prevarication, rationalization, untruth
French: mensonge, menterie, contrevérité, hâblerie, vanterie, fanfaronnade, craque, bourrage
de crâne
POS: noun

Figure 7.18: Near-synonyms used in the evaluation of Xenon (TestSimple, TestSample, and
TestAll).
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test case from Figure 7.15, where the input nuances are for the word competitor, is shown in

Figure 7.16. The nuances of competitor are extracted, the meta-concept �������%���% � ���
��������
 �

is expanded into an OR of the near-synonyms in the cluster and the degree of satisfaction of

preferences is computed for each near-synonym. The near-synonym competitor obtained the

highest weight. In the end, a number of sentences are generated; the last line of the example

shows the sentences that scored best. The expected near-synonym was chosen in this case.

In DevSimple, I used 32 near-synonyms that are members of the 5 clusters presented in

Figure 7.17. The set DevSimple was used as a development set in order to choose the exponent

k of the function that translated the scale of the weights (equation 7.2 on page 93). As the value

of k increased (staring at 1) the accuracy on the development set increased. The final value

chosen for k was 15. In TestSimple, I used 43 near-synonyms selected from 6 other clusters,

namely the English near-synonyms from Figure 7.18. TestSimple was used only for testing,

not for development.

The shape of the function f
�
x � (equation 7.2 on page 93) was decided by looking at one

example of differences between weights. A linear function f
�
x � � x � 10 �

k was tried, but it

did not produce good results on the development set because it kept the differences between

weights as small as they were before applying the function. Several exponential functions

could be tried. Only one function was tried ( f
�
x � � exk

e
�

1 ) and kept because it performed well

on the development set. The example that shows why the differences between weights need to

be increased was the near-synonyms lie, falsehood, fib, prevarication, rationalization, untruth.

The nuances of untruth were fed as input preferences. But the near-synonym chosen in Xenon’s

output was lie:

� 	�� ����� 
�����# 	 ����� � ����� � � �����
� 	�� ����� 
�����# 	 � 	���"�� 	�����# � ����	 � ����
 �
� 	�� ����� 
�����# 	 ��	�

�%����	���� ��	�

���!� � ����� � ��� ���
� 	�� ����� 
�����# 	 � � � � ��� � � ��
�	��
� 	�� ����� 
�����# 	�� ����
�����
 	 � ��� � � ��
�	��
� 	�� ����� 
�����# 	 ��������	����% �	�

����� � ��� � � ��
�	��

This happened because lie has the highest probability in the language model. The loga-
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 �

Table 7.2: Example of values for logarithms of probabilities in the language model (unigrams
and bigrams).

rithms of the unigram and bigram probabilities are presented in Table 7.2.

The weights assigned by the preference satisfaction formulas are:

� ��� � 
������
� 	
������
 � ��� � ����� �
� �������� �
 � � � � � � � � � � ��� � ����� � ��� ����� � 	 � ����� � � ��� �� ��� � � 	���"�� 	�����# � ��� ������� 	 � ��������� ��� �� ��� � � � � � ��� ������� 	 � ����� ��� ��� �� ��� � ��������	����% �	�

����� � ��� ������� 	 � � ��� ������
 �� ��� � ��	�
&������	�������	�

�%��� � ��� ������� 	 � ����� ��� ��� �� ��
 � ����
�����
 	 � ��� ������� � � 	 �������

In contrast with the log-probabilities from the language model, the scale difference between

these weights is much smaller:

��� � 	 � ����� ��� ��� � � ��� � �������
��� � 	 � ����� ������
 � � ��	 � ������

��� � � � 	 � � 	

HALogen’s statistical ranker adds the language model log-probabilities and the logarithms

of the weights together; therefore the differences between the logarithms of the weights need

to be between � 2 and � 14 in this case before they would make any difference. In other words,

the difference between the raw weights needs to be roughly between e �
2 and e �

14, or between

0.1353 and 0.00000083. The exact value of the exponent k is not chosen to work well for this

example; it is chosen on the basis of Xenon’s performance on the whole development set.

In order to measure the baseline (the performance that can be achieved without using the

LKB of NS), I ran Xenon on all the test cases, but this time with no input preferences. Some
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Experiment Number Correct Correct Ties Baseline Accuracy Accuracy
of cases by (no ties)

default % % %

DevSimple
Simple sentences 32 5 27 5(4) 15.6 84.3 96.4
(development set)
TestSimple
Simple sentences 43 6 35 10(5) 13.9 81.3 92.1
(test set)

Table 7.3: Xenon evaluation experiments for simple input.

of the choices could be correct solely because the expected near-synonym happens to be the

default one (the one with the highest probability in the language model).

The results of the first type of evaluation experiment are presented in Table 7.3. For each

test, the second column shows the number of test cases. The column named “Correct” shows

the number of answers considered correct. The column named “Ties” shows the number of

cases of ties, that is, cases when the expected near-synonym had weight 1.0, but there were

other near-synonyms that also had weight 1.0, because they happen to have the same nuances

in the LKB of NS. The same column shows in brackets how many of this ties caused an in-

correct near-synonym choice. In such cases, Xenon cannot be expected to make the correct

choice. More precisely, the other choices are equally correct, at least as far as Xenon’s LKB

is concerned. Therefore, the accuracies computed without considering these cases (the seventh

column) are underestimates of the real accuracy of Xenon. The last column presents accura-

cies while taking the ties into account, defined as the number of correct answers divided by the

difference between the total number of cases and the number of incorrectly resolved ties.

The second type of experiment (TestSample and TestAll) is based on machine translation.

These experiments measure how successful the translation of near-synonyms from French into

English and from English into English is. The machine translation experiments were done on

French and English sentences that are translations of each other, extracted from parallel text

(text aligned at the sentence level). An example of such sentences is shown in Figure 7.19.
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� en � Even granting that those things happened and without admitting anything for the sake of
argument, let me say with respect to mistakes that two wrongs do not make a right. � /en �
� fr � En admettant que ces choses se soient produites et sans rien ajouter pour les seules fins de
l’argument, je tiens à dire, au sujet des erreurs, qu’on ne guérit pas le mal par le mal. � /fr �

� en � Canada must send a clear message to international governments to abandon such
atrocities if they wish to carry on co-operative relations with our country. � /en �
� fr � Le Canada doit faire savoir clairement aux gouvernements étrangers qu’ils doivent
abandonner de telles pratiques atroces s’ils veulent entretenir des relations de coopération
avec notre pays. � /fr �

� en � Populism is the natural enemy of representative democracy. � /en �
� fr � Le populisme est l’ennemi naturel de la démocratie représentative. � /fr �

Figure 7.19: Examples of parallel sentences used in TestAll, extracted from the Canadian
Hansard.

Xenon should generate an English sentence that contains an English near-synonym that best

matches the nuances of the French near-synonym used in the corresponding French sentence.

If Xenon chooses exactly the English near-synonym used in the parallel text, this means that

Xenon’s behaviour was correct. This is a conservative evaluation measure, because there are

cases in which more than one translation is correct.

As illustrated in Figure 6.1 from page 78 in Section 6.1, an analysis module is needed.

For the evaluation experiments, a simplified analysis module is sufficient. The French–English

translation experiments take French sentences (that contain near-synonyms of interest) and

their equivalent English translations. Because the French and English sentences are transla-

tions of each other, I can assume that the interlingual representation is the same for both. For

the purpose of these experiments, it is acceptable to use the interlingual representation for the

English sentence to approximate the interlingual representation for the French sentence. This

is a simplification because there may be some sentences for which the interlingual represen-

tation of the French sentence is different, due to translation divergencies between languages

[Dorr, 1993]. For the sentences in my test cases a quick manual inspection shows that this

happens very rarely or not at all. The advantage of this simplification is that it eliminates the
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Figure 7.20: The architecture of TestSampleFr and TestAllFr (French-to-English).

need to parse the French sentence and the need to build a tool to extract its semantics. As

depicted in Figure 7.20, the interlingual representation is produced using an existing tool that

was previously used by Langkilde-Geary [2002a] in HALogen’s evaluation experiments5. In

order to use this input construction tool, I parsed the English sentences with Charniak’s parser6

[Charniak, 2000]. The tool was designed to work on parse trees from the PennTreebank, that

have some extra annotations; it works on parse trees produced by Charniak’s parser, but it fails

on some parse trees probably more often than it did in HALogen’s evaluation experiments. I

replaced the near-synonym with the meta-concept that is the core meaning of its cluster. The

interlingual representation for the English sentence is semantically shallow; it does not reflect

the meaning of the French sentence perfectly, but in these experiments I am interested only in

the near-synonyms from the test set; therefore, the other words in the French sentence are not

important.

The analyzer of French nuances from Figure 7.20 needs to extract nuances from an LKB

of French synonyms. I created by hand an LKB for six clusters of French near-synonyms

(those from Figure 7.18), from two paper dictionaries of French synonyms, [Bénac, 1956] and

[Bailly, 1973]. For each peripheral string, in French, an equivalent concept is found in Sensus

by looking for English translations of the words and then finding Sensus concepts for the ap-

propriate senses of the English words. Figure 7.21 presents a fragment of a cluster of French

5Thanks to Irene Langkilde-Geary for making the input construction tool available.
6ftp://ftp.cs.brown.edu/pub/nlparser/



7.7. EVALUATION OF XENON 115

� #�� �  %���
"!
���� �����������% �����������������
� "!�%�
" � ����������� �
��	�����������
 �����!�
"������ 	���������	�

����� ��	�������
�����#�� ���� ���� ��
�� �����%���

����

��"�� ����	
����� ��	 ��� � �������%��
�
�� ���
���� 	�� ��	���#�������� "�� ��	&�%"���� ��	 �
"��
"
��� ���
�%"�� ��������#�� �

� ���%��� ��	 ��� � � �  � � � 
�	�
�� 	��$�%"�" � � �!������ �
 
 	$� ��� ���
������ � � �  � � � ����	%��� ����� ������"�" � ���� ��� �  � � � �
���
� ����������� � � � �
��# � � 	���"�� ������
�������� � �
����� �

� #���"�

� �
 !

�����
" � ������ ��� �����%"�� �
"���	������ ���%#�� �%� � ������
�	�

���!� � � �
� � ��������# �����  	���"�� ������� ����� 	���
���� ��
��	 � � � �
"���	������ ����#�� ��� � �����!
�	�

����� ��� �
� � �����%��� ������"�"�������� �� ����������� �
"���	������ ����#����%� � �����!
�	�

����� ��� �
� �

� 	��
"�"�� ���&� �&���!� �
�

�

Figure 7.21: Fragment of a cluster of French near-synonyms.

near-synonyms (see Appendix D for all the details). For example, if we are told that erreur de-

notes fausse opinion, the equivalent peripheral concept is
� ��� �  �� � � �
��� � ����������� � � � �
��#

� � 	���"�� ������
������ � ��� . If we are told that gaffe denotes bêvue grossiere, then the equivalent

peripheral concept is
� ��� �  � � � ����	���������� ������"�" � � � .

A similar experiment, translating not from French into English but from English into En-

glish, is useful for evaluation purposes. An English sentence containing a near-synonym is

processed to obtain its semantic representation (where the near-synonym is replaced with a

meta-concept), and the lexical nuances of the near-synonym are fed as preferences to Xenon.

Ideally, the same near-synonym as in the original sentence would be chosen by Xenon. The

percentage of times this happens is an evaluation measure. The architecture of these experi-

ments is presented in Figure 7.22.

TestSample and TestAll consist of real English and French sentences, translations of each
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Figure 7.22: The architecture of TestSampleEn and TestAllEn (English-to-English).

other, extracted from the Canadian Hansard7 (approximately one million pairs of sentences).

Other sources of parallel text, such as parallel translations of the bible8 [Resnik, 1999a], and a

collection of webpages [Resnik et al., 1997], happened to contain very few occurrences of the

near-synonyms of interest.

TestSample contains pairs of sentences, selected such that there are at most two sentences

for each pair of a French and English near-synonym that are translations of each other. The

sentences selected for each pair are the first two for which the input construction tool succeeded

to produce a valid interlingual representation. It happens that not all the near-synonyms in the

test set are found in the Hansard. In fact, only 14 distinct pairs of French and English near-

synonyms from the test set occur as translations of each other. Some of these pairs are very

frequent, and some are very rare. TestAll is similar to TestSample, but instead of having two

sentences for a near-synonym, it contains all the sentences in a given fragment of Hansard

(about half of it) in which the near-synonyms of interest occurred. Therefore, TestAll has the

advantage of containing naturally occurring text, not artificially selected sentences. It has the

disadvantage of lacking those near-synonyms in the test set that are less frequent. Initially there

were 564 pairs of sentences, but the input construction tool worked successfully only on 298

English sentences.

The English and French near-synonyms used in TestSample and TestAll are the ones pre-

7http://www.isi.edu/natural-language/download/hansard/
8http://benjamin.umd.edu/parallel/
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Figure 7.23: Example of test case from TestAll (English input).
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Experiment Number Correct Correct Ties Baseline Accuracy Accuracy
of cases by (no ties)

default % % %

TestSampleFr
French-to-English 26 10 13 5(3) 38.4 50.0 56.5
(test set)
TestSampleEn
English-to-English 26 10 26 2(0) 38.4 100 100.0
(test set)
TestAllFr
French-to-English 298 214 217 7(1) 71.8 72.8 73.0
(test set)
TestAllEn
English-to-English 298 214 296 2(0) 71.8 99.3 99.3
(test set)

Table 7.4: Xenon’s machine translation evaluation experiments and their results.

sented in Figure 7.18 from page 109. Figure 7.23 presents an example of a test case used in

TestAll, for the English sentence It will not correct mistakes and rectify the problems. The sec-

ond argument of the function is the interlingual representation produced by the input construc-

tion tool, where the word mistake was replaced with the meta-concept ���������
�% �$�%"�
�	�
�� � .

The interlingual representations used in TestSample and TestAll are quite complex; the one in

Figure 7.23 was chosen as an example because it was shorter than others.

The results of the machine translation evaluation experiments are presented in Table 7.4.

Similarly with the Table 7.3 on page 112, the second column shows the number of test cases;

the third column shows the number of answers considered correct; the fourth column shows

the number of cases of ties (cases when more than one near-synonym had weight 1.0), and in

the brackets it shows how many of this ties caused incorrect choice; the fifth column shows

the baseline accuracy (how many test cases can be solved by HALogen only, without any

input nuances to Xenon); the sixth column shows the accuracy computed as number of correct

choice dived by the total number of cases; the seventh column presents accuracies while not

penalizing incorrectly solved ties (defined as the number of correct answers divided by the

difference between the total number of cases and the number of incorrectly resolved ties).
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Table 7.4 also includes the results for the baseline experiments. In general, baseline accura-

cies are much lower than Xenon’s performance. For example, for DevSimple, Xenon achieves

96.8% accuracy, while the baseline is 15.6%. An exception is the baseline for TestAll, which

is high (71.8%), due to the way the test data was collected: it contains sentences with frequent

near-synonyms, which happen to be the ones Xenon chooses by default in the absence of input

preferences. For TestSample and TestAll the baseline is the same for the French and English

experiments because no nuances were used as input for the baseline experiments.

The experiments summarized in Table 7.4 use Xenon with the automatically produced LKB

of NS. If the LKB of NS were perfect, Xenon would be expected to perform better. I ran the

same experiments on Xenon with a slightly better LKB of NS, produced by using hand-built

solutions for the extraction phase (Section 2.3) but still using the automatic programs for the

customization phase (Section 6.2.2). The results improved only slightly or not at all.

Analysis of the near-synonym choice evaluation results

Tables 7.3 on page 112 and 7.4 on page 118 show that Xenon’s performance is better than the

baseline (no input nuances, HALogen’s defaults caused by the language model). The baselines

are low, with the exception of the baseline for TestAll, which is high (71.8%), due to the way

the test data was collected: it contains sentences with frequent near-synonyms, which happen to

be the ones Xenon chooses by default in the absence of input preferences. For TestSample and

TestAll the baseline is the same for the French and English experiments because no nuances

were used as input for the baseline experiments.

In general, Xenon’s accuracy is much higher that the baseline accuracy (except for TestAllFr).

For DevSimple, Xenon’s accuracy is 80.8 percentage points higher than the baseline. For Test-

Simple the improvement is 78.2 percentage points. Therefore the performance on the test sets

is comparable with the performance on the development set. The improvement in accuracy

is higher in the test cases with sample sentences than in the cases with all sentences from a

fragment of text. This is true for both the English-to-English and the French-to-English ex-
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periments. If we look at the English-to-English cases first, for TestSampleEn the improvement

over the baseline is 61.6 percentage points, while for TestAllEn the improvement is 27.5 per-

centage points. This happens because the tests with all sentences in a fragment tend to contain

only frequent near-synonyms, most of which can be chosen by default in HALogen. The sam-

ple sentences also include less frequent near-synonyms that cannot be chosen by HALogen.

Xenon successfully choses them on the basis of their nuances.

There are two reasons to expect Xenon’s accuracy to be less then 100% in the English-to-

English experiments, even if the input nuances are the nuances of a particular English near-

synonym. The first reason is that there are cases in which two or more near-synonyms get

an equal, maximal score because they do not have nuances that differentiate them (either they

are perfectly interchangeable, or the LKB of NS does not contain enough knowledge) and the

one chosen is not the expected one. The second reason is that sometimes Xenon does not

choose the expected near-synonym even if it is the only one with maximal weight. This may

happen because HALogen makes the final choice by combining the weight received from the

near-synonym choice module with the probabilities from the language model that is part of

HALogen. Frequent words may have high probabilities in the language model. If the expected

near-synonym is very rare, or maybe was not seen at all by the language model, its probability

is very low. When combining the weights with the probabilities, a frequent near-synonym may

win even if it has a lower weight assigned by the near-synonym choice module. In such cases,

the default near-synonym (the most frequent of the cluster) wins. Sometimes such behaviour

is justified, because there may be other constraints that influence HALogen’s choice.

In the French-to-English experiments the performance of Xenon is lower than in the English-

to-English experiments. There are two explanations. First, there is some overlap between the

nuances of the French and the English near-synonyms, but less than one would expect. For

example, the English adjective alcoholic is close in nuances to the French adjective alcoolique,

but they have no nuance in common in Xenon’s knowledge-bases. In this case, the lack of over-

lap is due to the incompleteness of the explanations given by lexicographers in the dictionary
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Experiment Number of cases without Correct Accuracy for
correct defaults and ties non-defaults non-defaults (%)

DevSimple 32 � 5 � 4 = 23 27 � 5 = 22 95.6
TestSimple 43 � 6 � 5 = 32 35 � 6 = 27 84.3
TestSampleFr 26 � 10 � 3 = 13 13 � 10 = 3 23.0
TestSampleEn 26 � 10 � 0 = 16 26 � 10 = 16 100.0
TestAllFr 298 � 214 � 1 = 83 217 � 214 = 3 3.6
TestAllEn 298 � 214 � 0 = 84 296 � 214 = 82 97.6

Table 7.5: Xenon’s accuracy for “non-default” cases.

entries. There could also be cases when there are similar nuances, but they were not correctly

extracted when the LKB of English near-synonyms was acquired.

The second explanation is related to what is considered the “correct” choice of near-synonym.

Sometimes more than one translation of a French near-synonym could be correct, but in this

conservative evaluation, the solution is the near-synonym used in the equivalent English sen-

tence. Therefore, test cases that would be considered correct by a human judge are harshly

penalized. Moreover, the near-synonym choice module always chooses the same translation

for a near-synonym, even if the near-synonym is translated in Hansard in more than one way,

because the context of the near-synonym in the sentence is not considered. (The context is

taken into account only when the collocation module is enabled and a preferred collocation is

detected in the sentences.) For example, the French noun erreur is translated in Hansard some-

times with error, sometimes with mistake. Both have nuances in common with erreur, but

mistake happened to have higher overlap with erreur than error; as a result, the near-synonym

choice module always chooses mistake (except the case when the collocation module is en-

abled and finds a preferred collocation such as administrative error). All the cases when error

was used as translation of erreur in Hansard are penalized as incorrect in the evaluation of the

near-synonym choice module. A few of these cases could be indeed incorrect, but probably

some of them would be considered correct by a human judge.

Another way to look at the performance of Xenon is to measure how many times it makes
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appropriate choices that cannot be made by HALogen, that is, cases that make good use of the

nuances from the LKB of NS. This excludes the test cases with default near-synonyms, in other

words the cases when Xenon makes the right choice due to the language model. It also excludes

the cases of ties when Xenon cannot make the expected choice. Table 7.5 shows accuracies

for these “non-default” cases. For the experiments with only English near-synonyms, Xenon

is performing very well, managing to make correct choices that cannot be made by default.

Accuracies vary from 84.3% to 100%. For the experiments involving both French and English

experiments, Xenon makes only a few correct choices that cannot be made by default. This

is due to the fact that most of the overlap in nuances between French and English synonyms

happens for the near-synonyms that are defaults.

7.7.2 Evaluation of the near-synonym collocation module

For the evaluation of the near-synonym collocation module, I collected sentences from the

BNC that contain preferred collocations from the knowledge-base of near-synonym colloca-

tional behavior. The BNC was preferred over the Hansard for these evaluation experiments

because it is a balanced corpus and contains the collocations of interests, while the Hansard

does not contain some of the collocations and near-synonyms of interest. The sentences were

actually collected from the first half of the BNC (50 million words). The test sets CDevSample

and CDevAll contain collocations for the near-synonyms in Figure 7.17. CTestSample and

CTestAll contain collocations for the English near-synonyms in Figure 7.18. CDevSample and

CTestSample include at most two sentences per collocation (the first two sentence from the

corpus, except the cases when the input construction tool failed to produce valid interlingual

representations), while CDevAll and CTestAll include all the sentences with collocations as

they occurred in the fragment of the corpus (frequent collocations can occur more than once),

except the sentences for which the input construction tool failed. For example, for CDevAll

there were initially 527 sentences, and the input construction tool succeeded on 297 of them.

CDevSample was used for development, and CDevAll, CTestSample, and CTestAll only for
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Figure 7.24: The architecture of tests for evaluating the near-synonym collocation module.

testing (CDevAll was not used for development, but its name reflects the fact that it contains

collocations for the same near-synonyms as the development set CDevSample).

The sentences were parsed and the input construction tool was used to produce interlingual

representations. The near-synonyms in the interlingual representations were replaced with

meta-concepts. Then the interlingual representations were fed into Xenon. No input prefer-

ences were used in this experiment, therefore disabling the near-synonym choice module. The

architecture of these tests in presented in Figure 7.24.

I mention that the test sets may contain collocations for the wrong senses of some near-

synonyms, because, as explained in Section 4.3, the near-synonym collocations knowledge-

base may contain, for a cluster, collocations for a different sense. For example, the collocation

trains run appears in the cluster flow, gush, pour, run, spout, spurt, squirt, stream, when it

should appear only in another cluster. In this case the near-synonym run should not be replaced

with the meta-concept “generic flow v” because it corresponds to a different meta-concept.

The sentences should be eliminated from the test set, but this would involve disambiguation

or manual elimination. Therefore such sentences are still in the test sets. They do not affect

the evaluation results because they are unlikely to produce anti-collocations. This is because

trains run is a frequent bigram, while trains flow is not; Xenon will make the correct choice by

default.

The development set was used to choose the best values of the discount weight Wanti colloc

and Wless pref colloc. In fact Wless pref colloc could be approximated by Wanti colloc, treating less-

preferred collocations as anti-collocations, because the number of less-preferred collocations

is very small in the knowledge-base. Also, less-preferred collocations were almost nonexistent
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HALogen only HALogen + collocs module
Experiment No. Correct Preferred Anti- Correct Preferred Anti-

of NS choice collocs collocs NS choice collocs collocs
cases baseline baseline baseline

CDevSample 105 66 (62%) 92 (88%) 13 (12%) 74 (70%) 105 (100%) 0 (0%)
(dev. set)
CDevAll 297 247 (83%) 271 (91%) 24 (9%) 260 (87%) 293 (99%) 4 (1%)
(test set)
CTestSample 44 26 (59%) 35 (80%) 9 (20%) 33 (75%) 44 (100%) 0 (0%)
(test set)
CTestAll 185 108 (58%) 126 (68%) 59 (32%) 160 (86%) 183 (99%) 2 (1%)
(test set)

Table 7.6: The results of the evaluation of Xenon’s collocations module (the lexical nuances
module is disabled for this experiment).

in the test cases. There was only two less-preferred collocation that occurred in CDevAll, and

they disappeared when increasing the discount weight Wless pref colloc to 0 	 5. As the value of

the discount weight Wanti colloc increased (between 0 	 0 and 1 	 0), the number of anti-collocations

generated decreased; there were no anti-collocations left for Wanti colloc � 0 	 995.

Table 7.6 presents the results of the evaluation experiments. These results refer to the eval-

uation of Xenon with the near-synonym collocations module enabled and the near-synonym

choice module disabled (lexical nuances are ignored in this experiment). The baseline used for

comparison is obtained by running HALogen only without any extension modules (no knowl-

edge of collocations). For each test, the first four columns contain: the number of test cases,

the number of near-synonyms correctly chosen by the baseline system (HALogen only), the

number of preferred collocations, and the number of anti-collocations produced by the base-

line system. The rest of the columns present results obtained by running Xenon with only

the near-synonym collocations module enabled (that is HALogen and the collocations mod-

ule): the number of near-synonyms correctly chosen, the number of preferred collocations

produced, and number of anti-collocations produced. The number of anti-collocations was

successfully reduced to zero for all the tests (except for CDevAll and CTestAll where 1% of

the anti-collocations remained). The sixth column (correct choices or accuracy) differ from the
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seventh column (preferred collocations) in the following way: the correct choice is the near-

synonym used in the original BNC sentence; sometimes the generated sentence can choose a

different near-synonym that is not the expected one but that participate in a preferred collo-

cation (this happens when more than one near-synonym from the same cluster collocates well

with the collocate word). For example, both serious mistake and serious blunder are preferred

collocations, while only one of the near-synonyms mistake and blunder is the correct choice in

a particular context. The number of correct choices is relevant in this experiment only to show

that the collocations module does not have a negative effect on correctness; it even increases

the accuracy9.

Analysis of the collocation module evaluation results

The results in Table 7.6 show that the anti-collocations are almost entirely eliminated. The

number of preferred collocations is 100% minus the number of remaining anti-collocations.

There could be a few less-preferred collocations, but they were almost nonexistent in the test

sets. The test sets consist of input sentences that contained preferred collocations before the

near-synonyms wewre replaced by meta-concpets. Without the collocation module, Xenon

manages to re-generate sentences that contain only from 9% to 30% anti-collocations (the

columns called anti-collocations baseline in the table). This happens because HALogen’s lan-

guage model helps choosing near-synonyms that produce preferred collocations in the rest of

the cases. CTestAll and CDevALL produce more anti-collocations (in the baseline case) than

CTestSample and CDevSample because the former test sets tend to contain frequent collocates,

and if HALogen generates anti-collocations for some of them, this may happen several times.

In other words, the same mistake may be penalized multiple times. This does not happen in the

sample test cases, because the same anti-collocation could appear a maximum of two times.

The test set CDevSample was the only set used for development. The reduction in anti-

collocation is the same on the rest of the test sets. CDevAll was used for testing not develop-

9The accuracy without ties was used here; therefore the numbers are conservative.
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ment, but it contains the same set of near-synonyms as CDevSample, while CTestSample and

CTestAll contains a different set of near-synonyms.

The collocations module ensures that anti-collocations are not generated. The near-synonym

choice module tries to choose the best near-synonyms that matches the input preferences. By

enabling both modules, Xenon chooses the best near-synonyms on the basis of both their lexi-

cal nuances and their collocational properties.

7.7.3 Evaluation of the two modules in interaction

The interaction between the near-synonym collocations module and the synonym choice mod-

ule (called here nuances module) does not have a negative effect on Xenon’s performance;

it even increases it. To prove this, I repeated the experiments from the previous section, but

this time with input preferences (the nuances of the near-synonym from the original sentence).

The architecture of this test is same with the one for the English-to-English experiments from

Section 7.7.1, depicted in Figure 7.22. Table 7.7 shows the number of correct near-synonym

choices (and the percent accuracy in brackets) for the baseline case (no nuances, no colloca-

tion module; that is HALogen by itself), for the collocations module alone (that is HALogen

and the collocations module only; this column is also part of Table 7.6), for the synonym

choice module alone (that is HALogen and the nuances module only), and for Xenon with

both modules enabled. When both modules are enabled there is a slight increase in accuracy

for CDevAll, CTestSample, and CTestAll; the accuracy on CDevSample is the same as using

the near-synonyms module only.

All the evaluation experiments presented in this chapter were run by using HALogen with

the trigram language model in its statistical ranker. The same experiments were repeated for

the bigram model, and the results were almost identical.
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HALogen Xenon
Experiment Number Correct NS Correct NS Correct NS Correct NS

of cases baseline collocations nuances nuances module
module module + collocs module

CDevSample 105 66 (62%) 74 (70%) 98 (93%) 98 (93%)
CDevAll 297 247 (83%) 260 (87%) 282 (95%) 283 (95%)
CTestSample 44 26 (59%) 33 (75%) 41 (93%) 42 (95%)
CTestAll 185 108 (58%) 160 (86%) 169 (91%) 177 (95%)

Table 7.7: Correct near-synonym choices for the baseline system (HALogen only), for HAL-
ogen with each module of Xenon separately, and for HALogen with both modules of Xenon.

7.8 Summary

This chapter presented Xenon, an NLG system capable of choosing the best near-synonym that

satisfies a set of input preferences (lexical nuances). The input preferences could come from

an analysis module, for a different language; in this case the translation into English would

preserve not only the meaning but also nuances of meaning.

Xenon uses HALogen for surface realization. A near-synonym choice module computes,

for each near-synonym, a weight that reflects how well it satisfies the input preferences. HALo-

gen makes the final choice, taking into account these weights as well as other generation con-

straints. The algorithm for computing preference satisfaction scores is adapted from I-Saurus.

The similarity of conceptual configurations is new, because the representation language is dif-

ferent.

A module that uses the knowledge of collocation behaviour of the near-synonyms was in-

tegrated into Xenon. It was inserted inside HALogen: after the symbolic generator produces a

forest representation that encodes all the possible sentences, the collocations module changes

the forest by discounting the weight of possible anti-collocations (detected using tree-like op-

erations); then the forest is passed to HALogen’s statistical ranker that produces the sentences

with highest scores.

Extensive evaluation experiments were described. Test sentences were collected, parsed,
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and analyzed with an input construction tool (for English). In the interlingual representations

produced in this way, a near-synonym was replaced with its meta-concept.

In order to evaluate the near-synonym choice module, a small LKB of French near-synonyms

was manually produced. Then the nuances of the French near-synonyms were used as input

preferences. The evaluation was done on French and English sentences that are translations of

each other. This had two advantages: the interlingual representation could be extracted from the

English sentence instead of the French sentence; and the expected solution is known, the En-

glish near-synonym that was used in the English translation. This evaluation is sometimes too

strict: it penalizes other possibly correct choices. Experimental results for English-to-English

translation are also reported.

Evaluation experiments also targeted the near-synonym collocation module. In this case

the test sets contained English sentences with preferred collocations. The near-synonyms were

again replaced with meta-concepts in the semantic representations. The results were considered

correct if no anti-collocations were generated. A development set was used to determine how

much to discount near-synonyms that could generate anti-collocations, and a test set was used

to make sure the discount weight works in general.

The evaluation of Xenon’s two new modules shows that they behave well, independently

and in interaction.

Future work can investigate the possibility to iteratively adapt the weights assigned by each

module in order to maximize the benefit of their interaction. Another possibility for future

work is to not treat all the preferred collocations as equally good, but to have a finer-grained

classification of collocations. For example, if drink alcohol and open a book are both preferred

collocations, the first one could be considered stronger if drink associates with fewer types of

nouns than open (selectional restrictions).



Chapter 8

Conclusion

In the research that this dissertation presents, I have shown that it is possible to automatically

acquire knowledge of the differences between near-synonyms. I built a lexical knowledge-base

of differences between English near-synonyms;this new lexical resource can be used in natural

language processing applications such as machine translation, natural language generation, and

writing assistance programs. I have shown how it can be used to choose the best near-synonyms

in a natural language generation system.

8.1 Summary of contributions

The contributions of this research have been presented in Section 1.5. I summarize them here,

adding emphasis on evaluation results.

Extraction patterns and knowledge acquisition I developed a method for extracting knowl-

edge from special dictionaries of near-synonym discrimination. The method can potentially be

applied to any dictionary of near-synonym discrimination, for any language for which prepro-

cessing tools, such as part-of-speech taggers and parsers, are available.

I built a new lexical resource, an LKB of differences between English near-synonyms, by

applying the extraction method to Choose the Right Word. The precision and recall of the

129
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extracted knowledge was estimated to be in the range 70–80%. If higher precision and recall

are needed for particular applications, a human could validate each extraction step.

Sense disambiguation I applied a combination of existing word sense disambiguation tech-

niques to a new task: disambiguating the senses of the near-synonyms in a dictionary entry.

The results of the evaluation were good. The problem is simpler that the general task of word

sense disambiguation because the dictionary entry provides a strong context for disambigua-

tion. To produce a standard solution for the evaluation, I collected data annotated by human

judges.

Acquisition of collocational knowledge I automatically acquired knowledge of colloca-

tional behaviour of near-synonyms from free text. To estimate the correctness of the near-

synonym collocation classifier (the three classes being preferred collocations, less-preferred

collocations, and anti-collocations), I built a standard solution from a sample of data anno-

tated by human judges. This knowledge is used in Xenon’s lexical choice process to ensure

that it chooses near-synonyms that generate preferred collocations, and avoids generating anti-

collocations.

Knowledge extraction from MRDs I showed that knowledge of differences between near-

synonyms can also be extracted from MRDs. I enriched the initial LKB of NS with distinctions

extracted from MRDs.

Customization of the lexical knowledge-base of near-synonym differences I showed how

the generic LKB of NS can be customized for use in a particular NLP system. The customiza-

tion of peripheral concepts for Xenon was evaluated on a subset of hand-annotated data.

Utility of the lexical knowledge-base of near-synonym differences I presented Xenon, an

NLG system that uses the LKB of NS to choose the near-synonym that best matches a set of

input preferences. Xenon extends an existing NLG system with two new modules: a module
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that chooses near-synonyms on the basis of their lexical nuances, and a module that chooses

near-synonyms on the basis of their collocations.

To evaluate Xenon, I manually built a small LKB of French near-synonyms. The test set

consisted of English and French sentences that are translations of each other. An interlingual

representation (where a near-synonym is replaced with the core denotation of its cluster) is

fed into Xenon, together with the nuances of the near-synonym from the French sentence.

The generated sentence is considered correct if the chosen English near-synonym is the one

from the original English sentence. This evaluation is conservative, because it penalizes other

possibly-correct translations. I also evaluated the near-synonym collocation module, and the

interaction of the two modules.

8.2 Future work

8.2.1 Extensions

Short-term future work includes overcoming some limitations or extending the current work.

� Investigate the possibility that the extraction algorithm presented in Chapter 2 could

compute confidence factors for each extracted distinction.

� Extend the near-synonym representation with other types of distinctions such as: in-

formation about more general or more specific words, and information about special

meanings some word may have in particular contexts (or domains) (e.g. in legal con-

text).

� Apply the extraction programs presented in Section 2.3, without modification, to the

usage notes from an MRD such as Merriam-Webster Online Dictionary. The distinc-

tions expressed in these usage notes are similar to the explanations from CTRW. These

usage notes appear after the definitions of some words, to explain how they differ from

their near-synonyms.
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� Extend the consistency checking model (Section 5.4) to include denotational distinc-

tions.

� Extend the transformation rules used in Section 6.2.2 for customizing the LKB of NS

for Xenon, to achieve better coverage and correctness.

� Extend the near-synonym collocation module in Section 7.6 to detect all the potential

collocations in a forest representation.

� Design a finer-grained classification of collocations, that does not treat all the pre-

ferred collocations as equally good, but distinguishes them on the basis of selectional

restrictions and other factors.

� Investigate the possibility of iteratively adapting the weights assigned by each of the

two new modules of Xenon (Chapter 7) in order to maximize the benefit of their inter-

action.

� Improve the lexical similarity measure implemented in Xenon.

8.2.2 Directions for future work

I envision several major directions for future work.

Analysis of lexical nuances

A fully-fledged analysis module can be developed. Sense disambiguation needs to be done

when a near-synonym is a member of more then one cluster of near-synonyms, that is it could

be a member of more than one CTRW entry. This problem is not too difficult, because the text

of the CTRW entries provide a strong context for disambiguation. The paragraph or sentence to

be analyzed can be intersected with the text of the candidate dictionary entries. Extensions of

this Lesk-style approach, using tf � idf or semantic relatedness measures, could lead to accurate



8.2. FUTURE WORK 133

disambiguation. More difficult is to model the influence of the context (when a nuance is ac-

tually expressed in a context) and the complex interaction of the lexical nuances. The analysis

module could be used in an MT system that preserves lexical nuances. The analysis module

could be used to determine nuances of text for different purposes. For example, a system could

decide if a text is positive, neutral, or negative in its semantic orientation. Then Xenon can

be used to generate a new text, that has the same meaning as the original text, but a different

semantic orientation. This could be useful, for example, in an application that sends letters

to customers: if the initial text is too negative, it could transform it into a positive one before

sending it to a customer.

Lexical and conceptual associations

The method presented in Chapter 4 can be extended to acquire lexical associations (longer-

distance collocations) of near-synonyms. Words that strongly associate with the near-synonyms

can be useful, especially words that associate with only one of the near-synonyms in the cluster.

These strong associations could possibly provide knowledge about nuances of near-synonyms.

An experiment similar to the one presented in Chapter 4 could look for words that co-occur

in a window of size K, to acquire lexical associations, which would include the collocations

extracted in Section 4.1. The method I used in Section 4.2 needs to be modified so that the

query asked to AltaVista is: x NEAR y (where x and y are the words of interest).

Church et al. [1991] presented associations for the near-synonyms ship and boat. They

suggest that a lexicographer looking at these associations can infer that a boat is generally

smaller than a ship, because they are found in rivers and lakes, while the ships are found in

seas. Also, boats are used for small jobs (e.g., fishing, police, pleasure), whereas ships are

used for serious business (e.g., cargo, war). It could potentially be possible to automatically

infer this kind of knowledge or to validate already acquired knowledge.

Words that do not associate with a near-synonym but associate with all the other near-

synonyms in a cluster can tell us something about its nuances of meaning. For example terrible
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slip is an anti-association, while terrible associates with mistake, blunder, error. This is an

indication that slip is a minor error. By further generalization, the associations could become

conceptual associations. This may allow the automatic learning of denotational distinctions

between near-synonyms from free text. The concepts that are common to all the near-synonyms

in a cluster can be considered part of the core denotation, while the concepts that associate only

with one near-synonym may be peripheral concepts in a denotational distinction.

Cross-lingual lexical nuances

The method presented in Chapter 2 can be used to automatically build a lexical knowledge-

base of near-synonym differences for another language, for example for French. Dictionaries

of synonyms discriminations are available (in paper form). Another resources, such as part-of-

speech taggers and parsers are available. In order to use the French and the English knowledge-

bases in the same system, a study the cross-lingual lexical nuances is needed.

Analysis of types of peripheral nuances

Linguists and lexicographers have looked at differences between particular types of near-

synonyms. For example, Gao [2001] studied the semantic distinctions between Chinese physi-

cal action verbs; one type of distinctive peripheral nuance is the manner in which the movement

is done for each verb. These kind of studies could help to develop a list of the main types of

peripheral nuances (peripheral concepts). In my work, the form that the peripheral nuances can

take is not restricted. This is necessary because the list of peripheral nuances is open-ended. It

may be possible to keep the form unrestricted but add restrictions for the most important type

of peripheral nuances.

Intelligent thesaurus

The acquired lexical knowledge-base of near-synonym differences can be used to develop an

intelligent thesaurus, that assists a writer not only with a list of words that are similar to a given
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word, but also with explanations about the differences in nuances of meaning between the

possible choices. The intelligent thesaurus could order the choices to suit a particular writing

context. The knowledge about the collocational behaviour of near-synonyms can be used in

determining the order: near-synonyms that produce anti-collocations would be ranked lower

than near-synonyms that produce preferred collocations.

Automatic acquisition of near-synonyms

This work considered as near-synonyms the words given by the lexicographers in CTRW. Other

dictionaries of synonym discrimination may have slightly different views. Merging clusters

from different dictionaries is possible. Also, near-synonym clusters can be acquired from free

text. This involves distinguishing near-synonyms from the pool of related words. As mentioned

in Section 1.4.2, Lin et al. [2003] acquired words that are related by contextual similarity, and

then filtered out the antonyms. Words that are related by relations other then near-synonymy

could also be filtered out. One way to do this could be to collect signatures for each potential

near-synonym, composed of words that associate with it in many contexts. For two candidate

words, if one signature is contained in the other, the words are probably in a IS-A relation. If the

signatures overlap totally, it is a true near-synonymy relation. If the signatures overlap partially,

it is a different kind of relation. The acquisition of more near-synonyms, followed by the

acquisition of more distinctions, is needed to increase the coverage of our lexical knowledge-

base of near-synonym differences.
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Appendix A

List of Abbreviations

CTRW Choose the Right Word [Hayakawa, 1994].

DL Decision List.

LKB Lexical Knowledge-Base.

LKB of NS Lexical Knowledge-Base of Near-Synonym Differences.

MRD Machine-Readable Dictionary.

MT Machine Translation.

NLG Natural Language Generation.

NLP Natural Language Processing.

WSD Word Sense Disambiguation.
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Appendix B

Example of Generic LKB of NS for the

Near-Synonyms of error

Cluster: mistake=blooper=blunder=boner=contretemps=error=faux pas=goof=slip=solecism=

these nouns denote something done, said, or believed incorrectly or improperly

subj: these nouns
freq: usually
strength: medium
class: Denotation
periph: something/NN done/VBN ,/, said/VBD ,/, or/CC believed/VBD incorrectly/RB or/CC improp-
erly/RB

near syn(mistake) and near syn(error) are the most common and general of this group

in many contexts they are interchangeable, but near syn(error) often implies deviation from a stan-
dard or model, whereas near syn(mistake) is preferred in the common situations of everyday life

subj: error
freq: usually
strength: medium
class: Implication
periph: deviation/NN from/IN a/DT standard/NN or/CC model/NN whereas/IN NS mistake/NN is/VBZ
preferred/VBN in/IN the/DT common/JJ situations/NNS of/IN everyday/JJ life/NN

near syn(error) is also used in a theological sense to mean sin, since sin is perceived as deviation from
the moral standards or theological truths established by religion

139
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subj: error
freq: usually
strength: medium
class: Denotation
periph: sin/NN ,/, since/IN sin/NN is/VBZ perceived/VBN as/IN deviation/NN from/IN the/DT moral/JJ
standards/NNS or/CC theological/JJ truths/NNS established/VBN by/IN religion/NN

a near syn(blunder) is a blatant near syn(error), usually one involving behavior or judgment, and im-
plying an ignorant or uninformed assessment of a situation

subj: blunder
freq: usually
strength: medium
class: Implication
periph: an/DT ignorant/JJ or/CC uninformed/JJ assessment/NN of/IN a/DT situation/NN

near syn(slip) and near syn(faux pas) (literally, false step) are minor near syn(mistakes)

near syn(slip) emphasizes the accidental rather than ignorant character of a near syn(mistake) and is
often used to mean the careless divulging of secret or private information

subj: slip
freq: usually
strength: high
class: Denotation
periph: the/DT accidental/JJ rather/RB than/IN ignorant/JJ character/NN of/IN a/DT NS mistake/NN

subj: slip
freq: usually
strength: medium
class: Denotation
periph: the/DT careless/JJ divulging/VBG of/IN secret/JJ or/CC private/JJ information/NN

a near syn(faux pas) is an embarrassing breach of etiquette

a near syn(solecism) denotes any near syn(error), but especially a breach of good manners, grammar,
or usage

subj: solecism
freq: usually
strength: medium
class: Denotation
periph: any/DT NS error/NN ,/, but/CC especially/RB a/DT breach/NN of/IN good/JJ manners/NNS ,/,
grammar/NN ,/, or/CC usage/NN
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near syn(blooper), near syn(boner), and near syn(goof) all have a somewhat humorous tone and a dis-
tinctively american flavor

americans apparently feel that it a near syn(mistake) is outrageous enough it is funny, and this feel-
ing is reflected in the variety of nouns available to describe such near syn(mistakes)

near syn(blooper), an informal term, is usually applied to particularly infelicitous mix-ups of speech,
such as ”rit of fellus jage” for ”fit of jealous rage”

subj: blooper
freq: usually
strength: medium
class: Denotation
periph: to/TO particularly/RB infelicitous/JJ mix-ups/NNS of/IN speech/NN ,/, such/JJ as/IN rit/NN
of/IN fellus/JJ jage/NN for/IN fit/NN of/IN jealous/JJ rage/NN

subj: blooper
freq: usually
strength: low
class: Formality

a near syn(boner) is any egregious and mindless near syn(mistake)

the slang noun near syn(goof) denotes an indefensible near syn(error) honestly admitted, which con-
tains in its admission a covert plea that the near syn(goof) be regarded with indulgent forgiveness

subj: goof
freq: usually
strength: medium
class: Denotation
periph: an/DT indefensible/JJ NS error/NN honestly/RB admitted/VBN ,/, which/WDT contains/VBZ
in/IN its/PRP$ admission/NN a/DT covert/JJ plea/NN that/IN the/DT NS goof/NN be/VB regarded/VBN
with/IN indulgent/JJ forgiveness/NN

subj: goof
freq: usually
strength: medium
class: Formality

a near syn(contretemps), literally ”counter to or against the time,” that is, at the wrong time, refers
to an embarrassing or awkward occurrence

subj: contretemps
freq: usually
strength: medium
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class: Denotation
periph: an/DT embarrassing/JJ or/CC awkward/JJ occurrence/NN

the young woman who puts off an admirer by saying she is quite ill and then sees him that very night at
a party learns the meaning of near syn(contretemps) in a way she is not likely to forget

From MQ

subj: mistake
freq: usually
strength: medium
class: Denotation
periph: an/dt error/nn in/in action/nn opinion/nn or/cc judgment/nn

subj: blooper
freq: usually
strength: medium
class: Denotation
periph: a/dt slip/nn of/in the/dt tongue/nn especially/rb of/in a/dt broadcaster/nn resulting/vbg in/in a/dt
humorous/jj or/cc indecorous/jj misreading/nn

subj: blunder
freq: usually
strength: medium
class: Denotation
periph: a/dt gross/jj or/cc stupid/jj mistake/nn

subj: boner
freq: usually
strength: medium
class: Denotation
periph: a/dt mistake/nn

subj: error
freq: usually
strength: medium
class: Denotation
periph: a/dt mistake/nn as/in in/in action/nn speech/nn etc/fw

subj: error
freq: usually
strength: medium
class: Denotation
periph: belief/nn in/in something/nn untrue/jj the/dt holding/nn of/in mistaken/vbn opinions/nns
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subj: faux pas
freq: usually
strength: medium
class: Denotation
periph: a/dt slip/nn in/in manners/nns

From GI

subj: mistake
freq: usually
strength: medium
class: Favourable

subj: blunder
freq: usually
strength: medium
class: Favourable

subj: boner
freq: usually
strength: medium
class: Pejorative

subj: contretemps
freq: usually
strength: medium
class: Favourable

subj: error
freq: usually
strength: medium
class: Favourable

subj: faux pas
freq: usually
strength: medium
class: Pejorative

subj: goof
freq: usually
strength: medium
class: Favourable

subj: slip
freq: usually
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strength: medium
class: Favourable

subj: solecism
freq: usually
strength: medium
class: Favourable
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Example of Customized English LKB

Entry for the Near-Synonyms of error
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Example of French LKB Entry for the

Near-Synonyms of erreur
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Appendix E

Implementation Notes

Most of the programs implemented for this thesis were written in Perl. An exception is Chapter

7, where the main programs were implemented in Lisp and CLOS (object-oriented Common

Lisp). Off-the-shelf tools were used when possible. Following is a list of the main programs

and supporting tools developed for each chapter.

In Chapter 2, Perl programs were implemented for the following tasks:

� preprocessing the CTRW dictionary (XML markup, sentence segmentation).

� preparing data for the decision-lists algorithm.

� the decision-lists algorithm.

� extracting knowledge from CTRW (including comparisons and coreference resolu-
tion).

� extracting random clusters of near-synonyms from CTRW to be used in evaluation.

� evaluating the accuracy of the extraction results.

Existing tools used in Chapter 2 were: Abney’s chunker1, Collins’s parser2, and Charniak’s

parser3 (also used in Chapter 7).

In Chapter 3, Perl programs were developed for:

1http://gross.sfs.nphil.uni-tuebingen.de:8080/release/cass.html
2http://www.ai.mit.edu/people/mcollins/code.html
3ftp://ftp.cs.brown.edu/pub/nlparser/
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� computing indicators for all the senses of the near-synonyms.

� computing context vectors (including extracting co-occurrence counts from the BNC
for the dimension and feature words).

� adapting Corelex for WordNet1.7.

� computing Resnik’s coefficient and Resnik’s similarity measure.

� preparing data for the human judges.

� producing a standard solution and computing the inter-judge agreement and kappa
statistic.

� evaluating the accuracy of the automatic sense disambiguation.

Existing tools used in Chapter 3 were: the QueryData4 interface to WordNet and the C4.5

decision tree learning tool5.

In Chapter 4, Perl programs were needed for:

� the mutual information filter using the Web as a corpus.

� the differential t-test classifier (into preferred collocations, less-preferred collocations,
and anti-collocations).

� preparing data for the human judges to annotate.

� building standard solutions for the MI filter and for the classifier, and computing the
inter-judge agreement and kappa statistic.

� evaluating the accuracy of the results.

The Bigram Statistics Package6 was used in Chapter 4 to gather co-occurrence counts from

the BNC and to rank collocations according to various measures. C4.5 was used for learning

a decision tree for the differential t-test classifier. The WWW-Search package7 was used to

compute Web counts through the AltaVista search engine.

In Chapter 5, the Perl programs were implemented by the research assistant Olga Feiguina

(except for the part dealing with WordNet) for the following tasks:

� extracting definitions of near-synonyms from the Macquarie Dictionary.

4http://www.ai.mit.edu/ � jrennie/WordNet/
5http://www.cse.unsw.edu.au/ � quinlan/
6http://www.d.umn.edu/ � tpederse/code.html
7http://www.perl.com/CPAN/authors/id/M/MT/MTHURN/
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� extracting denotational distinctions from the definition.

� extracting attitudinal distinctions from the General Inquirer.

� extracting stylistic distinctions (formality) from WordNet.

� merging parts of of the LKB of NS acquired from different sources.

� checking the consistency of the final LKB of NS, and resolving conflicts.

Chapter 6 needed Perl programs for the following tasks:

� transforming the peripheral strings into configurations of concepts.

� computing the coverage and the correctness of the transformation rules (evaluation).

� mapping WordNet senses to Sensus concepts.

In Chapter 7, Irene Langkilde-Geary’s HALogen8 (implemented in Lisp, except the statis-

tical ranker which is implemented in C) was extended with the Lisp programs for:

� loading the LKB of NS (Lisp and CLOS code adapted from I-Saurus).

� computing preference satisfaction scores (Lisp and CLOS code adapted from I-Saurus).

� integrating the near-synonym choice module with HALogen.

� computing similarity of conceptual configurations and lexical similarity.

� lexical analysis of nuances for English and French near-synonyms.

and Perl programs were developed for:

� the near-synonym collocation module, which performs operations on the forest repre-
sentation.

� evaluating the accuracy of the near-synonym choice module and of the near-synonym
collocation module.

� extracting sentences from Hansard that contain English and French near-synonyms.

� extracting sentences from the BNC that contain collocations of near-synonyms.

� scripts to automate the production of interlingual representations (batch mode) by us-
ing the input construction tool (this tool was implemented in Lisp and Perl by Irene
Langkilde-Geary).

8http://www.isi.edu/licensed-sw/halogen/
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