
Near-Synonym Choice in Natural Language Generation

Diana Zaiu Inkpen and Graeme Hirst
Department of Computer Science

University of Toronto
Toronto, ON, Canada, M5S 3GS�

dianaz,gh � @cs.toronto.edu

Abstract
We present Xenon, a natural language genera-
tion system capable of distinguishing between near-
synonyms. It integrates a near-synonym choice mod-
ule with an existing sentence realization module.
We evaluate Xenon using English and French near-
synonyms.

1 Introduction

Natural language generation systems need to choose
between near-synonyms – words that have the same
meaning, but differ in lexical nuances. Choosing the
wrong word can convey unwanted connotations, im-
plications, or attitudes. The choice between near-
synonyms such as error, mistake, blunder, and slip
can be made only if knowledge about their differences
is available.

In previous work (Inkpen & Hirst 01) we automati-
cally built a lexical knowledge base of near-synonym
differences (LKB of NS). The main source of knowl-
edge was a special dictionary of near-synonym dis-
crimination, Choose the Right Word (Hayakawa 94).
The LKB of NS was later enriched (Inkpen 03) with
information extracted from other machine-readable
dictionaries, especially the Macquarie dictionary.

In this paper we describe Xenon, a natural lan-
guage generation system that uses the knowledge
of near-synonyms. Xenon integrates a new near-
synonym choice module with the sentence realiza-
tion system named HALogen1 (Langkilde & Knight
98), (Langkilde-Geary 02b). HALogen is a broad-
coverage general-purpose natural language sentence
generation system that combines symbolic rules with
linguistic information gathered statistically from large
text corpora (stored in a language model). For a given
input, it generates all the possible English sentences
and it ranks them according to the language model, in
order to choose the most likely sentence as output.

Figure 1 presents Xenon’s architecture. The input
is a semantic representation and a set of preferences
to be satisfied. A concrete example of input is shown

1http://www.isi.edu/licensed-sw/halogen/

in Figure 2. The final output is a set of sentences and
their scores. The first sentence (the highest-ranked) is
considered to be the solution.

2 Meta-concepts

The semantic representation that is one of Xenon’s
inputs is represented, like the input to HALogen, in
an interlingua developed at ISI (Information Science
Institute, University of Southern California). As de-
scribed in (Langkilde-Geary 02b), this language con-
tains a specified set of 40 roles, and the fillers of the
roles can be words, concepts from Sensus (Knight &
Luk 94), or complex representations.

Xenon extends the representation language by
adding meta-concepts. The meta-concepts corre-
spond to the core denotation of the clusters of near-
synonyms, which is a disjunction (an OR) of all the
senses of the near-synonyms of the cluster.

We use distinct names for the various meta-
concepts. The name of a meta-concept is formed by
the prefix “generic”, followed by the name of the first
near-synonym in the cluster, followed by the part-
of-speech. For example, if the cluster is lie, false-
hood, fib, prevarication, rationalization, untruth, the
name of the cluster is “generic lie n”. If there are
cases where there could still be conflicts after dif-
ferentiating by part-of-speech, the name of the sec-
ond near-synonym is used. For example, “stop” is
the name of two verb clusters; therefore, the two
clusters are renamed: “generic stop arrest v” and
“generic stop cease v”.

text

HALogen
realization
Sentence

English

Sensus

Lexical knowledge-base of near-synonyms

Interlingual

choice module
Near-synonym

representation

Preferences

Figure 1: The architecture of Xenon.

Input: (A9 / tell :agent (V9 / boy) :object (O9 / generic lie n)
Input preferences:

((DISFAVOUR :AGENT)
(LOW FORMALITY)
(DENOTE (C1 / TRIVIAL)))

Output:

The boy told fibs. � 40.8177

Boy told fibs. � 42.3818

Boys told fibs. � 42.7857

Figure 2: Example of input and output of Xenon.

3 Near-synonym choice

Near-synonym choice involves two steps: expand-
ing the meta-concepts, and choosing the best near-
synonym for each cluster according to the prefer-
ences. We implemented this in a straightforward way:
the near-synonym choice module computes a satisfac-
tion score for each near-synonym; then satisfaction
scores become weights; in the end, HALogen makes
the final choice, by combining these weights with the
probabilities from its language model. For the exam-
ple in Figure 2, the expanded representation, which
is input to HALogen, is presented in Figure 3. The
near-synonym choice module gives higher weight to
fib because it satisfies the preferences better than the
other near-synonyms in the same cluster. Section 4
will explain the algorithm for computing the weights.

4 Preferences

The preferences that are input to Xenon could be
given by the user, or they could come from an anal-
ysis module if Xenon is used in a machine translation
system (corresponding to nuances of near-synonyms
in a different language). The formalism for express-
ing preferences and the preference satisfaction mech-
anism is adapted from the prototype system I-Saurus
(Edmonds & Hirst 02).

The preferences, as well as the distinctions between
near-synonyms stored in the LKB of NS, are of three
types. Stylistic preferences express a certain formal-
ity, force, or concreteness level and have the form:
(strength stylistic-feature), for example (low formal-
ity). Attitudinal preferences express a favorable, neu-
tral, or pejorative attitude and have the form: (stance
entity), where stance takes the values favour, neutral,
disfavour. An example is: (disfavour :agent). Denota-
tional preferences connote a particular concept or con-
figuration of concepts and have the form: (indirect-
ness peripheral-concept), where indirectness takes the
values suggest, imply, denote. An example is: (imply
(C / assessment :MOD (OR ignorant uninformed))).

The peripheral concepts are expressed in the ISI inter-
lingua.

In Xenon, preferences are transformed internally
into pseudo-distinctions that have the same form
as the corresponding type of distinctions. The
distinctions correspond to a particular near-synonym,
and also have frequencies – except the stylistic
distinctions. In this way preferences can be directly
compared to distinctions. The pseudo-distinctions
corresponding to the previous examples of prefer-
ences are:

(– low formality)
(– always high pejorative :agent)
(– always medium implication (C / assessment

:MOD (OR ignorant uninformed))).

For each near-synonym w in a cluster, a weight is
computed by summing the degree to which the near-
synonym satisfies each preference from the set P of
input preferences:

Weight
�
w� P ��� ∑

p � P

Sat
�
p � w ���

The weights are then transformed through an ex-
ponential function that normalizes them to be in the
interval 	 0 � 1
 . The exponentials function that we used
is:

f
�
x ��� exk

e � 1

The main reason this function is exponential is that
the differences between final weights of the near-
synonyms from a cluster need to be numbers that are
comparable with the differences of probabilities from
HALogen’s language model. The method for choos-
ing the optimal value of k is presented in Section 7.

For a given preference p P, the degree to which
it is satisfied by w is reduced to computing the simi-
larity between each of w’s distinctions and a pseudo-
distinction d

�
p � generated from p. The maximum

value over i is taken:

Sat
�
p � w ��� maxi Sim

�
d
�
p ��� di

�
w �����

where di
�
w � is the i-th distinction of w. We explain

the computation of Sim in the next section.

5 Similarity of distinctions

The similarity of two distinctions, or of a distinction
and a preference (transformed into a distinction), is
computed similarly to (Edmonds 99):

(A9 / tell :agent (V9 / boy)

:object (OR

(e1 / (:CAT NN :LEX “lie”) :WEIGHT 1.0e � 30)

(e2 / (:CAT NN :LEX “falsehood”) :WEIGHT 6.93e � 8)

(e3 / (:CAT NN :LEX ”fib”) :WEIGHT 1.0)

(e4 / (:CAT NN :LEX “prevarication”) :WEIGHT 1e � 30)

(e5 / (:CAT NN :LEX “rationalization”) :WEIGHT 1e � 30)

(e6 / (:CAT NN :LEX “untruth”) :WEIGHT 1.38e � 7))

Figure 3: The interlingual representation from Fig. 2
after expansion by the near-synonym choice module.

Sim
�
d1 � d2 � �

���� Simden
�
d1 � d2 �

Simatt
�
d1 � d2 �

Simsty
�
d1 � d2 �

(1)

If the two distinctions are of different type, their
similarity is zero.

Distinctions are formed out of several components,
represented as symbolic values on certain dimensions.
In order to compute a numeric score, each symbolic
value has to be mapped into a numeric one. The nu-
meric values (see Table 1) are not as important as their
relative difference, since all the similarity scores are
normalized to the interval 	 0 � 1
 .

For stylistic distinctions, the degree of similarity
is one minus the absolute value of the difference
between the style values.

Simsty
�
d1 � d2 ��� 1 � 0 ��� Style

�
d2 � � Style

�
d1 ���

For attitudinal distinctions, similarity depends on
the frequencies and the attitudes. The similarity of
two frequencies is one minus their absolute differ-
ences. For the attitudes, their strength is taken into
account.

Simatt
�
d1 � d2 � � Sf req

�
d1 � d2 �	� Satt

�
d1 � d2 �

Sf req
�
d1 � d2 � � 1 � 0 �
�Freq

�
d2 � � Freq

�
d1 ���

Satt
�
d1 � d2 � � 1 � 0 �
�Att

�
d2 � � Att

�
d1 ����� 6

Att
�
d � � Attitude

�
d �� sgn

�
Attitude

�
d ����� Strength

�
d �

The similarity of two denotational distinctions is
the product of the similarities of their three com-
ponents: frequency, indirectness, and conceptual
configuration. The first two scores are calculated as
for the attitudinal distinctions. The computation of
conceptual similarity (Scon) will be discussed in the
next section.

Simden
�
d1 � d2 � � Sf req

�
d1 � d2 ��� Slat

�
d1 � d2 ��� Scon

�
d1 � d2 �

Slat
�
d1 � d2 ��� 1 � 0 �
� Lat

�
d2 � � Lat

�
d1 ����� 8

Lat
�
d ��� Indirectness

�
d �� Strength

�
d �

Examples of computing the similarity between dis-
tinctions are presented in Figure 4.

6 Similarity of conceptual configurations

Peripheral concepts in Xenon are complex configura-
tions of concepts. The conceptual similarity function
Scon is in fact the similarity between two interlingual
representations t1 and t2. Examples of computing the
similarity of conceptual configurations are presented
in Figure 5. Equation 2 computes similarity by simul-
taneously traversing the two representations.

Scon
�
t1 � t2 � �

���� S
�
concept

�
t1 ��� concept

�
t2 ��� if N1 � 2 � 0

αS
�
concept

�
t1 ��� concept

�
t2 ����

β 1
N1 � 2 ∑s1 � s2

Scon
�
s1 � s2 � otherwise

(2)
In equation 2, concept

�
C � , where C is a interlingual

representation, is the main concept (or word) in the
representation. The first line corresponds to the sit-
uation when there are only main concepts, no roles.
The second line deals with the case when there are
roles. There could be some roles shared by both repre-
sentations, and there could be roles appearing only in
one of them. N1 � 2 is the sum of the number of shared
roles and the number of roles unique to each of the
representations (at the given level in the interlingua).
s1 and s2 are the values of any shared role. α and β
are weighting factors. If α � β � 0 � 5, the whole sub-
structure is weighted equally to the main concepts.

The similarity function S deals with the case in
which the main concepts are atomic (words or ba-
sic concepts) or when they are an OR or AND of
complex concepts. If both are disjunctions, C1 ��
OR C11 ����� C1n � , and C2 � �

OR C21 ����� C2m � , then
S
�
C1 � C2 � � maxi � j Scon

�
C1i � C2 j ��� The components

could be atomic or they could be complex concepts;
that’s why the Scon function is called recursively. If
one of them is atomic, it can be viewed as a disjunc-
tion with one element, so that the previous formula
can be used. If both are conjunctions, then the formula
computes the maximum of all possible sums of pair-
wise combinations. If C1 � �

AND C11 C12 ����� C1n � ,
and C2 �

�
AND C21 C22 ����� C2m � , then the longest con-

junction is taken. Let’s say n � m (if not the pro-
cedure is similar). All the permutations of the com-
ponents of C1 are considered, and paired with com-
ponents of C2. If some components of C1 remain
without pair, they are paired with null (and the sim-
ilarity between an atom and null is zero). Then the

Frequency Indirectness Attitude Strength Style
never 0.00 suggestion 2 pejorative � 2 low � 1 low 0.0
seldom 0.25 implication 5 neutral 0 medium 0 medium 0.5
sometimes 0.50 denotation 8 favorable 2 high 1 high 1.0
usually 0.75
always 1.00

Table 1: The functions that map symbolic values to numeric values.

if d1 �
�
lex1 low formality � and d2 �

�
lex2 medium formality � then Sim

�
d1 � d2 ��� 1 ��� 0 � 5 � 0 � � 0 � 5

if d1 �
�
lex1 always high favourable :agent � and d2 �

�
lex2 usually medium pejorative :agent � then

Sim
�
d1 � d2 � � Sf req

�
d1 � d2 �	� Satt

�
d1 � d2 � �

�
1 ��� 0 � 75 � 1 � �	� � 1 ��� � � 2 � 0 � � �

2 1 ��� ��� 6 � 0 � 125

if d1 �
�
lex1 always medium implication P1 � and d2 �

�
lex2 seldom medium suggestion P1 � then

Sim
�
d1 � d2 � � Sf req

�
d1 � d2 �	� Slat

�
d1 � d2 �	� Scon

�
d1 � d2 � �

�
1 ��� 0 � 25 � 1 � �	� � 1 � �

2 0 5 0 � � 8 �	� 1 � 0 � 03

Figure 4: Examples of computing the similarity of lexical distinctions.

if C1 = (C1 / departure :MOD physical and :PRE-MOD unusual) and C2 = (C2 / departure :MOD physical)
then Scon

�
C1 � C2 � � 0 � 5 � 1 0 � 5 � 1 � 2 � � 0 � 5 � 1 ��� 0 � 625

if C1 = (C1 / person :AGENT OF (A / drinks :MOD frequently) and C2 = (C2 / person :AGENT OF (A /
drinks)) then Scon

�
C1 � C2 ��� 0 � 5 � 1 0 � 5 � 1 � 1 � � 0 � 5 0 � 5 � 1 � 2 � 1 � � 0 � 875

if C1 = (C1 / occurrence :MOD (OR embarrassing awkward)) and C2 = (C2 / occurrence :MOD awkward)
then Scon

�
C1 � C2 � � 0 � 5 � 1 0 � 5 � 1 � 1 � 1 � 1 � 0

if C1 = (C1 / (AND spirit purpose) :MOD hostile) and C2 = (C2 / purpose :MOD hostile)
then Scon

�
C1 � C2 � � 0 � 5 � � 1 0 ��� 2 0 � 5 � 1 � 0 � 75

Figure 5: Examples of computing the similarity of conceptual configurations.

Experiment No. Correct Correct Ties Base- Accuracy Accuracy Acc.
of by line (no ties) (total) nd

cases default % % % %

Test1 Simple sentences (dev. set) 32 5 27 4 15.6 84.3 96.8 95.6
Test2 Simple sentences (test set) 43 6 35 5 13.9 81.3 93.0 84.3
Test3 French – English (test set) 14 5 7 2 35.7 50.0 64.2 28.5
Test3 English – English (test set) 14 5 14 0 35.7 100 100 100
Test4 French – English (test set) 50 37 39 0 76.0 78.0 78.0 15.3
Test4 English – English (test set) 50 37 49 0 76.0 98.0 98.0 92.3

Table 2: Xenon evaluation experiments and their results.

similarity of all pairs in a permutation is summed
and divided by the number of pairs, and the maxi-
mum (from all permutations) is the resulting score:
S
�
C1 � C2 � � maxp � perms

1
n

�
∑m

k � 1 Scon
�
C1pk � C2k �

∑n
k � m

�
1 Scon

�
C1k � null ��� .

Here is a simple example to illustrate this proce-
dure: Scon

���
ANDabc � � ANDba ��� � 1

3 max
�
Scon

�
a � b � Scon

�
b � a � Scon

�
c � null ��� Scon

�
a � a � Scon

�
b � b �

Scon
�
c � null ����� 1

3 max
�
0 0 0 � 1 1 0 � � 0 � 66

The similarity of two words or two atomic concepts
is computed from their positions in the ontology of the
system. A simple approach would be this: the simi-
larity is 1 if they are identical, 0 otherwise. But we
have to factor in the similarity of two words or con-
cepts that are not identical but closely related in the
ontology. We implemented a measure of similarity
for all the words, using the Sensus ontology2 . Two
concepts are similar if there is a link of length one
or two between them in Sensus. The degree of sim-
ilarity is discounted by the length of the link. The
similarity between a word and a concept is given by
the maximum of the similarities between all the con-
cepts (senses) of the word and the given concept. The
similarity of two words is given by the maximum sim-
ilarity between pairs of concepts corresponding to the
words. Before looking at the concepts associated with
the words, stemming is used to see if the two words
share the same stem, in which case the similarity is 1.
This enables similarity across parts-of-speech.

7 Evaluation of Xenon

The main components of Xenon are the near-synonym
choice module and HALogen. An evaluation of
HALogen was already presented by (Langkilde-
Geary 02a). Here, we evaluate the near-synonym
choice module and its interaction with HALogen.

We conducted two kinds of evaluation experiments.
The first type of experiment (Test1 and Test2) feeds
Xenon with a suite of inputs: for each test case, an
interlingual representation and a set of nuances. The
set of nuances correspond to a given near-synonym. A
graphic depiction of these two tests is shown in Fig-
ure 6. The sentence generated by Xenon is considered
correct if the expected near-synonym was chosen. The
sentences used in Test1 and Test2 are very simple;
therefore, the interlingual representations were eas-

2We could have used an off-the-shelf semantic similar-
ity package, such as the one provided by Ted Pedersen
(http://www.d.umn.edu/ � tpederse/tools.html) or the one de-
scribed in (Budanitsky & Hirst 01), but it contains similarity mea-
sures mainly for nouns (on the basis of WordNet’s noun hierar-
chy), and it would be time-consuming to call it from Xenon.

Analyzer
Prefs

X
 e n o n

sentence
English
Simple

representation
Interlingual

of lexical
nuances
(English)

English

sentence

Figure 6: The architecture of Test1 and Test2.

ily built by hand. In the interlingual representation,
the near-synonym was replaced with the correspond-
ing meta-concept.

The analyzer of lexical nuances for English sim-
ply extracts the distinctions associated with a near-
synonym in the LKB of NS. Ambiguities are avoided
because the near-synonyms in the test sets are mem-
bers in only one of the clusters used in the evaluation.

In Test1, we used 32 near-synonyms that are mem-
bers of the 5 clusters presented in Figure 9. Test1
was used as a development set, to choose the expo-
nent k for the function that translated the scale of the
weights. As the value of k increased (staring at 1) the
accuracy on the development set increased. The fi-
nal value chosen for k was 15. In Test2, we used 43
near-synonyms selected from 6 other clusters, namely
the English near-synonyms from Figure 10. Test2 was
used only for testing, not for development.

The second type of experiment (Test3 and Test4)
is based on machine translation. These experi-
ments measure how successful the translation of near-
synonyms from French into English and from En-
glish into English is. The machine translation exper-
iments were done on French and English sentences
that are translations of each other, extracted from the
Canadian Hansard (1.3 million pairs of aligned sen-
tences from the official records of the 36th Cana-
dian Parliament)3. Xenon should generate an English
sentence that contains an English near-synonym that
best matches the nuances of the initial French near-
synonym. If Xenon chooses exactly the English near-
synonym used in the parallel text, this means that
Xenon’s behaviour was correct. This is a conservative
evaluation measure, because there are cases in which
more than one translation is correct.

The French–English translation experiments take
French sentences (that contain near-synonyms of in-
terest) and their equivalent English translations. We
can assume that the interlingual representation is the
same for the two sentences. Therefore, we can use the
interlingual representation for the English sentence

3http://www.isi.edu/natural-language/download/hansard/

Parser

X
 e n o n

tool
construction

InputEnglish
sentence

sentence
French

(French)
nuances
of lexical
Analyzer Prefs

IL

sentence
English

Figure 7: The architecture of Test3 and Test4, the
French-to-English part.

Parser tool
construction

Input

sentence

(English)
nuances

Analyzer
of lexical

Prefs

X
 e n o n

IL

sentence
English

English

Figure 8: The architecture of Test3 and Test4, the
English-to-English part.

to approximate the interlingual representation for the
French sentence. As depicted in Figure 7, the inter-
lingual representation is produced using an existing
tool that was previously used by (Langkilde-Geary
02a) in HALogen’s evaluation experiments. In or-
der to use this input construction tool, we parsed the
English sentences with Charniak’s parser (Charniak
00), and we annotated the subjects in the parse trees.
In the interlingual representation produced by the in-
put construction tool we replaced the near-synonym
with the corresponding meta-concept. For Test4, the
baseline is much higher because of the way the test
data was collected. The analyzer of French nuances
from Figure 7 needs to extract nuances from a LKB of
French synonyms. We created by hand a LKB for six
clusters of French near-synonyms (those from Figure
10), from two paper dictionaries of French synonyms,
Bénac (Bénac 56) and Bailly (Bailly 73).

A similar experiment, translating not from French
into English but from English into English via the
interlingual representation, is useful for evaluation
purposes. An English sentence containing a near-
synonym is processed to obtain its semantic repre-
sentation (where the near-synonym is replaced with
a meta-concept), and the lexical nuances of the near-
synonym are fed as preferences to Xenon. Ideally, the
same near-synonym as in the original sentence would
be chosen by Xenon. The percentage of times this

happens is an evaluation measure. The architecture of
these experiments is presented in Figure 8.

Test4 is similar to Test3, but instead of having one
sentence for a near-synonym, it contains all the sen-
tences in a given fragment of Hansard (4 Megabytes
of House debates) in which words of interest oc-
curred. Therefore, Test4 has the advantage of contain-
ing naturally occurring text, not artificially selected
sentences. It has the disadvantage of lacking those
near-synonyms in the test set that are less frequent.
The English and French near-synonyms used in Test3
and Test4 are the ones presented in Table 10.

In order to measure the baseline (the performance
that can be achieved without using the LKB of NS),
we ran Xenon on all the test cases, but this time
with no input preferences. Some of the choices could
be correct solely because the expected near-synonym
happens to be the default one.

The results of the evaluation experiments are pre-
sented in Table 2. For each test, the second column
shows the number of test cases. The column named
“Correct” shows the number of answers considered
correct. The column named “Ties” shows the num-
ber of cases of ties, that is, cases when the expected
near-synonym had weight 1.0, but there were other
near-synonyms that also had weight 1.0, because they
happen to have the same nuances in the LKB of NS.
In such cases, Xenon cannot be expected to make
the correct choice. More precisely, the other choices
are equally correct, at least as far as Xenon’s LKB is
concerned. Therefore, the accuracies computed with-
out considering these cases (the seventh column) are
underestimates of the real accuracy of Xenon. The
eighth column presents accuracies while taking the
ties into account, defined as the number of correct an-
swers divided by the difference between the number
of cases and the number of ties.

There are two reasons to expect Xenon’s accuracy
to be less then 100%. The first is that there are cases
in which two or more near-synonyms get an equal,
maximal score because they do not have any nuances
that differentiate them (either they are perfectly in-
terchangeable, or the LKB of NS does not contain
enough knowledge) and the one chosen is not the
expected one. The second reason is that sometimes
Xenon does not choose the expected near-synonym
even if it is the only one with maximal weight. This
may happen because HALogen makes the final choice
by combining the weight received from the near-
synonym choice module with the probabilities from
its language model. Frequent words may have high

English (n.): benefit, advantage, favor, gain, profit
English (v.): flow, gush, pour, run, spout, spurt, squirt, stream
English (adj.): deficient, inadequate, poor, unsatisfactory
English (adj.): afraid, aghast, alarmed, anxious, apprehensive, fearful, frightened, scared, terror-stricken
English (n.): disapproval, animadversion, aspersion, blame, criticism, reprehension

Figure 9: Near-synonyms used in the evaluation of Xenon (Test1).

English (n.): mistake, blooper, blunder, boner, contretemps, error, faux pas, goof, slip, solecism
French: erreur, égarement, illusion, aberration, malentendu, m écompte, b évue, bêtise, blague, gaffe, boulette, brioche, maldonne,
sophisme, lapsus, m éprise, bourde
English (n.): alcoholic, boozer, drunk, drunkard, lush, sot
French: ivrogne, alcoolique, intemp érant, dipsomane, poivrot, pochard, sac à vin, soûlard, soûlographe, éthylique, boitout, imbriaque
English (v.): leave, abandon, desert, forsake
French: abandonner, d élaisser, d éserter, lâcher, laisser tomber, planter là, plaquer, livrer, c éder
English (n.): opponent, adversary, antagonist, competitor, enemy, foe, rival
French: ennemi, adversaire, antagoniste, opposant, d étracteur
English (adj.): thin, lean, scrawny, skinny, slender, slim, spare, svelte, willowy, wiry
French: mince, élanc é, svelte, flandrin, grêle, fluet, effil é, fusel é, pinc é
English (n.): lie, falsehood, fib, prevarication, rationalization, untruth
French: mensonge, menterie, contrev érit é, hâblerie, vanterie, fanfaronnade, craque, bourrage de crâne

Figure 10: Near-synonyms used in the evaluation of Xenon (Test2,3,4).

probabilities in the language model. If the expected
near-synonym is very rare, or maybe was not seen
at all by the language model, its probability is very
low. When combining the weights with the probabil-
ities, a frequent near-synonym may win even if it has
a lower weight assigned by the near-synonym choice
module. In such cases, the default near-synonym (the
most frequent of the cluster) wins. Sometimes such
a behaviour is justified, because there may be other
constraints that influence HALogen’s choice.

Table 2 also includes the results for the baseline
experiments. For Test1 and Test2 the baseline is
much lower than Xenon’s performance. For exam-
ple, for Test1, Xenon achieves 96.8% accuracy, while
the baseline is 15.6%. An exception is the baseline
for Test4, which is high (76%), due to the way the
test data was collected: it contains sentences with fre-
quent near-synonyms, which happen to be the ones
Xenon chooses by default in the absence of input pref-
erences. For Test3 and Test4 the baseline is the same
for the French and English experiments because no
nuances were used as input.

Another way to measure the performance of Xenon
is to measure how many times it makes appropriate
choices that cannot be made by HALogen, that is,
cases that make good use of the nuances from the
LKB of NS. This excludes the test cases with de-
fault near-synonyms, in other words the cases when
Xenon makes the right choice due to the language
model. It also excludes the cases of ties when Xenon
cannot make the expected choice. The last column

in Table 2 shows accuracies for these “non-default”
cases. For the experiments with only English near-
synonyms, Xenon is performing very well, managing
to make correct choices that cannot be made by de-
fault. Accuracies vary from 92.3% to 100%. For the
experiments involving both French and English exper-
iments, Xenon makes only a few correct choices that
cannot be made by default. This is due to the fact that
there is some overlap in nuances between French and
English synonyms, but most of the overlap happens
for the near-synonyms that are defaults.

8 Conclusion

Xenon can successfully choose the near-synonym that
best matches a set of input preferences. In future work
we plan to extend the near-synonym choice to take
into account the collocational behaviour of the near-
synonyms.

Acknowledgments

We thank Irene Langkilde-Geary for useful discussions and for
making the input construction tool available. We thank Phil Ed-
monds for making available the source code of I-Saurus. Our
work is financially supported by the Natural Sciences and En-
gineering Research Council of Canada and the University of
Toronto.

References
(Bailly 73) Ren é Bailly, editor. Dictionnaire des Synonymes de la

Langue Française. Larousse, Paris, 1973.

(B énac 56) Henri B énac, editor. Dictionnaire des Synonymes.
Librarie Hachette, Paris, 1956.

(Budanitsky & Hirst 01) Alexander Budanitsky and Graeme Hirst.
Semantic distance in WordNet: An experimental, application-
oriented evaluation of five measures. In Proceedings of the
Workshop on WordNet and Other Lexical Resources, Second
Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL 2001), Pittsburgh, USA,
2001.

(Charniak 00) Eugene Charniak. A maximum-entropy-inspired
parser. In Proceedings of the 1st Conference of the North
American Chapter of the Association for Computational Lin-
guistics and the 6th Conference on Applied Natural Language
Processing (NAACL-ANLP 2000), Seattle, USA, 2000.

(Edmonds & Hirst 02) Philip Edmonds and Graeme Hirst. Near-
synonymy and lexical choice. Computational Linguistics, 28
(2):105–145, 2002.

(Edmonds 99) Philip Edmonds. Semantic representations of
near-synonyms for automatic lexical choice. Unpublished
PhD thesis, University of Toronto, 1999.

(Hayakawa 94) S. I. Hayakawa, editor. Choose the Right Word.
Second Edition, revised by Eugene Ehrlich. HarperCollins
Publishers, 1994.

(Inkpen & Hirst 01) Diana Zaiu Inkpen and Graeme Hirst. Build-
ing a lexical knowledge-base of near-synonym differences. In
Proceedings of the Workshop on WordNet and Other Lexical
Resources, Second Meeting of the North American Chapter of
the Association for Computational Linguistics (NAACL 2001),
pages 47–52, Pittsburgh, USA, 2001.

(Inkpen 03) Diana Inkpen. Building a Lexical Knowledge-Base
of Near-Synonym Differences. Unpublished PhD thesis, (In
preparation), University of Toronto, 2003.

(Knight & Luk 94) Kevin Knight and Steve Luk. Building a large
knowledge base for machine translation. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI-94),
Seattle, WA, 1994.

(Langkilde & Knight 98) Irene Langkilde and Kevin Knight.
Generation that exploits corpus-based statistical knowledge.
In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics joint with 17th International
Conference on Computational Linguistics (ACL-COLING’98),
pages 704–712, Montreal, Quebec, Canada, 1998.

(Langkilde-Geary 02a) Irene Langkilde-Geary. An empirical ver-
ification of coverage and correctness for a general-purpose
sentence generator. In Proceedings of the 12th International
Natural Language Generation Workshop, pages 17–24, New
York, USA, 2002.

(Langkilde-Geary 02b) Irene Langkilde-Geary. A Foundation for
a General-Purpose Natural Language Generation: Sentence
Realization Using Probabilistic Models of Language. Unpub-
lished PhD thesis, University of Southern California, 2002.

