
Machine Learning Experiments for Textual Entailment

Diana Inkpen, Darren Kipp, and Vivi Nastase

School of Information Technology and Engineering
University of Ottawa

Ottawa, ON, K1N 6N5, Canada
{diana,dkipp,vnastase}@site.uottawa.ca

Abstract

We present a system that uses machine
learning algorithms to combine features
that capture various shallow heuristics for
the task of recognizing textual entailment.
The features quantify several types of
matches and mismatches between the test
and hypothesis sentences. Matching fea-
tures represent lexical matching (includ-
ing synonyms and related words), part-of-
speech matching and matching of gram-
matical dependency relations. Mismatch
features include negation and numeric
mismatches.

1 Approach

Recognizing textual entailment between two sen-
tences is a semantic task: one must understand the
information conveyed through a sentence, to de-
cide whether the hypothesis sentence contains in-
formation we should know based on the
information in the test sentence. Nonetheless, heu-
ristics at lexical and lexical-syntactic level were
shown to help to some degree (Bar-Haim et al.).
This paper presents a Machine Learning (ML) sys-
tem that combined various such shallow heuristics,
for the task of recognizing textual entailment
(RTE).

We extract match and mismatch features from

the two sentences (text and hypothesis). Match
features would indicate information overlap, and
they include lexical, part-of speech and grammati-
cal relation matching measures. Mismatch features

indicate contradictions. We focus on number and
negation mismatch scores. We produce feature
vectors for all the available development data
(RTE2 and RTE1). Weka (Witten and Frank,
2000) is used to train classifiers on these feature
vectors. We experiment with the following four
machine learning algorithms:

- DT: Decision Trees (J48 in Weka);
- NB: Naïve Bayes;
- SVM: Support Vector Machines (SMO);
- kNN: k Nearest Neighbors (IBK with k=9).

The Decision Trees are interesting because we

can see what features were selected for the top lev-
els of the trees. The k Nearest Neighbors algorithm
might help when the test pair has similar character-
istics to one of the training examples. SVM and
NB were selected because they are known to
achieve high performance. We experiment with
various settings for the ML algorithms including
increasing the confidence factor in DT for more
pruning of the trees, different kernels for SVM,
and different number of neighbors in kNN. After
experimenting with various values on cross-
validation experiments on the training data, we
chose k=9 because it performed best in most set-
tings. We also experimented with combining these
classifiers through a meta-learner (voting). We use
the prediction accuracies calculated by Weka as
confidence scores in the predicted entailments.

Section 2 presents the dependency relation gen-

eration output. In section 3 we describe the imple-
mented features. In section 4 we show the results
for various classifiers, trained on various training
sets, and with various sets of features. Section 5

wraps up the paper with discussion of results and
conclusions.

2 Dependency Relations

Establishing connections between the words in a
sentence is an important step towards reaching the
sentence’s meaning. Several systems in previous
entailment competitions retrieved these connec-
tions as a first step towards verifying the entail-
ment relation.

We use MiniPar, a dependency parser (Lin, 98),
to obtain word pairs involved in a grammatical
relation. Creating a dependency pair representation
for the sentences in the RTE training and test sets
is done in two steps:

1. parse the sentences with MiniPar;
2. post-process MiniPar’s output.

After these two processing steps, we obtain the

following representation:

Paris is the capital of France.

pred be/vbe capital/n
subj capital/n paris/n
of/prep capital/n france/n

 The general structure of a generated grammatical
dependency tuple is:

 Relation Head/POShead Modifier/POSmodifier

We follow the example above, from the MiniPar

output to this final format, to explain and justify
the post-processing step. The parse generated by
MiniPar (using the lemmatizing and relation-type
output options) is presented below:

Paris is the capital of France.

 fin C:i:VBE be
be VBE:s:N Paris
be VBE:pred:N capital
capital N:subj:N Paris
capital N:det:Det the
capital N:mod:Prep of
of Prep:pcomp-n:N France

It is interesting to note that when the main verb
of the sentence is be, MiniPar will consider the
predicate to consist of be and the verb comple-
ment, and it will connect the subject with the com-
plement, bypassing the verb. This is a good
feature, as it generates the same dependency pair
when a modifier appears as the modifier of the
noun, or as complement of the verb be. For exam-
ple, the expressions interesting paper and the pa-
per is interesting will result in the same
dependency pair paper N:mod:Adj interesting.

The above parse also shows why we need a

post-processing step. First, we filter out pairs such
as: fin C:i:VBE be, since they are not informative
as far as dependency pairs are concerned. We also
filter out determiner-noun pairs. Second, we com-
press two or more dependency pairs, to obtain only
pairs containing open-class words (nouns, verbs,
adjectives and adverbs). For example, we combine:

capital N:mod:Prep of
of Prep:pcomp-n:N France

to produce the dependency (of, capital, France).
This type of compression is performed for depend-
ency pairs containing prepositions, auxiliaries, and
clause subordinators and coordinators. For the en-
tailment task, particularly important are negations,
as they are one of the easiest to recognize features
that can break an entailment relation. A negation is
usually connected to the main verb through an aux-
iliary. MiniPar would produce the following de-
pendency pairs for a negated verb:

Prime Minister John Howard says he will not
be swayed by a videotaped warning…
…
sway V:aux:Aux will
will Aux:neg:A not
sway V:be:be be
…

In the post-processing step the auxiliary is by-

passed to recover a direct connection between the
verb and the negation.

aux sway/v will/aux
neg sway/v not/a

The dependency pairs generated are used:

- to verify dependency pair overlap;
- to treat negation;
- to deal with numbers – in order to detect which

entity they modify.

3 Features

We considered 26 features for this task. In many
cases we used both the normalized and absolute
forms of the same statistics. The normalized scores
are between 0 and 1. For example, if the two sen-
tences have 5 content words in common and the
hypothesis sentence has 8 content words, the nor-
malized score will be 0.625 (5/8). Normalization is
always done with respect to the hypothesis sen-
tence.

Lexical features: Ten of the features involve exact
lexical overlap. The Lingua stemmer (Franz &
Richardson, 1999) was used to create stemmed
versions of words, which were used to compute the
following features:

• Stopwords in common (in absolute and
normalized form);

• Content words in common (in absolute and
normalized form).

• All words in common (in absolute and
normalized form)

The text and hypothesis data was tagged using the
Lingua part of speech tagger (Coburn, 2005). The
tagged data were used to create word match fea-
tures restricted to nouns and to verbs:

• Nouns in common (normalized);
• Verbs in common (normalized).

 We also counted the overlap of tagged words.

Related words: Six features are created using
three statistics (synonyms match, verb cause, verb
entailment), in both normalized and non-
normalized forms, similar to the previous set of
features.

When content words do not match, we attempt
matching using synonyms in WordNet (Miller,
1995) for all possible senses of the words (since
word sense information is not available). This syn-
onym match statistic is considered in both normal-
ized and non-normalized form. It is computed as

the sum of the number of words from the hypothe-
sis that directly match words from the text and the
number of words from the hypothesis that match a
synonym of a word from the text.

Because the task is textual entailment, we com-
pute two verb match statistics using WordNet’s
cause to and entailment relations. For each verb
pair that groups a verb from the text (vT) and one
from the hypothesis (vH), we verify if they are in a
cause to or entailment relation, as captured in
WordNet:

• verb entailment: vH entailment vT;
• verb cause: vT cause to vH.

To generate the features we count the number of
verb pairs built in the above forms. A separate
count is generated for each. These two counts are
taken as features in both normalized and absolute
form, thus creating 4 features.

Relations: We compute six features that capture
word relations within a sentence. Two such fea-
tures are created using skip bigrams:

• a normalized count of skip bigrams
matches using all words;

• a similar normalized count of skip bi-
grams created using only nouns and verbs
as identified by the Lingua part of speech
tagger.

The skip bigram pairs are created by generating a
list of all ordered pairs for each sentence (any
number of content words can be skipped). These
ordered pairs can then be matched between the text
and hypothesis sentences. This captures, in a shal-
low way, the relationships between words in the
sentences.

The other four features are generated using
grammatical dependency pairs obtained with
MiniPar. The dependency relation is expressed
through the tuple:

 Relation Head/POShead Modifier/POSmodifier

In computing relation overlap, we use the tuple as
it is, and also as a dependency pair (Head, Modi-
fier), to cover the cases when the same word lem-
mas appear in different grammatical relations,
possibly also with different parts of speech. Tuples
and dependency pairs are used to compute the fol-
lowing four features:

• absolute number of overlapping pairs be-
tween the test and the hypothesis;

• normalized number of pair overlap (abso-
lute number divided by the number of tu-
ples generated for the hypothesis);

• absolute number of overlapping tuples;
• normalized number of overlapping tu-

ples.
Overall, for the RTE2 development set, there are
769 overlapping dependency pairs, and 709 over-
lapping tuples; for the RTE2 test set there are 827
overlapping pairs and 761 overlapping tuples.

Mismatch features: These four features were cre-
ated from information extracted using dependency
relation:

• the count of numbers present in hypothe-
sis but not present in the text. This count
is normalized by dividing by how many
numbers are present in the hypothesis. We
attempt to match numbers that appear as
modifiers to the same head words, as iden-
tified by the dependency relation genera-
tion process;

• a normalized count of negated verbs that
appear only in the hypothesis and not in
the text. Negated verbs in the hypothesis
are identified using the dependency rela-
tion tuple;

• the number of antonym pairs in the test-
hypothesis pair of sentences. For each
pairs of words under the same open-class
part of speech – one word from the test
sentence (wT), and one from the hypothe-
sis (wH) – we verify that (wT,wH) appears
in an antonym relation.

• the normalized version of the previous
feature, by the number of content words in
the hypothesis sentence.

4 Results

In section 4.1 we present the results of the two runs
submitted to the RTE competition.

In sections 4.2 and 4.3 we present experiments

that measure the impact of using various classifi-
ers, various subsets of features from the ones com-
puted, and various combinations of the available
data sets for training the ML tools used.

4.1 Results for the submitted runs

The University of Ottawa team submitted the re-
sults of two runs for the RTE competition.

The first run results were obtained with a classifier
trained on the RTE2 development set, with all
available features, and tested on the RTE2 test set.
The ML algorithm was SVM with non-polynomial
kernel, combined with Naïve Bayes. The accuracy
obtained by 10-fold cross-validation of this train-
ing set was 62%. The results on task-specific sub-
sets of the RTE2 test set – IE (information
extraction), IR (information retrieval), QA (ques-
tion answering), and SUM (summarization) – are
presented in Table 1.

For the IR and SUM tasks the results are be-

tween 11% and 27% above the baseline, while for
the IE task the system’s performance is very close
to the baseline. Most likely the examples from the
IE subset require deeper semantic features. In the
remainder of the paper we report only overall accu-
racy, not split by tasks. The baseline for all ex-
periments, not included in the tables, is
approximately 50%.

For the second run we used more training data:
the RTE2 development set; and the RTE1 devel-
opment, development2, and test sets. The classifier
was Naïve Bayes, using all the features. Cross-
validation on this training set achieved an accuracy
of 57.86%. The results obtained on the RTE2 test
set are presented in Table 1.

Some of the relational dependency features were
added only after submission (the overlap between
dependency pairs and the tuples overlap, normal-
ized and not normalized). Adding them improved
the accuracy of classification to 59.25% on the
RTE2 test set, and to 63.25% when doing cross-
validation on the RTE2 development set (as seen
later in Tables 2, 3, 4, 5, for SVM).

Run Measure ALL IE IR QA SUM

1 Accuracy .5800 .4950 .6100 .5300 .6850
 Avg.prec. .5751 .4810 .7011 .5465 .7701

2 Accuracy .5825 .5150 .6350 .5050 .6750
 Avg.prec. .5816 .4904 .7043 .5857 .7514
Table 1. Accuracy and average precision for the two
submitted runs on RTE2 test set, including split by task.

4.2 Results for various training sets

We experiment with three different training sets:

1. The RTE2 development set (800 examples).
2. RTE2 development set, plus the RTE1 devel-

opment, development2, and test sets (2167 ex-
amples).

3. RTE2 development; and RTE1 development,
development2, and test sets, but keeping only
the examples that came from tasks that are in-
cluded in RTE2 (IE, IR, QA, SUM). The tasks
that we filtered out from the RTE1 data were
RC (reading comprehension), MT (machine
translation), PP (paraphrases), CD (comparable
documents). After filtering, the training set
contained 1370 examples.

Table 2 presents results for training on each of

these three sets, and testing on the RTE2 test set,
with four Weka classifiers. In Table 3 the settings
are the same as in Table 2, but we report 10-fold
cross validation results on the respective training

Training set DT NB SVM kNN
1. RTE2 dev .5662 .5600 .5925 .5537
2. + RTE1 all .5475 .5612 .5825 .5312
3. - selected tasks .5700 .5050 .5800 .5375
Table 2. Accuracy on RTE2 test set for four classifiers
trained on different training sets.

Training set DT NB SVM kNN
1. RTE2 dev .5512 .5762 .6325 .5962
2. + RTE1 all .5449 .5246 .5736 .5413
3. - selected tasks .5481 .5138 .5824 .5481
Table 3. Accuracy of 10-fold cross-validation experi-
ments for four classifiers on different training sets.

45

50

55

60

0 200 400 600 800

Number of training examples

A
cc

ur
ac

y DT
NB
SVM
kNN

Figure 1. Variation of accuracy with the size of the
training set (tested on RTE2 test set, trained on RTE2
dev).

sets. These experiments make use of the full set of
features (including the added relational features).

Figure 1 shows how the accuracy increases
when we add more training examples. The results
are on the RTE2 test set, and the training was done
on 200, 400, 600, and 800 examples from the
RTE2 dev set.

4.3 Results for various features

Tables 4 and 5 presents results obtained when dif-
ferent subsets of features are used for representing
the RTE data. Four classifiers are trained on the
RTE2 development set. Table 4 contains results on
the RTE2 test set, and Table 5 contains results on
the development set by 10-fold cross-validation.

We study the influence of the following types of

features:
- Lexical features – exact matching: all words,

content words, stopwords, nouns, verbs, etc.;

Features DT NB SVM kNN
Lexical .5675 .5637 .5775 .5537
Relations .5575 .5025 .5650 .5487
Mismatches .5150 .5000 .5150 .5150
Lexical+relations .5600 .5437 .5650 .5487
Lexical+related .5675 .5637 .5712 .5537
Lexical+mismatches .5625 .5387 .5812 .5387
Lex.+relations+mism. .5687 .5687 .5925 .5450
Lex.+related+mism. .5662 .5637 .5787 .5562
All .5662 .5600 .5925 .5537
Table 4. Effect of various features; training on RTE2
dev and testing on the RTE2 test set.

Features DT NB SVM kNN
Lexical .5650 .6087 .6187 .6037
Relations .5987 .5025 .5887 .5775
Mismatches .5125 .5000 .4975 .4900
Lexical+relations .5620 .5650 .6212 .5887
Lexical+related .5650 .6087 .6187 .6037
Lexical+mismatches .5662 .6025 .6137 .5700
Lex.+relations+mism. .5687 .5375 .6312 .6112
Lex.+related+mism. .5687 .6087 .6187 .6137
All .5512 .5762 .6325 .5962
Table 5. Effect of various features; all classifiers; train-
ing on RTE2 dev and testing by cross validation.

- Related words – approximate matching: syno-
nyms, verb entailment and cause relations;

- Relations – bigrams, verb-noun pairs, depend-
ency relations;

- Mismatches – negation, numbers, antonyms.

5 Discussion of the Results

The impact of the classifier: According to accu-
racy results, SVM performed best, followed by
NB, DT and kNN in no particular order. As seen in
Tables 2, 3, 4, 5, there are differences in accuracy
between the classifiers, depending on the training
set and on the type of features used. Varying the
parameters of each classifier or combining classifi-
ers produces only slight improvements.

The impact of the training data: Training on the
RTE2 development set seems to be sufficient.
Adding all the data from RTE1 (development sets
1 and 2 as well as the test set) helps only if we use
examples that come from the same tasks as the
ones in the RTE2 data. This is evidenced by the
lines 2 and 3 in Table 2, that show a slight im-
provement in the performance of DT (2.25%), and
kNN (0.63%) when the classifiers are trained on
the filtered RTE1 data rather than on all RTE1
data, and tested on the RTE2 test set. Curiously,
the accuracy of NB goes down.

Although adding data from RTE1 didn’t im-
prove the accuracy, the quantity of training data
has an influence on the learnability. Figure 1
shows that the accuracy increases for all four clas-
sifiers when successively training on 200, 400,
600, and 800 examples from the RTE2 dev set, and
testing on the RTE2 test set.

The impact of the features: Exact overlap fea-
tures achieve slightly lower accuracies than using
all the features (Tables 4 and 5). Adding relations
to the lexical features seems to help a small
amount. Only relational features by themselves
achieve good results (except for NB), but lower
than lexical match features. Mismatch features
added to other features do not seem to have an im-
pact. Probably the mismatches happen in few ex-
amples, which were correctly classified using other
features. Only mismatch features by themselves
achieve baseline performance. Adding related

words (approximate lexical matching) does not
seem to improve the classification.

6 Conclusion and Future Work

We have tested the use of ML algorithms with data
represented using shallow and easy to compute
heuristics for the task of recognizing textual en-
tailment. This experimental setup allowed us to test
the impact of these heuristics, in various combina-
tions, and with different ML methods. To increase
the accuracy of classification, we plan to extract
more semantic features, and to improve the quality
of some of the current features. In particular the
syntactic relations, the negation mismatch, and the
number mismatch need more careful examination.

References
Aaron Coburn. 2005. Part-of-speech tagger for English

natural language processing, Lingua-EN-Tagger-
0.13, CPAN module.

Roy Bar-Haim, Idan Szpektor, Oren Glickman. Defini-
tion and Analysis of Intermediate Entailment Levels,
ACL-05 Workshop on Empirical Modeling of Seman-
tic Equivalence and Entailment. 2005.

Benjamin Franz, and Jim Richardson. 1999. Lingua-
Stem-0.81, CPAN Module.

Dekang Lin. 1998. Dependency-based evaluation of
MINIPAR. In Proceedings of the Workshop on
Evaluation of Parsing Systems at LREC 1998, Gra-
nada, Spain.

George Miller, 1995, WordNet: A Lexical Database for
English, Communications of the ACM, 38(11):39-41.

Ian H. Witten and Eibe Frank. 2000. Data Mining:
Practical machine learning tools with Java imple-
mentations, Morgan Kaufmann, San Francisco, USA.

