
LOTOS Interpretation of Timethreads:
A Method and a Case Study

F. Bordeleau, D. Amyot

Report SCE-93-34
December 8, 1993

Department of Systems and Computer Engineering
Carleton University

Ottawa Canada K1S 5B6
email: francis@sce.carleton.ca

damyot@csi.uottawa.ca

This work has been supervised by Professor R.J.A. Buhr (U. Carleton) and Professor
L. Logrippo (Ottawa U.).

© Copyright D. Amyot, F. Bordeleau
Department of Computer Science, University of Ottawa.

Department of Systems and Computer Engineering, Carleton University

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 1 of 30

LOTOS Interpretation of Timethreads:
A Method and a Case Study

Francis Bordeleau1

Daniel Amyot2

1 Real-Time and Distributed Systems Research Group
Carleton University

Department of Systems and Computer Engineering
Ottawa, Ont., Canada K1S 5B6
email: francis@sce.carleton.ca

2 Telecommunication Software Engineering Research Group
University of Ottawa

Department of Computer Science
Ottawa, Ont., Canada K1S 9B4
email: damyot@csi.uottawa.ca

Abstract
Timethreads are a new notation for visual description of path behavior. Also, a
design process based on timethreads, namely timethread-centered design process,
has been defined. In this report, we discuss the integration of the FDT LOTOS in
the timethread-centered design process. The objective of such an integration is to
provide formal support for timethread transformations with LOTOS. For this pur-
pose, we first define a LOTOS interpretation method for timethreads. The method
allows the generation of LOTOS specifications from timethread diagrams. Then,
we show how the LOTOS interpretation method for timethreads applies in practice
by conducting a case study. This case study also serves to identify topics for future
research in relation with the definition of a formal framework to support the timeth-
read-centered design process.

1. Introduction

1.1 Overview

Timethreads have been defined in [Buh 93 & BuC 93] as a new visual notation for path descrip-
tion of distributed systems. Timethreads visually illustrate causality sequences of activities
through systems. Also, in [BuC 93 & BCP 93], a design process based on timethreads, namely
timethread-centered design process, is defined. Although timethreads have only existed for a few
years, the notation has been taught by Prof. Buhr to many students at Carleton University and to

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 2 of 30

hundreds of engineers in industries, in both Canada and USA, through a series of courses. The
concept of timethreads has been very well accepted by both students and engineers mainly
because it is based on a very natural way of thinking when designing real-time and distributed sys-
tems. The notation is easy to understand and it facilitates both description and visualization of sys-
tem path behaviour.

The formal aspect of timethreads has been partially discussed in relation with both Petri nets in
[FCB 93] and LOTOS in [Vig92] (timethreads were called “slices” in [Vig92]). However, timeth-
reads do not have, at this point in time, a complete formal semantics. One direct consequence of
this is that timethread manipulations can only be conducted informally. This means that a timeth-
read diagram D’, which has been obtained from a diagram D by successive timethread manipula-
tions, can not be validated with respect to the former diagram D in a formal way. Thus, we can not
verify that D’ is correct with respect to D. Then, since timethread manipulations play a key role in
the timethread-centered design process, we need to define, in order to use a timethread-centered
design process in an industrial environment, a formal framework for timethreads that will enable
the support of timethread manipulations. Also, the definition of such a framework would consti-
tutes an important step towards the definition of a tool to support the timethread-centered design
process.

This report, together with [Bor 93] and [Amy 93], constitutes the starting point of a new project,
called FIT (Formal Method Integration in the Timethread-Centered Design Process), which aims
at defining a formal framework to support the timethread-centered design process. In this report,
we discuss the integration of the FDT LOTOS in the timethread-centered design process. The
objective of such an integration is to provide formal support for timethread manipulations using
LOTOS. For this purpose, we think that if LOTOS specifications can be obtained from timeth-
reads diagrams, then CPTs (Correctness Preserving Transformations) defined for LOTOS may be
adapted to provide such support.

1.2 Objectives

In order to integrate LOTOS in the timethread-centered design process, the first step consists in
defining an interpretation method that allows the generation of LOTOS specifications from time-
thread diagrams. In this way, the objectives of this report are:

1°) to define a LOTOS interpretation method for timethreads,

2°) to conduct a case study illustrating how the interpretation method applies in practice.

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 3 of 30

The LOTOS interpretation method for timethreads defined in this report is based on the work
described in [Bor 93] and [Amy 93]. The interpretation method is a general one that allows the
generation of LOTOS specifications from timethread diagrams. For the purpose of the case study,
we use the traveler system described in [BuC 93]. We show how a LOTOS specification can be
derived from the timethread diagram of the traveler system using the LOTOS interpretation
method for timethreads defined in this report. The case study also serves to identify topics for
future research in relation with the definition of a formal framework to support the timethread-
centered design process.

1.3 Organization

The report is organized as follows. In section 2, we define the LOTOS interpretation method for
timethreads. In this section, we show how the concept of generic LOTOS interpretation methods
defined in [Bor 93] may be adapted for the definition of a specific LOTOS interpretation method
for timethreads. We also show how the LOTOS semantics for timethreads, defined in [Amy 93],
applies in the definition of the LOTOS interpretation method for timethreads. In section 3, we
illustrate how this interpretation method may apply in practice to generate LOTOS specifications
from timethread diagrams. For this purpose the traveler system is used as a case study. This case
study will serve to identify future research topics for the FIT project. Section 4 presents a few exe-
cutions of the traveler specification, to get an idea of what information is contained in such a spec-
ification. Finally, in section 5, we discuss the conclusions of this report and draw up a list of topics
for future research.

2. A LOTOS Interpretation Method for Timethreads

In [Bor 93], the concept of formal interpretation method is defined. A formal interpretation
method allows the interpretation of a given design in terms of a given formal semantic model. In
[Bor 93], the concept of formal interpretation method is defined in relation with component-cen-
tered type of designs, which corresponds to the conventional design process in which components
are decomposed into interacting subcomponents until every bottom level component is simple
enough to be considered as a primitive component [Tur 93 & Buh 93a].

In this report, we apply the concept of interpretation method for the LOTOS interpretation of time-
thread diagrams. This LOTOS interpretation method for timethreads is illustrated in figure 1.

In the following subsections, we describe each part of the LOTOS interpretation method for time-
threads: the timethread decomposition method (§2.1), the LARG model (§2.2), the LAEG method
(§2.3), and the composition of the complete specification method (§2.4).

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 4 of 30

Figure 1: LOTOS interpretation method for Timethreads

2.1 Timethread decomposition method

The timethread decomposition method is based on the work described in [Amy 93], where the
LOTOS semantics of both the different types of individual timethreads and the different type of
timethread interactions is discussed. As a result, skeletons of LOTOS process corresponding to the
different types of timethreads and LOTOS structural expressions corresponding to the different
possible types of single interactions are given. Also, different issues in relation with the LOTOS
interpretation of timethreads have been raised.

The LOTOS interpretation method for timethreads consists of two steps:

• Mapping of the timethreads diagram onto a LARG.

• Mapping of the path behaviour of individual timethreads onto LOTOS behavioural expres-
sions.

timethread
Decomposition

method

LOTOS specification

Timethreads

LOTOS

LOTOS
Interpretation

Model

Method

Timethreads diagram

composition of
complete specification

method

LOTOS

expressions
behavioral

LARG
model

LAEG
method

LOTOS

expressions
structural

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 5 of 30

Figure 2 shows an example where a small diagram with two timethreads (P and Q), representing a
system “design”, is mapped onto a LARG with two processes. The timethreads interact on the
event GoQ, and this is reflected in the LARG by a 2-way rendez-vous. Usually, we obtain one
LOTOS process for each timethread. However, in some cases, like synchronized segments of
timethreads, we need to introduce additional LOTOS processes. In figure 3, the LOTOS behav-
ioural expressions corresponding to timethreads P and Q is given..

The final specification would be a simple combination of the structural expression and the behav-
ioural expressions. The traveler example of section 3 will develop these issues more deeply.

Figure 2: Example of a timethread diagram and its corresponding LARG

Figure 3: Structure part and LOTOS processes corresponding to the LARG

2.2 The LARG model

The LARG model has been developed to serve as the intermediate structural model in the LOTOS
interpretation method. An example of a LARG, in which the different types of LARG components
are identified, is illustrated in figure 4. The LARG model possesses only one type of structural
component, called process, and one type of interaction which is rendez-vous interaction. Interac-
tions between processes are realized by means of synchronization on gates. The LARG model

allows the representation of N-way interactions (for N ≥ 1) and possesses a high level interaction
operator that corresponds to the LOTOS parallel operator. Also, because the generation of LOTOS
structural expressions must be allowed from LARGs, the LARG model has been developed in

a
P

b
Q

TrigP
GoQ

ResQ

GoQP

TrigP,a,GoQ

Q

GoQ,b,ResQ

behaviour

 P [TrigP, a, GoQ]

 |[GoQ]|

 Q [GoQ, b, ResQ]

process P [TrigP, a, GoQ] : noexit :=

 TrigP; (a; GoQ; stop ||| P [TrigP, a, GoQ])

endproc

process Q [GoQ, b, ResQ] : noexit :=

 GoQ; (b; ResQ; stop ||| Q [GoQ, b, ResQ])

endproc

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 6 of 30

such a way that the LARG artifacts, i.e. processes and gates, can directly be mapped to LOTOS
structural constructs, i.e. LOTOS processes and LOTOS gates. Finally, for the purpose of the
LAEG method, both a Grouping algorithm and an UnGrouping algorithm have been defined on
LARGs. The LARG model, the Grouping algorithm and the UnGrouping algorithm are all for-
mally defined in [Bor 93].

In the timethread interpretation method, each timethread of the timethread diagram is mapped
onto a LARG process and interactions between timethreads are mapped onto interaction gates.
Therefore, the term structure refers to timethread structure, i.e. the topology of interacting timeth-
reads.

Figure 4: Example of a LARG

2.3 The LAEG method

The LAEG method aims at generating LOTOS structural expressions from LARGs. It is con-
ducted in two distinct phases:

1°) LARG analysis, and

2°) generation of LOTOS structural expressions.

2.3.1 LARG Analysis

In the case of timethreads interpretation, the LARG analysis phase is reduce to non-determinism
identification. Also, the only type of non-determinism allowed in timethreads is non-deterministic
interaction-choice.

P b, c, d

hide a in

a, b, c

P1

a, c, d

P3

a, b, d

P2

a

c d

b

Process idendifier

Hidden gate set

Process box

Gate set

Gate Link
3-way interaction
gate set

2-way interaction
gate set

Label set

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 7 of 30

We say that a gate g is the source of non-deterministic interaction-choice in a LARG P, iff:

1°) g is contained in more than one gate set (GS) in P, and

2°) every GS containing g is linked on one side to a constant set of processes, called the
root process set of the non-deterministic interaction-choice, and on the other side to

distinct processes, i.e. processes which are linked to only one GS containing g, called
the choice process set of the non-deterministic interaction-choice.

Thus, every process which possesses gate g is either linked to every GS containing g or to one and
only one GS containing g. In this definition, g can be of any types of interactions, i.e. N-way inter-
action for any N > 1.

In figure 5, an example of a non-deterministic interaction-choice LARG is given. In this LARG,
gate a is the non-deterministic interaction-choice gate. We observe that P1 can interact with either
P2 or P3 on the 2-way interaction gate a. We also observe that P2 and P3 do not interact together.
Therefore, in order to have an interaction on gate a, we need to have P1 ready to interact on a and
either P2 or P3 also ready to interact on a.

Figure 5: Non-deterministic interaction-choice LARG

2.3.2 Generation of LOTOS structural expressions

The second phase consists in generating LOTOS structural expressions from LARGs. This phase
is essential since LOTOS only possesses binary operators. It involves successive applications of
the grouping algorithm. The algorithm is applied until we obtain a binary grouped LARG which is
equivalent to the former one.

An illustration of LARG binary grouping is given in figure 6. Figure 6(b) gives an equivalent
binary grouping LARG which has been obtained by successive applications of the grouping algo-
rithm. The grouping sequence used in figure 6 has been arbitrarily chosen, and is only one of
many possible ones.

aP1

a

P2

a

P3

a
a

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 8 of 30

Figure 6: Binary grouping of a LARG

The tree representation of the LARG of figure 6(b) and its associated LOTOS structural expres-
sion are given in figure 7. We see from these two figures that the generation of a LOTOS structural
expression from a binary grouped LARG is straightforward.

((P1[a, e] |[a]| P2[a, b]) |[b]| P3[b, c]) |[c, e]| (P4[c, d] |[d]| P5[d, e])

Figure 7: Tree representation and LOTOS architectural expression of the linearized LARG

Non-deterministic interaction-choice LARG

Groupings in non-deterministic LARGs is more problematic because, in such cases, some group-
ings violate the interaction semantics of the LARG. For example figure 8(a) and 8(b) represent
two different groupings of the LARG of figure 5. We observe that these two groupings lead to two
non-equivalent LARGs. In the first case a is a 2-way interaction while in the second case a is a 3-
way interaction. The LARG of figure 8(a) corresponds to a correct interpretation of figure 5, while
figure 8(b) corresponds to an incorrect one.

To eliminate non-determinism from non-deterministic interaction-choice LARGs, a technique
called non-deterministic interaction-choice grouping is defined in [Bor 93]. In non-deterministic

eP1
a, e

P5
d, e

P2
a, b

a

P4
c, d

P3
b, c

d

cb P2
a, b

P1
a, e

P3
b, c

P5
d, e

P4
c, d

a db c,e

(a) (b)

|[c, e]|

|[b]| |[d]|

P4 P5P3|[a]|

P1 P2

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 9 of 30

interaction-choice grouping, we group together all choice processes, i.e., all processes contained
in the choice process set (see [Bor 93] for more details on grouping techniques defined to elimi-
nate non-determinism in LARG). Figure 8(a) illustrates an example of the application of the non-
deterministic interaction-choice grouping technique.

Figure 8: 2-way non-deterministic parallel-interactions choice grouping

2.4 The Composition of the Complete Specification Method

The composition of the complete specification method consists in combining both the LOTOS
structural expression, which expresses the way timethreads interact in the timethread diagram, and
the different LOTOS behavioral expressions, each of which expresses the activity sequence in a
single timethread, in a global LOTOS specification. The resulting global LOTOS specification
reflects the path behaviour of the complete timethread diagram.

3. Case Study

The traveler system, shown in figure 10, is not a truly modern computer system in a literal sense.
This example depicts a familiar situation from everyday life which is easy enough to illustrate
properties similar to common computer systems. We can think of the travelers, the taxis, the
planes, etc., as components analog to computer-based subsystems, processes, or objects. There-
fore, the traveler system will help us thinking about distributed systems in the large without com-
mitting to any architectural concerns.

(a) (b)

P1
a

P3
a

P2
a

a

P1
a

P3
a

P2
a

a

a

P3[a] |[a]| (P1[a] |[a]| P2[a])P1[a] |[a]| (P2[a] ||| P3[a])

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 10 of 30

3.1 Informal description of the traveler system

Travelers use a traveler system to get to a certain destination. The timethread diagram of figure 9
shows a “use case” delimiting the system (black box) and its environment. To transform this black
box into a gray box showing how a traveler gets to its destination, we need a more complete
description.

Figure 9: Use case of the traveler system

Suppose that the traveler system is composed of a taxi company, where a dispatcher receives
requirements from the travelers and then dispatches a taxi, and an airline. Different components
are defined: traveler, dispatcher, cab, and plane. They collaborate to get travelers to their destina-
tion without the intervention of a master controller to direct their individual activities and without
themselves necessarily having individual knowledge of how they fit into the whole [BuC 93]. This
can be considered a distributed system.

Here is the path description of each component, with corresponding activities (in fig. 10) between
parenthesis. When a new traveler comes (Tnew), he/she phones the dispatcher for a cab
(TphoneD), goes to a rendez-vous point, gets in the cab (TgetinC), has a taxi ride (TCride), gets
out the cab (TgetoutC), and goes to the airport (Tairport). Then, he/she waits for a plane, gets on
the plane (TgetonP), has a flight to another airport (TPflight), gets off the plane (TgetoffP) and
finally gets to the final destination (Tdest).

The dispatcher comes to the office (Din), waits for a request from a traveler (TphoneD), looks for
an available cab (DlookforC), asks for a cab (DaskC), fills internal statistics (Dfillstats), and
leaves the office (Din) or gets ready for the next traveler (Dready).

A taxi driver gets in the cab (Cin), waits for a request from the dispatcher (DaskC), waits for the
traveler to get in at a rendez-vous point (TgetinC), gives a ride to the traveler (TCride), leaves the
traveler (and gets paid!) (TgetoutC), and gets ready for a new request (CgoD) or goes to the garage
(Cgarage) and gets out the taxi (Cout).

At the airport, when an airline plane is ready (Pready), it waits for a traveler to get on (TgetonP),
flies to the next airport (TPflight), leaves the traveler (TgetoffP) and goes to a hangar (Phangar).

Destination

New Traveler

Traveler system

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 11 of 30

3.2 Timethread diagram

Following the complete description of the last section, the simple use case presented in figure 9
can be refined, using a timethread-centered design process [BuC 93], into a detailed path descrip-
tion: the timethread diagram of figure 10.

Figure 10: Timethread diagram of the traveler system

The refinement process is not presented here. This diagram is considered as a first “design” and a
LOTOS specification can therefore be derived. A few things have to be noted here:

• The refined grey box description of the system under design (SUD) still has the same envi-
ronment as the black box description (fig 9). Every activities in the SUD will be “hidden”

from a LOTOS point of view.

• A timethread is neither a component, an agent, nor an object, as the diagram could suggest.
Timethreads span through components, and they are not necessarily related on a 1-to-1

basis with components. Therefore, the fact that we have four timethreads here and that we
assumed we have four components is a coincidence.

• Different patterns are used here to differentiate timethreads, to give them a different iden-
tity. The identity of a timethread’s segment is not yet clarified in the notation. Patterns,

colours, and identifiers can be used for this purpose.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA

AAAA
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

Traveler

Dispatcher PlaneCab

Tnew

TphoneD

TgetinC TgetoutC

DaskC

TCride

DlookforC
Dfilltats

Dready

Din Dout

Cin

Cout

Cgarage

CgoD

Tairport

TgetonP

TPflight

TgetoffP

Phangar

Tdest

Pready

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA

AA
AA
AA

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 12 of 30

3.3 LARG representation

The first step for the obtention of a LOTOS specification from a timethread diagram is to map the
latter on a LARG (fig. 11).

Figure 11: LARG representation of the traveler system

The hide part of process Traveler_Example hides labels that are in the SUD, i.e., every labels
except Tnew and Tdest, which are external events. Internal processes also hide their internal activ-

ities, e.g., process Dispatcher hides DlookforC, Dfillstats and Dready1. The hiding of activities on
a timethread diagram is still an open issue. LOTOS provides much flexibility on this aspect, but
conventions for the mapping are still needed. In the traveler example, there are only two external
events (Tnew and Tdest), and actions (internal activities) of a timethread are hidden by default
within the corresponding LOTOS process.

Figure 11 shows one LOTOS process for each timethread, plus two extra processes (TravPlane
and TravCab). These processes are needed for modularity reasons. They can ease transformations
like regrouping and splitting [Amy 93], and they express more clearly common actions between
synchronized timethreads.

The next step of the transformations concerns the binary grouping of internal processes, which
allows a direct mapping onto a LOTOS structure of processes. The grouping is done using the

1. The hide parts of internal processes are not shown in de LARG for space reason, but we assume they are
there.

Plane

Pready, ...

TgetonP,

TgetoffP

TravPlane

TgetonP, ...

Traveler

Tnew, ...
TgetinC,

TgetoutC

TravCab

TgetinC, ...

Cab

Cin, ...

TphoneD DaskC
Dispatcher

Din, ...

Traveler_Example Tnew, Tdest

hide TphoneD, TgetinC... in

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 13 of 30

LAEG method [Bor 93]. Many different groupings can result from this algorithm, and the final
choice should not be arbitrary. Design decisions such as performance and location of components
and/or processes should tell us which grouping is the best. However, no such metrics have been
defined yet. Figure 12 shows one possible grouping.

Figure 12: Binary grouping of the traveler system

From this LARG, we can derive the structural section (unfortunately called behaviour section in
LOTOS) of the LOTOS specification (see [Bor 93] for more details):

Traveler_Example Tnew, Tdest

hide TphoneD, TgetinC... in

Dispatcher

Din, ...

TphoneD,

DaskC

Plane

Pready, ...

TgetonP,

TgetoffP

TravPlane

TgetonP, ...

Traveler

Tnew, ...
TgetinC,

TgetoutC

TgetinC,

TgetoutC

TravCab

TgetinC, ...

Cab

Cin, ...

TgetonP,

TgetoffP

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 14 of 30

specification Traveler_Example[Tnew (* New traveler wants to travel *),

 Tdest (* Traveler arrives to destination *)] : noexit

behaviour (* Architecture obtained from the LARG *)

hide (* hidden interactions *)

 TphoneD, (* Traveler phones Dispatcher for a cab *)

 TgetinC, (* Traveler gets in the cab *)

 TgetoutC, (* Traveler gets out the cab *)

 TgetonP, (* Traveler gets on the plane *)

 TgetoffP, (* Traveler gets off the plane *)

 Din, (* Dispatcher is in the office *)

 DaskC, (* Dispatcher asks for a cab *)

 Dout, (* Dispatcher is not in the office *)

 Cin, (* Taxi driver in the cab *)

 Cout, (* Taxi driver not in the cab *)

 Pready, (* Plane is ready *)

 Phangar (* Plane goes to the hangar *)

in

 Dispatcher[Din, TphoneD, DaskC, Dout]

 |[TphoneD, DaskC]|

 (

 (

 (

 Cab[Cin, DaskC, TgetinC, TgetoutC, Cout]

 |[TgetinC, TgetoutC]|

 TravCab[TgetinC, TgetoutC]

)

 |[TgetinC, TgetoutC]|

 Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]

)

 |[TgetonP, TgetoffP]|

 (

 Plane[Pready, TgetonP, TgetoffP, Phangar]

 |[TgetonP, TgetoffP]|

 TravPlane[TgetonP, TgetoffP]

)

)

3.4 Development of a timethread

Once the structure of the LOTOS specification is defined, every process has to be filled with its
behaviour (or path description). For instance, figure 11 focuses on the timethread Traveler and its
corresponding complete representation extracted from the LARG. Again, events are considered as
LOTOS gates and the activity Tairport is hidden (so it is an internal action). Note that actions
TCride and TPflight are not included in the label set since they are considered as internal activities
of processes TravCab and TravPlane, respectively.

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 15 of 30

Figure 13: Timethread Traveler and its corresponding LARG process

The LOTOS interpretation of this timethread is obtained using the semantics introduced in [Amy
93]. Different levels of abstraction could be used here. In this LOTOS process, the event TphoneD
represents an asynchronous interaction (in passing), interpreted as the interleaving sub-process
TphoneD; stop. Since LOTOS allows synchronous interactions only, we have to simulate asyn-
chronous interactions in this way.

(* Timethread Traveler *)

 process Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest] : noexit :=

 hide Tairport in (* hidden action *)

 Tnew;

 (

 TphoneD; stop (* in passing interaction *)

 |||

 (

 TgetinC;

 TgetoutC;

 Tairport;

 TgetonP;

 TgetoffP;

 Tdest; stop

)

 |||

 (* recursive call *)

 Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]

)

 endproc (* Traveler *)

The other 5 processes are also mapped onto LOTOS to form the final specification of our system
(presented in the Appendix A).

4. Simulation and validation

Such specification will be helpful, in later stages of the design, as a formal support to timethread
transformations, which are still research issues. However, this does not mean that this type of
specification is not useful as it is, in the contrary. We can “execute” the specification, with com-
mon LOTOS tools, either to get the feeling that our diagram corresponds in some way to the func-

AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
AAAA
AAAA

AAA
AAA

Tnew

TphoneD

TgetinC TgetoutC

Tairport

Tdest

Traveler

Tnew, TphoneD, TgetinC,
TgetoutC, TgetonP,

TgetoffP, Tdest
TgetonP

TgetoffP

hide Tairport in

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 16 of 30

tionality defined in the requirements, or to detect possible problems which will have to be solved
during later stages of the design. This simulation can effectively, at some level, leads to some
questions that the designer will have to answer with some refinement.

Two similar tools were used for the step-by-step simulation of the Traveler_Example specifica-
tion. The first one is XELUDO (Environnement LOTOS de l’Université d’Ottawa), on X-Win-
dows SUN workstations, and its TTY version (for VT-100 terminal) ELUDO. The second tool
was the PC version of LOLA (LOtos LAboratoty) from the University of Madrid.

Different levels of specification were used for the simulation. In the level 1 specification (without
recursion), all recursive calls were removed. Therefore, only one instance of each process was
allowed. For instance, the process Traveler becomes:

(* Timethread Traveler *)

 process Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest] : noexit :=

 hide Tairport in (* hidden action *)

 Tnew;

 (

 TphoneD; stop (* in passing *)

 |||

 (

 TgetinC;

 TgetoutC;

 Tairport;

 TgetonP;

 TgetoffP;

 Tdest; stop

)

) (* No more recursion! *)

 endproc (* Traveler *)

The simulation of this specification was straightforward. No unexpected problem was detected.
The Appendix B shows an instance of a trace obtained with ELUDO (I) and another trace obtained
with the help of LOLA (II). Level 1 specifications are useful only in the early stages of the design
process, when a fast simulation is needed to check a few simple properties or to get the feeling our
timethread diagram is right.

A level 3 specification (like the one in Appendix A) is more useful for thinking about the design.
Appendix B (III) presents a trace (obtained with LOLA) where the resulting event Tdest is
reached. However, although knowing that the purpose of our system can be fulfilled is essential, it
is very interesting to look for possible problems. This is in fact the goal of testing. Step-by-step
simulation can help us test our specification with different scenarios, in order to observe the sys-
tem’s reactions.

Part IV of Appendix B presents a case where the dispatcher, after receiving two requests from two
travelers, finally finds a taxi. The designer could wonder what was his initial intention there: how
many requests can the dispatcher accumulate before he tells the travelers he cannot take any more
requests? Is there any mean for the dispatcher to tell the next travelers that they would have to call

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 17 of 30

back later, when the system permits it? In the first loop of timethread Dispatcher, is it normal that
the dispatcher fills his statistics without having any news from the first taxi? Also, following the
semantics we gave to the timethreads, a taxi can only take one traveler. Is that what we really
intended? Should we specify a maximum number of travelers (say 3) that a taxi can take in? Does
the same thing happens with travelers and planes? All these questions could be raised only by exe-
cuting a simple sequence from a timethread diagram. These issues would have to be solved in
some way during the later stages of the design process.

Part V presents a problem about the number of instances. It appears that a unbounded number of
travelers can request a taxi. Again, how many requests can the dispatcher can deal with? If the dis-
patcher is not in the office, is there a way to signal the travelers that the system may not work
properly? Also, when many requests come to the dispatcher, should he deal with them in some
order, e.g., first in first out?

Appendix B (VI) also shows a short simulation using ELUDO and a mixed-level specification.
There are a maximum of three travelers (level 2 process, with a bounded number of instances),
only one dispatcher (level 1), a maximum of 2 cabs (level 2) and an unbounded number of planes
(level 3). Mixed-level specifications allow more control on the number of instances of timeth-
reads, resulting in more realistic simulations [Amy 93]. In this example, we can see that two trav-
elers (we can call them T1 and T2) got into two different taxis (C1 and C2). After their rides, they
have to get out their respective cabs. However, they simulation shows at this point four possible
actions. This is an interaction problem where T1 can get out of C1 or C2, and T2 can also get out
either of T1 or T2, explaining the four different choices! The designer knows that his system will
have to resolve some concurrency problem (like this interaction) later on.

Verification could be done using, for example, temporal logic over the symbolic extension of a
LOTOS specification [Ghr 92]. This extension allows the verification of all possible traces in the
transition system corresponding to the specification. SELA, a tool integrated in XELUDO, gives
the full expansion of a LOTOS process in the form of a tree, or more precisely a transition system.
Appendix B (VI) gives, as a short example, the extension of process Traveler in a level 1 specifi-
cation of the traveler system. LOLA also possesses such an extension function, but it uses a very
different format.

Other testing tools using goal-oriented execution, trace theory and temporal-logic could be inte-
grated into a timethreads-LOTOS simulation/testing environment.

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 18 of 30

5. Conclusions

In this report, we defined a LOTOS interpretation method for timethreads. The definition of this
method is based on the work described in [Bor 93] and [Amy 93]. This method allows the genera-
tion of LOTOS specifications from timethread diagrams. The definition of such a method consti-
tutes the first phase of the FIT project which aims at defining a framework for the integration of
formal methods in the timethread-centered design process. Also, we showed through the case
study that the interpretation method can be applied in practice, and that the specification we obtain
can be executed as a fast-prototype in the early stages of the design process.

The use of the method with more complex examples requires the definition of a more rigorous
timethread interpretation method which would enable the generation of LOTOS behavioral
expressions, or LOTOS processes, from any arbitrarily timethreads. For this purpose, we need to
define a more general LOTOS semantics for timethreads that would allow the interpretation of
individual timethreads as the composition of timethreads constructors. This is part of ongoing
research.

In order to allow the use of the LOTOS interpretation method, defined in this report, in a global
framework for the integration of LOTOS in the timethread-centered design process, the complete
formalization of the method is now required. The complete formalization of the LOTOS interpre-
tation method will first require the definition of a formal representation of timethreads notations,
possibly in a BNF. This will then enable the formal definition of the timethread interpretation
method, which is responsible for both the generation of behavioral expressions for individual
timethreads and the generation of a LARG from a timethread diagram.

5.1 Future Research

• Define in a complete formal way the LOTOS interpretation method for timethreads, in par-
ticular the timethreads interpretation method defined in [Amy93] need to be completely

formalized,

• Develop other case studies using more complex examples, e.g. the elevator system and the
MTU system [Buh 93a],

• Define correctness preserving transformations (CPTs) for timethreads based on LOTOS
CPTs,

• Define a correspondence, based on LOTOS, between a timethread diagram and a skeleton

architecture,

• Define similar interpretation methods for other formal semantic model, e.g. Petri nets and
event structures

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 19 of 30

6. Acknowledgments

Many people, from both Carleton University and University of Ottawa, contributed to this report.
We are particularly grateful to Professor R.J.A. Buhr and Professor L. Logrippo for all the con-
structive discussions, comments and encouragements. Also, many thanks to Ron Casselman and
Professor Abdellatif Obaid for their helpful comments. Finally, Jacques Sincennes and Jean Tour-
rilhes have helped a lot with the LOTOS toolkit XELUDO.

This work was funded by several sources: TRIO, NSERC, FCAR, and the Ministère de
l’Enseignement supérieur et de la Science du Québec.

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 20 of 30

References

[Amy 93] D. Amyot, "From Timethreads to LOTOS: A First Pass", TR-SCE-93-38, Dept. of Systems and
Computer Engineering, Carleton University, Ottawa, Canada (1993)

[BCP 93] R.J.A. Buhr, R.S. Casselman and F. Pomerleau, "Timethread-Driven Design of Dual Frameworks
for Real-Time and Distributed Systems", TR-SCE-93-06, Dept. of Systems and Computer Engi-
neering, Carleton University, Ottawa, Canada (1993)

[Bor 93] F. Bordeleau, "Visual Descriptions, Formalisms and the Design Process", Master’s thesis, School of
Computer Science, TR-SCE-93-35, Carleton University, Ottawa, Canada (1993)

[BuC 93] R.J.A. Buhr and R.S. Casselman, "Designing with Timethreads", TR-SCE-93-05, Dept. of Systems
and Computer Engineering, Carleton University, Ottawa, Canada (1993)

[Buh 93] R.J.A. Buhr, "Pictures that Play: Design Notations for Real-Time & Distributed Systems", TR-
SCE-93-04, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
(1993)

[Buh 93a] R.J.A. Buhr, "Object Oriented Design of Real-Time & Distributed Systems", Course notes, 94.586,
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (1993)

[CPT 92] Lo/WP1/T1.2/N0045/V03, "Catalogue of LOTOS Correctness Preserving Transformations", T.
Bolognesi Editor (1992), Lotosphere Project (ESPRIT 2304)

[FCB 93] W. Foster, R.S. Casselman, and R.J.A. Buhr, "From Timethreads to Petri Nets: A First Pass", TR-
SCE-93-26, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
(1993)

[Ghr 92] B. Ghribi, "A Model Checker for LOTOS", Master’s thesis, Dept. of Computer Science, University
of Ottawa, Ottawa, Canada (1992)

[ISO 88] ISO, Information Processing Systems, Open Systems Interconnection, "LOTOS - A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour", DIS 8807
(September 1987)

[LaB 92] S. Lamouret and R.J.A. Buhr, "Study of the links between Telos and LOTOS in relation with Time-
Threads", Real-Time and Distributed Systems Group, Carleton University, Ottawa, Canada (1992)

[Lan 90] R. Langerak, "Decomposition of Functionality: a Correctness Preserving LOTOS Transformation",
Protocol Specification, Testing and Validation X (1990), North-Holland, 229-242

[LOT 92] Lo/WP1/T1.1/N0045/V04, Juan Quemada, Gerard Yadan, "The Lotosphere Design Methodology:
Basic Concepts", Luis Ferreirs Pires Editor (1992), Lotosphere Project (ESPRIT 2304)

[Tur 93] K.J. Turner, "An Engineering Approach to Formal Methods", Protocol Specification, Testing and
Validation XIII (1993), North-Holland, I3-1 to I3-24.

[ViB 91] M. Vigder and R.J.A. Buhr, "Using LOTOS in a Design Environment",Proceeding of FORTE’91,
Fourth International Conference on Formal Description Techniques (1991), North-Holland,1-14

[Vig 92] M. Vigder, "Integrating Formal Techniques into the Design of Concurrent Systems", Ph.D. Thesis
OCIEE-92-03, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
(1992)

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 21 of 30

Appendix A: Final LOTOS specification

(* Traveler example; Daniel Amyot, December 1993 *)

(* Level 3 specification *)

specification Traveler_Example[Tnew (* New traveler wants to travel *),

 Tdest (* Traveler arrives to destination *)] : noexit

behaviour (* Architecture obtained from the LARG *)

hide (* hidden interactions *)

 TphoneD, (* Traveler phones Dispatcher for a cab *)

 TgetinC, (* Traveler gets in the cab *)

 TgetoutC, (* Traveler gets out the cab *)

 TgetonP, (* Traveler gets on the plane *)

 TgetoffP, (* Traveler gets off the plane *)

 Din, (* Dispatcher is in the office *)

 DaskC, (* Dispatcher asks for a cab *)

 Dout, (* Dispatcher is not in the office *)

 Cin, (* Taxi driver in the cab *)

 Cout, (* Taxi driver not in the cab *)

 Pready, (* Plane is ready *)

 Phangar (* Plane goes to the hangar *)

in

 Dispatcher[Din, TphoneD, DaskC, Dout]

 |[TphoneD, DaskC]|

 (

 (

 (

 Cab[Cin, DaskC, TgetinC, TgetoutC, Cout]

 |[TgetinC, TgetoutC]|

 TravCab[TgetinC, TgetoutC]

)

 |[TgetinC, TgetoutC]|

 Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]

)

 |[TgetonP, TgetoffP]|

 (

 Plane[Pready, TgetonP, TgetoffP, Phangar]

 |[TgetonP, TgetoffP]|

 TravPlane[TgetonP, TgetoffP]

)

)

where

(*---*)

(* Timethread Traveler *)

 process Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest] : noexit :=

 hide Tairport in (* hidden action *)

 Tnew;

 (

 TphoneD; stop (* in passing *)

 |||

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 22 of 30

 (

 TgetinC;

 TgetoutC;

 Tairport;

 TgetonP;

 TgetoffP;

 Tdest; stop

)

 |||

 (* recursive call *)

 Traveler[Tnew, TphoneD, TgetinC, TgetoutC, TgetonP, TgetoffP, Tdest]

)

 endproc (* Traveler *)

(*---*)

(* Timethread Dispatcher *)

 process Dispatcher[Din, TphoneD, DaskC, Dout] : noexit :=

 hide Sync in (* Constrained start *)

 Dis1[Din, Sync] |[Sync]| Dis2[Sync, TphoneD, DaskC, Dout]

 where

 process Dis1[Din, Sync] : noexit :=

 Din; (Sync; stop ||| Dis1[Din, Sync])

 endproc (* Dis1 *)

 process Dis2[Sync, TphoneD, DaskC, Dout] : noexit :=

 (* hidden actions *)

 hide

 DlookforC, (* Dispatcher looks for a cab *)

 Dfillstats, (* Dispatcher fills statistics *)

 Dready (* Dispatcher is ready for next traveler *)

 in

 Sync; DisLoop[Sync, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]

 where

 (* Loop part of the timethread Dispatcher *)

 process DisLoop[Sync, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]

 : noexit :=

 TphoneD;

 DlookforC;

 (

 DaskC; stop (* in passing *)

 |||

 Dfillstats;

 (

 Dready; DisLoop[Sync, TphoneD, DlookforC, DaskC, Dfillstats,

 Dready, Dout]

 []

 Dout; Dis2[Sync, TphoneD, DaskC, Dout]

)

)

 endproc (* DisLoop *)

 endproc (* Dis2 *)

 endproc (* Dispatcher *)

(*---*)

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 23 of 30

(* Timethread Cab *)

 process Cab[Cin, DaskC, TgetinC, TgetoutC, Cout] : noexit :=

 hide Sync in (* Constrained start *)

 Cab1[Cin, Sync] |[Sync]| Cab2[Sync, DaskC, TgetinC, TgetoutC, Cout]

 where

 process Cab1[Cin, Sync] : noexit :=

 Cin; (Sync; stop ||| Cab1[Cin, Sync])

 endproc (* Cab1 *)

 process Cab2[Sync, DaskC, TgetinC, TgetoutC, Cout] : noexit :=

 (* hidden actions *)

 hide

 CgoD, (* Cab goes to wait the dispatcher *)

 Cgarage (* Cab goes to the garage *)

 in

 Sync; CabLoop[Sync, DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout]

 where

 (* Loop part of the timethread Cab *)

 process CabLoop[Sync, DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout] : noexit :=

 DaskC;

 TgetinC;

 TgetoutC;

 (

 CgoD; CabLoop[Sync, DaskC, TgetinC, TgetoutC, CgoD, Cgarage, Cout]

 []

 Cgarage;

 Cout; Cab2[Sync, DaskC, TgetinC, TgetoutC, Cout]

)

 endproc (* CabLoop *)

 endproc (* Cab2 *)

 endproc (* Cab *)

(*---*)

(* Timethread_Plane *)

 process Plane[Pready, TgetonP, TgetoffP, Phangar] : noexit :=

 (* no hidden action in the timethread *)

 Pready;

 (

 TgetonP;

 TgetoffP;

 Phangar; stop

 |||

 (* recursive call *)

 Plane[Pready, TgetonP, TgetoffP, Phangar]

)

 endproc (* Plane *)

(*---*)

(* Timethread Intermediate (Traveler and Cab) *)

 process TravCab[TgetinC, TgetoutC] : noexit :=

 (* hidden action *)

 hide

 TCride (* Traveler takes a taxi ride *)

 in

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 24 of 30

 TgetinC;

 (

 TCride;

 TgetoutC; stop

 |||

 (* recursive call *)

 TravCab[TgetinC, TgetoutC]

)

 endproc (* TravCab *)

(*---*)

(* Timethread Intermediate (Traveler and Plane) *)

 process TravPlane[TgetonP, TgetoffP] : noexit :=

 (* hidden action *)

 hide

 TPflight (* Flight of the traveler on the plane *)

 in

 TgetonP;

 (

 TPflight;

 TgetoffP; stop

 |||

 (* recursive call *)

 TravPlane[TgetonP, TgetoffP]

)

 endproc (* TravPlane *)

endspec (* Traveler_Example *)

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 25 of 30

The traveler has arrived to the
destination.

No more action possible

Appendix B: Simulation using Eludo and LOLA

I) Complete trace of a level 1 specification obtained with ELUDO:

----------------------------------- ACTIONS ------------------------------------

DEADLOCK

----------------------------------- HISTORY ------------------------------------

Traveler_Example[Tnew, Tdest]()

+-hidden Din;

 +-hidden Sync;

 +-hidden Cin;

 +-hidden Sync;

 +-Tnew;

 +-hidden Pready;

 +-hidden TphoneD;

 +-hidden DlookforC;

 +-hidden Dfillstats;

 +-hidden Dout;

 +-hidden DaskC;

 +-hidden TgetinC;

 +-hidden TCride;

 +-hidden TgetoutC;

 +-hidden Cgarage;

 +-hidden Cout;

 +-hidden Tairport;

 +-hidden TgetonP;

 +-hidden TPflight;

 +-hidden TgetoffP;

 +-hidden Phangar;

 +-Tdest;

 +-DEADLOCK

ACTIONS : <RET>execute, <v>iew, <h>istory, <s>ela, <g>oal, <q>uit, <o>ptions

No more action
possible

Execution tree

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 26 of 30

The traveler has arrived to the
destination.

No more action possible

No more action
possible

 II) Complete trace of a level 3 specification obtained with LOLA:

...

 [1] i; (* phangar *)

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> 1

 ==> i; (* phangar *)

 DEADLOCK

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> t

 [1] - i; (* din *)

 [1] - i; (* sync *)

 [1] - i; (* cin *)

 [1] - i; (* sync *)

 [1] - tnew;

 [1] - i; (* tphoned *)

 [1] - i; (* dlookforc *)

 [1] - i; (* daskc *)

 [1] - i; (* dfillstats *)

 [1] - i; (* dready *)

 [1] - i; (* tgetinc *)

 [1] - i; (* tcride *)

 [1] - i; (* tgetoutc *)

 [1] - i; (* cgod *)

 [1] - i; (* tairport *)

 [1] - i; (* pready *)

 [1] - i; (* tgetonp *)

 [1] - i; (* tpflight *)

 [1] - i; (* tgetoffp *)

 [1] - tdest;

 [1] - i; (* phangar *)

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> e

 Step-by-step simulation finished.

lola> q

quit

Execution tree

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 27 of 30

The traveler has arrived to the
destination.

Other actions still possible since
we can have multiple instances.

III) Partial trace of a level 3 specification obtained with LOLA:

 [1] - i; (* din *)

 [1] - i; (* sync *)

 [2] - i; (* cin *)

 [2] - i; (* sync *)

 [3] - tnew;

 [2] - i; (* tphoned *)

 [3] - i; (* cin *)

 [2] - i; (* dlookforc *)

 [2] - i; (* daskc *)

 [2] - i; (* dfillstats *)

 [3] - i; (* dout *)

 [3] - i; (* tgetinc *)

 [3] - i; (* tcride *)

 [3] - i; (* tgetoutc *)

 [7] - i; (* pready *)

 [4] - i; (* cgarage *)

 [3] - i; (* cout *)

 [4] - i; (* tairport *)

 [4] - i; (* tgetonp *)

 [6] - i; (* tpflight *)

 [4] - i; (* tgetoffp *)

 [6] - i; (* phangar *)

 [4] - tdest;

<n>,Undo,Menu,Refused,Sync,Print,Trace,Exit,?> e

 Step-by-step simulation finished.

lola> quit

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 28 of 30

Dispatcher answers two requests
before it gets the first taxi...?

A taxi cannot take two passagers
at the same time...?

Two instances
of traveler

 IV) Taxi ambiguities detected using ELUDO

----------------------------------- ACTIONS -----------------------------------

hidden Din; at line(s) 76

hidden Dfillstats; at line(s) 96

hidden Cin; at line(s) 116

hidden TCride; at line(s) 170

hidden Tairport; at line(s) 57

Tnew; at line(s) 50

----------------------------------- HISTORY -----------------------------------

Traveler_Example[Tnew, Tdest]()

+-hidden Din;

 +-hidden Sync;

 +-Tnew;

 +-hidden TphoneD;

 +-hidden DlookforC;

 +-hidden Dfillstats;

 +-hidden Dready;

 +-Tnew;

 +-hidden TphoneD;

 +-hidden DlookforC;

 +-hidden Cin;

 +-hidden Sync;

 +-hidden DaskC;

 +-hidden TgetinC;

 +-hidden TCride;

 +-hidden TgetoutC;

 +-hidden CgoD;

 +-hidden DaskC;

 +-hidden TgetinC;

ACTIONS : <RET>execute, <v>iew, <h>istory, <s>ela, <g>oal, <q>uit, <o>ptions

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 29 of 30

Two travelers got on two
different cab. One of them

had a ride.

These four similar choices indicate that the first
traveler can get out the first cab or the second cab,
and the samething applies to the second traveler.

Is there an interaction problem...?

Five instances of traveler are present. Does the system
check for a bounded number of instances...?

 V) Number of instances problem detected using ELUDO

----------------------------------- ACTIONS ------------------------------------

hidden Pready; at line(s) 149

hidden TphoneD; at line(s) 91,52

hidden TphoneD; at line(s) 91,52

hidden TphoneD; at line(s) 91,52

hidden TphoneD; at line(s) 91,52

hidden TphoneD; at line(s) 91,52

----------------------------------- HISTORY ------------------------------------

Traveler_Example[Tnew, Tdest]()

+-Tnew;

 +-Tnew;

 +-Tnew;

 +-Tnew;

 +-Tnew;

 +-hidden Din;

 +-hidden Sync;

ACTIONS : <RET>execute, <v>iew, <h>istory, <s>ela, <g>oal, <q>uit, <o>ptions

VI) Interaction problem detected using ELUDO on a level 2 specification

----------------------------------- ACTIONS ------------------------------------

hidden Dfillstats; at line(s) 113

hidden TCride; at line(s) 188

hidden TgetoutC; at line(s) 152,189,73

hidden TgetoutC; at line(s) 152,189,73

hidden TgetoutC; at line(s) 152,189,73

hidden TgetoutC; at line(s) 152,189,73

----------------------------------- HISTORY ------------------------------------

Traveler_Mixed[Tnew, Tdest]()

+-Tnew;

 +-Tnew;

 +-hidden Pready;

 +-Tnew;

 +-hidden Cin;

 +-hidden Sync;

 +-hidden Cin;

 +-hidden Sync;

 +-hidden Din;

 +-hidden Sync;

 +-hidden TphoneD;

 +-hidden DlookforC;

 +-hidden DaskC;

 +-hidden TgetinC;

 +-hidden Dfillstats;

 +-hidden Dready;

 +-hidden TphoneD;

 +-hidden DlookforC;

 +-hidden DaskC;

 +-hidden TgetinC;

 +-hidden TCride;

ACTIONS : <RET>execute, <v>iew, <h>istory, <s>ela, <g>oal, <q>uit, <o>ptions

Can the dispatcher really receive messages from
the five travelers in any order he wants...?

__

December 8, 1993 LOTOS Interpretation of Timethreads: A Method and a Case Study page 30 of 30

VII) Symbolic extension of process Traveler in a transition system format

bh0 * 1 Tnew [50]

bh1 * | 1 TphoneD [52]

bh2 * | | 1 TgetinC [55]

bh3 * | | | 1 TgetoutC [56]

bh4 * | | | | 1 i (hiding: Tairport) [57]

bh5 * | | | | | 1 TgetonP [58]

bh6 * | | | | | | 1 TgetoffP [59]

bh7 * | | | | | | | 1 Tdest [60] DEADLOCK

 * | 2 TgetinC [55]

bh9 * | | 1 TphoneD [52] ==> again bh3

 * | | 2 TgetoutC [56]

bh10* | | | 1 TphoneD [52] ==> again bh4

 * | | | 2 i (hiding: Tairport) [57]

bh11* | | | | 1 TphoneD [52] ==> again bh5

 * | | | | 2 TgetonP [58]

bh12* | | | | | 1 TphoneD [52] ==> again bh6

 * | | | | | 2 TgetoffP [59]

bh13* | | | | | | 1 TphoneD [52] ==> again bh7

 * | | | | | | 2 Tdest [60]

bh14* | | | | | | | 1 TphoneD [52] DEADLOCK

