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Abstract 

We present a system that uses machine 
learning algorithms to combine features 
that capture various shallow heuristics for 
the task of recognizing textual entailment. 
The features quantify several types of 
matches and mismatches between the test 
and hypothesis sentences. Matching fea-
tures represent lexical matching (includ-
ing synonyms and related words), part-of-
speech matching and matching of gram-
matical dependency relations. Mismatch 
features include negation and numeric 
mismatches.   

1 Approach 

Recognizing textual entailment between two sen-
tences is a semantic task: one must understand the 
information conveyed through a sentence, to de-
cide whether the hypothesis sentence contains in-
formation we should know based on the 
information in the test sentence. Nonetheless, heu-
ristics at lexical and lexical-syntactic level were 
shown to help to some degree (Bar-Haim et al.). 
This paper presents a Machine Learning (ML) sys-
tem that combined various such shallow heuristics, 
for the task of recognizing textual entailment 
(RTE). 

 
We extract match and mismatch features from 

the two sentences (text and hypothesis). Match 
features would indicate information overlap, and 
they include lexical, part-of speech and grammati-
cal relation matching measures. Mismatch features 

indicate contradictions. We focus on number and 
negation mismatch scores. We produce feature 
vectors for all the available development data 
(RTE2 and RTE1). Weka (Witten and Frank, 
2000) is used to train classifiers on these feature 
vectors.  We experiment with the following four 
machine learning algorithms: 
 
- DT: Decision Trees (J48 in Weka); 
- NB: Naïve Bayes; 
- SVM: Support Vector Machines (SMO);  
- kNN: k Nearest Neighbors (IBK with k=9). 

 
The Decision Trees are interesting because we 

can see what features were selected for the top lev-
els of the trees. The k Nearest Neighbors algorithm 
might help when the test pair has similar character-
istics to one of the training examples. SVM and 
NB were selected because they are known to 
achieve high performance. We experiment with 
various settings for the ML algorithms including 
increasing the confidence factor in DT for more 
pruning of the trees, different kernels for SVM, 
and different number of neighbors in kNN. After 
experimenting with various values on cross-
validation experiments on the training data, we 
chose k=9 because it performed best in most set-
tings. We also experimented with combining these 
classifiers through a meta-learner (voting). We use 
the prediction accuracies calculated by Weka as 
confidence scores in the predicted entailments. 

 
Section 2 presents the dependency relation gen-

eration output. In section 3 we describe the imple-
mented features. In section 4 we show the results 
for various classifiers, trained on various training 
sets, and with various sets of features. Section 5 



wraps up the paper with discussion of results and 
conclusions. 

2 Dependency Relations 

Establishing connections between the words in a 
sentence is an important step towards reaching the 
sentence’s meaning. Several systems in previous 
entailment competitions retrieved these connec-
tions as a first step towards verifying the entail-
ment relation.  

We use MiniPar, a dependency parser (Lin, 98), 
to obtain word pairs involved in a grammatical 
relation. Creating a dependency pair representation 
for the sentences in the RTE training and test sets 
is done in two steps: 
 

1. parse the sentences with MiniPar; 
2. post-process MiniPar’s output. 

 
After these two processing steps, we obtain the 

following representation: 
 

Paris is the capital of France. 
 
pred    be/vbe  capital/n 
subj    capital/n       paris/n 
of/prep capital/n       france/n 
 

   The general structure of a generated grammatical 
dependency tuple is: 
 
   Relation    Head/POShead     Modifier/POSmodifier 

 
We follow the example above, from the MiniPar 

output to this final format, to explain and justify 
the post-processing step. The parse generated by 
MiniPar (using the lemmatizing and relation-type 
output options) is presented below: 
 

Paris is the capital of France. 
 

 fin   C:i:VBE be 
be      VBE:s:N Paris 
be      VBE:pred:N      capital 
capital N:subj:N        Paris 
capital N:det:Det       the 
capital N:mod:Prep      of 
of      Prep:pcomp-n:N  France  

 

It is interesting to note that when the main verb 
of the sentence is be, MiniPar will consider the 
predicate to consist of be and the verb comple-
ment, and it will connect the subject with the com-
plement, bypassing the verb. This is a good 
feature, as it generates the same dependency pair 
when a modifier appears as the modifier of the 
noun, or as complement of the verb be. For exam-
ple, the expressions interesting paper and the pa-
per is interesting will result in the same 
dependency pair paper N:mod:Adj interesting.  

 
The above parse also shows why we need a 

post-processing step. First, we filter out pairs such 
as: fin  C:i:VBE be, since they are not informative 
as far as dependency pairs are concerned. We also 
filter out determiner-noun pairs. Second, we com-
press two or more dependency pairs, to obtain only 
pairs containing open-class words (nouns, verbs, 
adjectives and adverbs). For example, we combine: 
 

capital N:mod:Prep      of 
of      Prep:pcomp-n:N  France 

 
to produce the dependency  (of, capital, France). 
This type of compression is performed for depend-
ency pairs containing prepositions, auxiliaries, and 
clause subordinators and coordinators. For the en-
tailment task, particularly important are negations, 
as they are one of the easiest to recognize features 
that can break an entailment relation. A negation is 
usually connected to the main verb through an aux-
iliary. MiniPar would produce the following de-
pendency pairs for a negated verb: 
 

Prime Minister John Howard says he will not 
be swayed by a videotaped warning… 
… 
sway    V:aux:Aux       will 
will    Aux:neg:A       not 
sway    V:be:be be 
… 

 
In the post-processing step the auxiliary is by-

passed to recover a direct connection between the 
verb and the negation. 

 
aux     sway/v  will/aux 
neg     sway/v  not/a 

 
The dependency pairs generated are used: 



- to verify dependency pair overlap; 
- to treat negation; 
- to deal with numbers – in order to detect which 

entity they modify. 
 

3 Features 

We considered 26 features for this task. In many 
cases we used both the normalized and absolute 
forms of the same statistics. The normalized scores 
are between 0 and 1. For example, if the two sen-
tences have 5 content words in common and the 
hypothesis sentence has 8 content words, the nor-
malized score will be 0.625 (5/8). Normalization is 
always done with respect to the hypothesis sen-
tence. 
 
Lexical features: Ten of the features involve exact 
lexical overlap. The Lingua stemmer (Franz & 
Richardson, 1999) was used to create stemmed 
versions of words, which were used to compute the 
following features: 

• Stopwords in common (in absolute and 
normalized form); 

• Content words in common (in absolute and 
normalized form). 

• All words in common (in absolute and 
normalized form) 

 
The text and hypothesis data was tagged using the 
Lingua part of speech tagger (Coburn, 2005). The 
tagged data were used to create word match fea-
tures restricted to nouns and to verbs: 

• Nouns in common (normalized); 
• Verbs in common (normalized). 

 
 We also counted the overlap of tagged words. 

 
Related words: Six features are created using 
three statistics (synonyms match, verb cause, verb 
entailment), in both normalized and non-
normalized forms, similar to the previous set of 
features.  
 

When content words do not match, we attempt 
matching using synonyms in WordNet (Miller, 
1995) for all possible senses of the words (since 
word sense information is not available). This syn-
onym match statistic is considered in both normal-
ized and non-normalized form.  It is computed as 

the sum of the number of words from the hypothe-
sis that directly match words from the text and the 
number of words from the hypothesis that match a 
synonym of a word from the text. 
 

Because the task is textual entailment, we com-
pute two verb match statistics using WordNet’s 
cause to and entailment relations. For each verb 
pair that groups a verb from the text (vT) and one 
from the hypothesis (vH), we verify if they are in a 
cause to or entailment relation, as captured in 
WordNet:  

• verb entailment: vH entailment vT;  
• verb cause: vT cause to vH. 

 
To generate the features we count the number of 
verb pairs built in the above forms.  A separate 
count is generated for each. These two counts are 
taken as features in both normalized and absolute 
form, thus creating 4 features. 
 
Relations: We compute six features that capture 
word relations within a sentence. Two such fea-
tures are created using skip bigrams:  

• a normalized count of skip bigrams 
matches using all words; 

• a similar normalized count of skip bi-
grams created using only nouns and verbs 
as identified by the Lingua part of speech 
tagger. 

The skip bigram pairs are created by generating a 
list of all ordered pairs for each sentence (any 
number of content words can be skipped). These 
ordered pairs can then be matched between the text 
and hypothesis sentences.  This captures, in a shal-
low way, the relationships between words in the 
sentences. 

The other four features are generated using 
grammatical dependency pairs obtained with 
MiniPar. The dependency relation is expressed 
through the tuple: 
 
   Relation    Head/POShead     Modifier/POSmodifier 
 
In computing relation overlap, we use the tuple as 
it is, and also as a dependency pair (Head, Modi-
fier), to cover the cases when the same word lem-
mas appear in different grammatical relations, 
possibly also with different parts of speech. Tuples 
and dependency pairs are used to compute the fol-
lowing four features:  



• absolute number of overlapping pairs be-
tween the test and the hypothesis;  

• normalized number of pair overlap (abso-
lute number divided by the number of tu-
ples generated for the hypothesis);  

• absolute number of overlapping tuples; 
• normalized number of overlapping tu-

ples. 
Overall, for the RTE2 development set, there are 
769 overlapping dependency pairs, and 709 over-
lapping tuples; for the RTE2 test set there are 827 
overlapping pairs and 761 overlapping tuples. 
 
Mismatch features: These four features were cre-
ated from information extracted using dependency 
relation: 

• the count of numbers present in hypothe-
sis but not present in the text. This count 
is normalized by dividing by how many 
numbers are present in the hypothesis. We 
attempt to match numbers that appear as 
modifiers to the same head words, as iden-
tified by the dependency relation genera-
tion process;  

• a normalized count of negated verbs that 
appear only in the hypothesis and not in 
the text. Negated verbs in the hypothesis 
are identified using the dependency rela-
tion tuple; 

• the number of antonym pairs in the test-
hypothesis pair of sentences. For each 
pairs of words under the same open-class 
part of speech – one word from the test 
sentence (wT), and one from the hypothe-
sis (wH) – we verify that (wT,wH) appears 
in an antonym relation. 

• the normalized version of the previous 
feature, by the number of content words in 
the hypothesis sentence. 

 

4 Results  

In section 4.1 we present the results of the two runs 
submitted to the RTE competition. 

 
In sections 4.2 and 4.3 we present experiments 

that measure the impact of using various classifi-
ers, various subsets of features from the ones com-
puted, and various combinations of the available 
data sets for training the ML tools used. 

4.1 Results for the submitted runs 

The University of Ottawa team submitted the re-
sults of two runs for the RTE competition. 
 
The first run results were obtained with a classifier 
trained on the RTE2 development set, with all 
available features, and tested on the RTE2 test set. 
The ML algorithm was SVM with non-polynomial 
kernel, combined with Naïve Bayes. The accuracy 
obtained by 10-fold cross-validation of this train-
ing set was 62%. The results on task-specific sub-
sets of the RTE2 test set – IE (information 
extraction), IR (information retrieval), QA (ques-
tion answering), and SUM (summarization) – are 
presented in Table 1. 

 
For the IR and SUM tasks the results are be-

tween 11% and 27% above the baseline, while for 
the IE task the system’s performance is very close 
to the baseline. Most likely the examples from the 
IE subset require deeper semantic features. In the 
remainder of the paper we report only overall accu-
racy, not split by tasks. The baseline for all ex-
periments, not included in the tables, is 
approximately 50%. 
 

For the second run we used more training data: 
the RTE2 development set; and the RTE1 devel-
opment, development2, and test sets. The classifier 
was Naïve Bayes, using all the features. Cross-
validation on this training set achieved an accuracy 
of 57.86%. The results obtained on the RTE2 test 
set are presented in Table 1. 
 

Some of the relational dependency features were 
added only after submission (the overlap between 
dependency pairs and the tuples overlap, normal-
ized and not normalized). Adding them improved 
the accuracy of classification to 59.25% on the 
RTE2 test set, and to 63.25% when doing cross-
validation on the RTE2 development set (as seen 
later in Tables 2, 3, 4, 5, for SVM).  
 
 
Run Measure ALL IE IR QA SUM 

1 Accuracy .5800 .4950 .6100 .5300 .6850 
 Avg.prec. .5751 .4810 .7011 .5465 .7701 

2 Accuracy .5825 .5150 .6350 .5050 .6750 
 Avg.prec. .5816 .4904 .7043 .5857 .7514 
Table 1. Accuracy and average precision for the two 
submitted runs on RTE2 test set, including split by task.  



4.2 Results for various training sets 

We experiment with three different training sets: 
 

1. The RTE2 development set (800 examples). 
2. RTE2 development set, plus the RTE1 devel-

opment, development2, and test sets (2167 ex-
amples). 

3. RTE2 development; and RTE1 development, 
development2, and test sets, but keeping only 
the examples that came from tasks that are in-
cluded in RTE2 (IE, IR, QA, SUM). The tasks 
that we filtered out from the RTE1 data were 
RC (reading comprehension), MT (machine 
translation), PP (paraphrases), CD (comparable 
documents). After filtering, the training set 
contained 1370 examples. 

 
Table 2 presents results for training on each of 

these three sets, and testing on the RTE2 test set, 
with four Weka classifiers. In Table 3 the settings 
are the same as in Table 2, but we report 10-fold 
cross validation results on the respective training 
 
 
Training set DT NB SVM kNN 
1. RTE2 dev .5662 .5600 .5925 .5537 
2. + RTE1 all .5475 .5612 .5825 .5312 
3. - selected tasks .5700 .5050 .5800 .5375 
Table 2. Accuracy on RTE2 test set for four classifiers 
trained on different training sets. 
 
Training set DT NB SVM kNN 
1. RTE2 dev .5512 .5762 .6325 .5962 
2. + RTE1 all .5449 .5246 .5736 .5413 
3. - selected tasks .5481 .5138 .5824 .5481 
Table 3. Accuracy of 10-fold cross-validation experi-
ments for four classifiers on different training sets. 
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Figure 1. Variation of accuracy with the size of the 
training set (tested on RTE2 test set, trained on RTE2 
dev). 

 
sets. These experiments make use of the full set of 
features (including the added relational features). 
 

Figure 1 shows how the accuracy increases 
when we add more training examples. The results 
are on the RTE2 test set, and the training was done 
on 200, 400, 600, and 800 examples from the 
RTE2 dev set. 

4.3 Results for various features 

Tables 4 and 5 presents results obtained when dif-
ferent subsets of features are used for representing 
the RTE data. Four classifiers are trained on the 
RTE2 development set. Table 4 contains results on 
the RTE2 test set, and Table 5 contains results on 
the development set by 10-fold cross-validation. 

 
We study the influence of the following types of 

features:  
- Lexical features – exact matching: all words, 

content words, stopwords, nouns, verbs, etc.; 
 

 
Features DT NB SVM kNN 
Lexical .5675 .5637 .5775 .5537 
Relations .5575 .5025 .5650 .5487 
Mismatches .5150 .5000 .5150 .5150 
Lexical+relations .5600 .5437 .5650 .5487 
Lexical+related .5675 .5637 .5712 .5537 
Lexical+mismatches .5625 .5387 .5812 .5387 
Lex.+relations+mism. .5687 .5687 .5925 .5450 
Lex.+related+mism. .5662 .5637 .5787 .5562 
All .5662 .5600 .5925 .5537 
Table 4. Effect of various features; training on RTE2 
dev and testing on the RTE2 test set. 
   
Features DT NB SVM kNN 
Lexical .5650 .6087 .6187 .6037 
Relations .5987 .5025 .5887 .5775 
Mismatches .5125 .5000 .4975 .4900 
Lexical+relations .5620 .5650 .6212 .5887 
Lexical+related .5650 .6087 .6187 .6037 
Lexical+mismatches .5662 .6025 .6137 .5700 
Lex.+relations+mism. .5687 .5375 .6312 .6112 
Lex.+related+mism. .5687 .6087 .6187 .6137 
All .5512 .5762 .6325 .5962 
Table 5. Effect of various features; all classifiers; train-
ing on RTE2 dev and testing by cross validation. 



- Related words – approximate matching: syno-
nyms, verb entailment and cause relations; 

- Relations – bigrams, verb-noun pairs, depend-
ency relations; 

- Mismatches – negation, numbers, antonyms. 
 

5 Discussion of the Results 

The impact of the classifier: According to accu-
racy results, SVM performed best, followed by 
NB, DT and kNN in no particular order. As seen in 
Tables 2, 3, 4, 5, there are differences in accuracy 
between the classifiers, depending on the training 
set and on the type of features used. Varying the 
parameters of each classifier or combining classifi-
ers produces only slight improvements.    
 
The impact of the training data: Training on the 
RTE2 development set seems to be sufficient. 
Adding all the data from RTE1 (development sets 
1 and 2 as well as the test set) helps only if we use 
examples that come from the same tasks as the 
ones in the RTE2 data. This is evidenced by the 
lines 2 and 3 in Table 2, that show a slight im-
provement in the performance of DT (2.25%), and 
kNN (0.63%) when the classifiers are trained on 
the filtered RTE1 data rather than on all RTE1 
data, and tested on the RTE2 test set. Curiously, 
the accuracy of NB goes down.  

Although adding data from RTE1 didn’t im-
prove the accuracy, the quantity of training data 
has an influence on the learnability. Figure 1 
shows that the accuracy increases for all four clas-
sifiers when successively training on 200, 400, 
600, and 800 examples from the RTE2 dev set, and 
testing on the RTE2 test set.  
 
The impact of the features: Exact overlap fea-
tures achieve slightly lower accuracies than using 
all the features (Tables 4 and 5). Adding relations 
to the lexical features seems to help a small 
amount. Only relational features by themselves 
achieve good results (except for NB), but lower 
than lexical match features. Mismatch features 
added to other features do not seem to have an im-
pact. Probably the mismatches happen in few ex-
amples, which were correctly classified using other 
features. Only mismatch features by themselves 
achieve baseline performance. Adding related 

words (approximate lexical matching) does not 
seem to improve the classification. 

6 Conclusion and Future Work 

We have tested the use of ML algorithms with data 
represented using shallow and easy to compute 
heuristics for the task of recognizing textual en-
tailment. This experimental setup allowed us to test 
the impact of these heuristics, in various combina-
tions, and with different ML methods. To increase 
the accuracy of classification, we plan to extract 
more semantic features, and to improve the quality 
of some of the current features. In particular the 
syntactic relations, the negation mismatch, and the 
number mismatch need more careful examination. 
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