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Spoken audio documents are becoming more a
more common place due to the rising popularity
technologies such as: video and audio confere
ing, video web-casting and digital cameras for the
consumer market. Unfortunately, speech docys
ments are inherently hard to browse because P
their transient nature. For example, imagine gyin«
to locate the audio segment in the recording of
60-minute meeting, where John talked about pr
ject X. Typically, this would require fast forward-
ing through the audio by some amount, the
listening and trying to remember if the current-seg
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Abstract

Browsing through large volumes of spoken
audio is known to be a challenging task for
end users. One way to alleviate this prob-
lem is to allow users to gist a spoken audio
document by glancing over a transcript
generated through Automatic Speech Rec-
ognition. Unfortunately, such transcripts
typically contain many recognition errors
which are highly distracting and make gist-
ing more difficult. In this paper we present
an approach that detects recognition errors
by identifying words which are semantic
outliers with respect to other words in the
transcript. We describe several variants of
this approach. We investigate a wide range
of evaluation measures and we show that
we can significantly reduce the number of
errors in content words, with the trade-off
of losing some good content words.
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ment was spoken before or after the desired seg-
ment, then fast-forwarding or backtracking by a
small amount, and so on.

One way to make audio browsing of audio docu-
ments more efficient is to allow the user to navi-
gate through a textual transcript that is cross-
referenced with corresponding time points into the
original audio (Nakataret al. 1998; Hirschbergt
al. 1999). Such transcripts can easily be produced
with Automatic Speech Recognition (ASR) sys-
tems today. Unfortunately, such transcripts typi-
cally contain recognition errors that make them
hard to browse and understand. Although Word
Error Rates (WER) of the order of 20% can be
achieved for broadcast quality audio, the WER for
more common situations (ex: less-than-broadcast
quality recordings of meetings) is typically in the
order of 50% or more.

The work we present in this paper aims at auto-
matically identifying recognition errors and remov-
ing them from the transcript, in order to make
gisting and browsing of the corresponding audio
more efficient. For example, consider the follow-
ing portion of a transcript that was produced with
the Dragon NaturallySpeaking speech recognition
system from the audio of a meeting:

(Qﬁ/eenie to decide quickly whether local for large
xpensive plasma screen aura for a bunch of

"Sthaller and cheaper ones and Holland together”

Now consider the followindiltered transcript
ere recognition errors were automatically blot-
d out using our proposed algorithm

... to decide quickly whether ... large expensive
asma screen ... for a bunch of smaller and
heaper ones and ... together”

We believe that transcripts like this second one
Fhay be more efficient for gisting and browsing the
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content of the original audio whoserrect tran- (Skantze and Edlund, 2004) (Zhou and Meng,
script is: 2004) (Zhouet al, 2005). Some of these methods
“We need to decide quickly whether we will go foachieve good performance, although they use dif-
a large expensive plasma screen or for a bunch fidrent test sets and report different evaluation
smaller and cheaper ones and tile them together.’'measures from the set we enumerate in Section 6.
Our approach to filtering recognition errors is to In our work, we use information that is external
identify semantic outliers By this, we mean to the ASR system, because new knowledge seems
words that do not cohere well semantically withikely to help in the detection of semantic outtier
other words in the transcript. More often than notn this respect, the work of Cox and Dasmahapatra
such outliers turn out to be mistranscribed word$2000) is closest to ours. They compared the accu-
We present several variants of an algorithm falacy of a measure based on Latent Semantic
identifying semantic outliers, and evaluate them iAnalysis (LSA) (Landauer and Dumais, 1997) to
terms of how well they are able to filter out recogan ASR-based confidence measure, and found that

nition errors. the ASR-based measure (using N-best lists) outper-
formed the LSA approach. While the N-best lists
2 Related Work approach was better at the high-Recall end of the

) ] spectrum, the LSA was better at the high-Precision
Hirschberget al. (1999), and Nakata®it al.(1998)  onq They also showed that a hybrid combination

proposed the idea of using automatic transcripts fg¢ the two approaches worked best. Our work is
gisting and navigating audio documents. TeX{jmijar to the LSA-based part of Cox and Dasma-
based summarization techniques on automaip]%‘pmra except that we usmint-wise Mutual
speech transcription have also been used. For gxsormation (PMI) instead of LSA. Because PMI
ample, the method of Desile& al. (2001) was gcqles up to very large corpora, it has been shown
found to produce accurate keyphrases for transcrigy \york better than LSA for assessing the semantic
tions with Word Error Rates (WER) m_the order Ofsimilarity of words (Turney, 2001). Another dis-
25%, but performance was less than ideal for trafjngishing feature is that Cox and Dasmahapatra
scripts with WER in the order of 60%. With suchy,)y |ooked at transcripts with moderate WER,
transcripts, a large proportion of the extracteg-ke hereas we additionally evaluate the technique for
phrases included serious transcription errors. Inksq purpose of doing error filtering on transcripts

pen and Désilets (2004) presented an experimgpin high WER, which are more typical of non-
that filters out errors in keywords extracted frony.qadcast conversational audio.

speech, by identifying the keywords that are not
semantically close to the rest of the keywords. 3  The Data

Semantic similarity measures were used for
many tasks. Two examples are: real-word errde evaluated our algorithms on a randomly se-
correction (Budanitsky and Hirst, 2000) and arlected subset of 100 stories from the TDT2 English
swering synonym questions (Turney, 2001)Audio corpus. We conducted experiments with two
(Jarmasz and Szpakowicz, 2003). types of automatically-generated speech tran-

There is a lot of research on confidence measeripts. The first ones were generated by the
ures for identifying errors in speech recognitioNIST/BBN time-adaptive speech recognizer and
output. Most papers on this topic use informatiohave a moderate WER (27.6%), which is represen-
that is internal to the ASR system, generated by thative of what can be obtained with a speaker-
decoder during the recognition process. Exampla@sdependent ASR system tuned for the Broadcast
are likelihood ratios derived by a Viterbi decodeNews domain. In the rest of this paper, we refer to
(Gillick et al, 1997), measures of competinghese moderate accuracy transcripts asBB&
words at a word boundary (Cox and Rose, 1996Jataset The second set of transcripts was obtained
word score densities in N-best lists, and varioussing the Dragon NaturallySpeaking speaker-
acoustic and phonetic features. Machine learnirdgpendent recognizer. Their WER (62.3%) was
techniques were used to identify the best combinazuch higher because the voice model was not
tions of features for classification (Chase, 199#yained for speaker-independent broadcast quality
(Schaaf and Kemp, 1997) (Met al, 2001) audio. These transcripts approximate the type of



high WER seen in more casual less-than-broadcasbrds before and after w in the transcript (the
quality audio. We refer to these transcripts as thW&indow variant).

Dragon dataset For Step 2 we experimented with two different
measures for evaluating the pair-wise semantic
4 The method similarites S(w w). The first measure used a

hand-crafted dictionary (theRoget variant)

Our algorithm fries to detect recognition errors by hereas the second one used a statistical measure
identifying and filtering semantic outliers in thepscad on a large corpus (Bl variant).
transcripts. In other words, it declares as recogni g, Step 3 we experimented with different

Fion errors all the words with Iow_semantic Sim,"arschemes for “aggregating” the pair-wise semantic
ity to other words in the transcript. The algorithmy;milarities S(w W) into a single semantic coher-
focuses orcontent words i.e., words that do not ence number SC@vfor a given word w The first
appear in a list of 779 stopwords (including Clesedaggregation scheme was simply to average the
class words, §uch as prepositi(_)ns, articles, etCéC(w) values (theAVG variant). Note that with
The reason to ignore stopwords is that they tend {9, scheme, we filter words that do not cohere
co-occur with most words, and are therefore Sgge|| with all the words in the neighborhood N(w).

mantically coherent with most words. The basigpis might be too aggressive in the case ofAte
algorithm for determining if a wond/ is a recogni- ariant, especially for longer or multi-topic audio

tion error is as follows. documents. Therefore, we investigated other ag-
gregation schemes that only required words to co-

re well with a subset of the words in N(w). The
second aggregation scheme was to set §Q¢w
the value of the most similar neighbor in N(w) (the
2. Computepair-wise semantic similarity scores MAX variant). The third aggregation scheme was
S(w, wj) between all pairs of words;w w; (in- 1o set SC(W to the average of the 3 most similar
cluding w) in the neighborhood N(w), using a seneighbors in N(w) (th&MAX variant).

1. Compute theneighborhood N(w) of w as the
set of content words that occur before and after
in a context window (including w itself).

mantic similarity measure. Scale up those; Sy Thus, there are altogether 2x2x3 = 12 possible
by a constant so that they are all non-negativet, agonfigurations of the algorithm. In the rest ofsthi
the smallest one is 0. paper, we will refer to specific configurations us-

ing the following naming schem&teplVariant-
3. For each win the neighborhood N(w) (includ- Step2Variant-Step3Variant For example, All-
ing w), compute itssemantic coherenceSC(w). PMI-AVG means the configuration that uses the
by “aggregating” the pair-wise semantic similariA|l variant of Step 1, the PMI variant of Step 2,
ties S(w, w) of w; with all its neighbors (W£ wj))  and the AVG variant of step 3.
into a single number. It is worth noting that all configurations of this
algorithm are computationally intensive, mainly
because of Step 2. However, since our aim is to
provide transcripts for browsing audio recordings,

5. Label w as a recognition error if SC(w) <We do not have to correct errors in real time.
K-SCwg Where K is a parameter that allows us t
control the amount of error filtering (K% of the

average Is_elmantlc cf_olherence (Sjcﬁ_re%' Lolw Va“:ces§émantic similarity refers to the degree with which

K mean little error filtering and high values of Ky words (two concepts) are related. For example,

mean a lot of error filtering. most human judges would agree tipetper and
We tested a number of variants of Steps 1-3. FBFNCil are more closely related thacar and

Step 1, we experimented with two ways of comtoothbrush We use the terrsemantic similarityin
’ is paper in a more general sensesahantic re-

puting the neighborhood N(w). The first approacﬂﬂI i
was to set N(w) to be all the words in the tramgcri atedness(two concepts can be related by their
context of use without necessarily being similar).

(the All variant). The second neighborhood ap*
proach was to set N(w) to be the set of 10 content

4. Let SGq be the average of SCjvover all win
the neighborhood N(w).

5 Choosing a semantic similarity measure



There are three types of semantic similaritpne of the three corpus-based approaches that
measures: dictionary-based (lexical taxonomgcales up to a terabyte corpus.
structure), corpus-based, and hybrid. Most of the We describe here in detail the PMI corpus-based
dictionary-based measures use path length imeasure, because it is the most important for this
WordNet — for example (Leacock and Chodorowpaper. The semantic similarity score between two
1998), (Hirst and St-Onge, 1998). The corpusvords w and w is defined as the probability of
based measures use some form of vector similarigeeing the two words together divided by the prob-
The cosine measure uses frequency counts in @bility of each word separately: PMI{w,) = log
vectors and cosine to compute similarity; the sinfP(w,w,) / (P(W)-P(W))] = log [C(wy,Wo)[M /
pler methods use binary vectors and compute Cog&(w;)T(w,))], where C(w,w,), C(wi), C(w,) are
ficients such as: Matching, Dice, Jaccard, anlequency counts, and N is the total number of
Overlap. Examples of hybrid measures, based @fbrds in the corpus. Such counts can easily and
WordNet and small corpora, are: Resnik (1995kfficiently be retrieved for a terabyte corpus gsin
Jiang and Conrath (1997), Lin (1998). All dictionthe Waterloo Multitext system.
ary-based measures have the disadvantage of limin order to assess how well the semantic similar-
ited coverage: they cannot deal with many propy measures correlate with human perception, we
names and new words that are not in the dictiopse the set of 30 word pairs of Miller and Charles
ary. For WordNet-based approaches, there is tt991), and the 65 pairs of Rubenstein and Goode-
additional issue that they tend to work well onlywough (1965). Both used humans to judge the simi-
for nouns because the noun hierarchy in WordNgirity. The Miller and Charles pairs were a subset
is the most developed. Also, most of the WordNebf the Rubenstein and Goodenough pairs. Note that
based measures do not work for words with diffelboth of those sets were limited to nouns that ap-
ent part-of-speech, with small exceptions such @gared in the Roget thesaurus, and they are there-
the extended Lesk measure (Banerjee and Ped@ie favorably biased towards dictionary-based
sen, 2003). approaches. Table 1 shows the correlation of 5

We did a pre-screening of the various semantigmilarity measures for the Rubenstein and Goode-
similarity measures in order to choose the ongough (R&G) and Miller and Charles (M&C) data-
measure of each type (dictionary-based and c@et. Note that although there are many WordNet-
pus-based) that seemed most promising for obhsed semantic similarity measures, we only show
task of detecting semantic outliers in automatigorrelations for Leacock and Chodorow (L&C)
speech transcripts. The dictionary-based apecause it was previously shown to be better corre-
proaches that we evaluated were: the WordNekted (Jarmasz and Szpakowicz, 2003). We do not
based measure by Leacock and Chodorow (198%how figures for hybrid measures either because

and one other dictionary-based measure that ugae same study showed L&C to be better.
the Roget thesaurus. The Roget measure (Jarmasz

and Szpakowicz, 2003) has the advantage thatTible 1: Correlation between human assigned aridusgr
works across part-of-speech. The corpus-basé@Chi”e as_signed semantic similarity scores.
measures we evaluated were: (a) the cosine meas- | Dictionary-based Corpus-based
ure based on word co-occurrence vectors (L L&C | Roget | Cos. | corr. | PMI_
1969), (b) a new method that computes the Pearsgt ¢ | 0821 0878 | 0406 0433 0739
TN - &G 0.852 0.818 0.472 0.51y 0.746
correlation coefficient of the co-occurrence vest

instead of the cosine, and (c) a measure based ORve see that the WordNet-based L&C measure

]E)oint-wise mutual inforrrr:ation. Wﬁ compu(;ed g ased (Leacock and Chodorow, 1998 and the Ro-
irst two measures on the 100-million-words Brit- ’ ;
ish National Corpus (BNG)and the third one on aget measure (Jarmasz and Szpakowicz, 2003) both

chieve high correlations but the two vector cor-
much larger-corpus of Web data (one terabyt?g g
i

<

=_0_O0n

. s-based measures (Cosine and Pearson Correla-
accessed through the Waterloo Multitext syste (

(Clarke and Terra, 2003). The reason for usin(gon) achieve much lower correlation. The only

. : : . rpus-based measure that does well is PMI,
corpora of different sizes is that PMI is the on%robably because of the much larger corpus

! http:/iww.natcorp.ox.ac.uk/index.html



We decided to experiment with two of the measalgorithm does not apply). Note that WER without
ures (one corpus-based and one thesaurus bassdpwords could be slightly lower than traditional
for computing the semantic similarity of wordWER mostly because content words tend to be rec-
pairs in Step 2 of the algorithm described in Seognized more accurately than stopwords (Désilets
tion 3. The two measures are: PMI computed cet al. 2001). When filtering out semantic outliers,
the Waterloo terabyte corpus and the Roget-basttbre will be gaps in the filtered transcript, #her
measure. These two seem the most promisifigre the general WER might not improve because
given the nature of our task and the correlatign fi it penalizes heavily the deletions.

ures reported above. o
2. Content word error rate (c(WER). This is the

6 Evaluation Measures error rate in an automatic transcript (initial dr f
tered) from the point of view of the confidence
We use several evaluation measures to determim@asure, for the content words only. It penalizes
how well our algorithm works for identifying se-the words in the automatic transcripts that should
mantic outliers. As summarized in Table 2, the tagkot be there, but not any missing words (no dele-
of detecting recognition errors can be viewed asti@ns are penalized). In the case of a transcilipt f
classification task. For each word, the algorithrtered by our algorithm, it excludes not only the
must predict whether or not that word was trarstopwords, but also the filtered words. We com-
scribed correctly. puted cWER with sclite without penalizing for the

iy ) gaps created by the filtered words.
Table 2: Recognition error detection can be seen as

classification task. 3. The percentage of lost good content words
Correctly | NOT Correctly (%Lost). Thisis the percentage of correctly rec-
transcribed transcribed ized tent d hich lost in th
(actual) (actual) ognized content words which are lost in the proc-
Correctly True Positive | False Positive ess of filtering out recognition errors, defined as
transcribed (TP) (FP) %Lost = 100 * FN / (TP + FN). We could also
(predicted) : . compute thepercent of discarded words without
NOT Correctly | False Negative | True Negative regard if they should have been filtered out or not
transcribed (FN) (TN) D= (TN +FN) /(TP + FP + TN + FN).
(predicted)

4. Precision (P) Recall (R) andF-measure Pre-

Note that we decide if a word is actually Cor'%‘ji‘sion is the proportion of truly correct words con-

rectly transc_:ribed or not b_y using the alignment_q ined in the list of content words which the
an automatic transcript with the manual transcr|p&|gorithm labeled as corred®ecall is the propor-

A standa_rd evaluation tool (scﬁ)e(_:orr_]putes WER 4ion of truly correct content words that the algo-
by counting the number of substitutions, deletlon§-nhm was able to retainF-measure is the

and insertions needed to align a reference trag; monic mean of P and R and expresses a tradeoff

script with a hypothesis file. It also marks thgyeyyeen those two measures. P = TP / (TP + FP);
words that are correct in automatic transcript (thﬁ =TP /(TP + FN); F = 2PR / (P+R)
hypothesis file). The rest of the words are the ac- ’ '

tual recognition errors (the insertions or substitl;  Resuylts
tions). The deletions — words that are absent from
the automatic transcript — cannot be tagged by thMge ran various configurations of the algorithm
confidence measure. described in Section 4 on the 100 story sample
We define the following performance measureffom the TDT2 corpus. This section discusses the
in order to evaluate the improvement of the filtereresults of those experiments. We studied the Preci-
transcripts compared to the initial transcripts: sion-Recall (P-R) curves for various configurations
of our algorithm over the 100 stories, for the two
types of transcripts: the BBN and Dragon datasets.
gures 1 and 2 show an example for each dataset.
ach point on a P-R curve shows the Precision and
Recall for one value of K in {0, 20, 40, 60, 80,

1. Word error rate in the initial transcript and in
the filtered transcript. These measures can be co
puted with and without stopwords (for which our-

2 http://www.nist.gov/speech/tools/



100, 120, 140, 160, 180, 200}. Points on the le 1

correspond to aggressive filtering (high values g 4

K), whereas points on the right correspond to leni _ ,,

ent filtering (low values of K). 2 07 E—
First, we looked at the relative merits of the twg & 06 —=—P-Roget

semantic similarity measures (PMI and Roget) fo os

Step 2. Figures 1 and 2 plot the P-R curves for th 0'4 | | | |

All-PMI-AVG and All-Roget-AVG configurations. "o 02 o4 o6  os 1

The graphs clearly indicate that PMI performs bet Recall

ter, especially for the high WER Dragon datase

So PMI was used in the rest of the experiments. Fig éiBF”\I-iz Cturvets Ef PhMFl)VS- Rchiet (with Al gn?ﬁﬁv ;nT

NeXt’ we looked at. the variants for Settmg up th\‘/%elue of thz1 ?r?r?eéhoéllg K (higf\oll?nec(g?lr:‘gfrl)gvr\; vseﬂu:[K, high
neighborhood N(w) in Step 1 (All vs. Window). precision for high values of K).

The three P-R curves for All-PMI-X and Window-

PMI-X for all aggregation approaches X in {AVG,
MAX, 3MAX} are not shown here because they
were similar to the P-PMI curves from Figures 1
and 2, for the BBN dataset and for the Drago
dataset, respectively. The Window variant wa
marginally better for X=MAX on both datasets, as =~ °°|
well as for X=3MAX on the BBN dataset. In all | °°
other cases, the Window and All variants per| ©°4
formed approximately the same.

Next, we looked at the different schemes for a
gregating the pair-wise similarity scores in Step Big 2: P-R curves of PMI vs. Roget (with All and &Y on
(AVG, MAX, 3MAX). By plotting the P-R curves the Dragon dataset
for All-PMI-AVG, All-PMI-MAX, and All-PMI-
3MAX for both datasets we obtained again curve| v,

0.9
0.8 1

0.7 1 ——P-PMI
—&— P-Roget

Precision

0 0.2 0.4 0.6 0.8 1
Recall

similar to the P-PMI curves from Figures 1 and 2§ a0 s a1~ CWEREEN
H o 60 0
It seemed that AVG performs slightly better fors e —+— %Lost-BBN
high Recall, the difference being more marketg 20 L C A ||+ F-measure
> 0

when there is no windowing or when we are work T
ing on the Dragon dataset. The 3MAX and MAX| 0 20 40 60 80 100120140 160 180 200
variants seemed to be slightly better at high Preg K (threshold)

sion with acceptable Recall values, with 3MAX

being alwavs egqual or verv slightly better thaﬁig.& Content Words Error Rate (C(WER), %Lost gkeg
9 Y 9 y gntly words (%Lost) and F-measure as a function of tkerifig

MAX.' _ln E,m aUdIO, gisting and browsing Contequvel K for the Window-PMI-3MAXconfiguration on thBBN
Precision is more important than Recall, thereforg@taset.

we can choose 3MAX.

Having established Window-PMI-3MAX as one
of the better configurations, we now look morg
closely at its performance.

Figures 3 and 4 show how the content word e
ror rate (C(WER), the percentage of lost good word —
(%Lost), and the F-measure vary as we apply mo 0 20 40 60 80 100 120 140 160 180 200
and more aggressive error filtering (by increasin
K) to both datasets. We see that our semantic o
lier filtering approach is able to significantly-re Fig.4. Content Words Error Rate (CWER), %Lost gkey-
duce the number of transcription errors, Wh”%/ords (%Lost) and F-measure as a function of therifig

losi t ds. F | ith th evel K for the Window-PMI-3MAX configuration on ¢h
osing some correct words. For example, with the p 400 dataset.

100

—=— cWER-Dragon

—e— %Lost-Dragon

A
—— F-measure

cWER /% lost/F
N B OO
o O O O o

K (threshold)




moderately accurate BBN dataset, we can reduge Conclusion and Future Work
CWER by 50%, while losing 45% of the good con-
tent words (K=100). For the low accuracy DragohVe presented a basic method for filtering recogni-
dataset, we can reduce cWER by 50%, while lo§on errors of content words from automatic speech
ing 50% of the good content words (K=120). Wéranscripts, by identifying semantic outliers. We
can choose lower thresholds, for smaller reductigfescribed and evaluated several variants of the ba-
in C(WER but smaller percent of lost good conteric algorithm.
words. Even small reductions in c(WER are impor- In future work, we plan to run our experiments
tant, especially for less-than-broadcast conditior@® other datasets when they become available to
where WER is initially very high. us. In particular, we want to experiment with
In general, we were not able to show an immulti-topic audio documents where we expect
provement in WER computed in a standard wapore marked advantages for windowing and alter-
(item 1 in Section 6), because of the high penaltjative aggregation schemes like MAX and 3MAX.
due to deletions for both filtered semantic ouslierWe plan to explore ways to scale up other corpus-
and lost good content words. The percent of lobased semantic similarity measures to large tera-
good words is admittedly too high, but this seentgdyte corpora. We plan to explore more approaches
to be the case for speech error confidence measui@sletecting semantic outliers, for example cluster
(which do not remove the words tagged as incoiag or lexical chains (Hirst and St-Onge, 1997).
rect). Also, for the purpose of audio browsing and The most promising direction is to combine our
gisting, we believe that fewer errors even withrslogmethod with confidence measures that use internal
of content are preferable for intelligibility. information from the ASR system (although the
Comparing our results to those reported by Ccosternal information is hard to obtain when using
and Dasmahapatra (2000) our PMI-based meas@®@ ASR as a black box, and it could be recognizer-
seems to performs better than their LSA-baseapecific). A combination is likely to improve the
measure, judging by the shape of the Precisioperformance, with the PMI-based measure contrib-
Recall curves. (For example, at Precision=90%lting at the high-Precision end and the internal
they obtained Recall=12%, whereas we obtaiASR measure contributing to the high-Recall end
20%. At Precision=80%, they obtain Recall=50%®f the spectrum. To increase Recall we can also
whereas we get Recall=100%.) Note however thigtentify named entities and not filter them out.
their results and ours are not completely compar&ome named entities could have high semantic
ble since the experiments used different audio cdgimilarity with the text if they are frequently men
pora (WSJCAMO vs. TDT2), but those twotioned in the same contexts in the Web corpus, but
corpora seem to exhibit similar initial WERs (thesome names could be common to many contexts.
WER appears to be around 30% for WSJCAMO; Another future direction will be to actually cor-
the WER is 27.6% for our BBN dataset). Also, it igect the errors instead of just filtering them dtadr
worth noting the LSA measure was compute@xample, we might look at the top N speech recog-
based on a corpus that was very similar to the aitizer hypotheses (for a fairly large N like 1000)
dio corpus used to evaluate the performance of ta8d choose the one that maximizes semantic cohe-
measure (both were Wall Street Journal corporgdion. A final direction for research is to conduct
If one was to evaluate this measure on audio frogxperiments with human subjects, to evaluate the
a completely different domain (ex: news in the scidegree to which filtered transcripts are bettentha
entific or technical domain), one would expect thgnfiltered ones for tasks like browsing, gistinglan
performance to drop significantly. In contrast, ougearching audio clips.
PMI measure was computed based on a general
sample of the World Wide Web, which was nof\cknowledgments
tailored to the audio corpus used to evaluate i e thank the following people: Peter Tumey and tib
performance. Therefore, our numbers are probalQBigues for useful feedback; Gerald Penn for feektmn
more representative of what would be experiencedrlier versions of this paper; Egidio Terra anciia Clarke

with audio corpora outside of the Wall Street Joufor giving us permission to use the Multitext Systehe NRC
nal domain copy; Mario Jarmasz and Stan Szpakowicz for shaitiedy
' code for the Roget similarity measure; Aminul Isléon the
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