
Failure Semantics in
a SOA Environment

Chris Hobbs, Hanane Becha,
and Daniel Amyot

damyot@site.uottawa.ca

with thanks to Abbie Barbir and Paul Knight

Failure Semantics in a SOA Environment 2

Overview

• In a Service-Oriented Architecture (SOA), services
publish descriptions to permit their composition or
orchestration into larger services.

• There are serious gaps in the semantics of SOA
service descriptions, and these hinder adoption in
mission-critical applications.

• We identify some of these issues and proposes a
foundation for resolving one of them — service
failure.

• The technique of crash-only failure is proposed as a
useful first step especially for web services in a SOA.

Failure Semantics in a SOA Environment 3

The Crash-Only Model

• Software design approach
• Easier to restart quickly in a

known state than to clean up
and rebuild to recover from
an error

George Candea and Armando Fox are
key proponents of crash-only software

Failure Semantics in a SOA Environment 4

Orchestration Issues

• How to characterize and guarantee service-level agreement of service Z?
– Depends on the characteristics of services X and Y

• X and Y might be described using different ontologies
– Depends on the orchestration logic of service Z
– Services X and Y are typically not owned by Z

• Difficult to test…
– Failures of orchestrated services are often Heisenbugs - impervious to

conventional debugging, generally non-reproducible
– Offering service-level guarantees based on testing only is dangerous…

Failure Semantics in a SOA Environment 5

Orchestration Issues

• SOA specifications have
provisions for specifying:
– Interface syntax
– Some behaviour
– Some contracts

• But what about other relevant
characteristics, more non-
functional in nature?

• Availability and Reliability
• Failure
• Performance
• Management
• Security
• Privacy and Confidentiality
• Scalability
• Execution
• Internationalization
• Synchronization
• Etc.

Failure Semantics in a SOA Environment 6

Availability and Reliability

• Availability: percentage of client requests to which the server
responds within the time it advertised.

• Reliability: percentage of such server responses which return
the correct answer.

• In some applications availability is more important
– Many protocols used within the Internet are self-correcting

and an occasional wrong answer is unimportant, whereas
failure to give any answer can cause a major network
upheaval.

• In other applications reliability is more important
– If the service which calculates a person’s annual tax return

does not respond occasionally it’s not a major problem - the
user can try again

– If that service respond with the wrong answer, then this
could be disastrous

Failure Semantics in a SOA Environment 7

Availability and Reliability

• Currently, apart from raw percentage figures, these properties
are hard to characterize.
– Percentage time when the server is unavailable?
– Percentage of requests to which it does not reply?
– Different clients may experience these differently

• A server which is unavailable from 00:00 to 04:00 every
day can be 100% available to a client that only tries to
access it in the afternoons.

Failure Semantics in a SOA Environment 8

Failure

• The failure models of X and Y may be very different:
– X fails cleanly and may, because of its idempotency,

immediately be called again
– Y has more complex failure modes
– Z will add its own failure modes to those of X and Y
– Predicting the outcome could be very difficult

• The complexity is increased because many developers do not
understand failure modeling and, even if models were to be
published, their combination would be difficult due to their
stochastic nature.

Failure Semantics in a SOA Environment 9

Failure

• One approach to describing a service’s failure model:
– Service publishes the exceptions that it can raise and

associates the required consumer behaviour with each
– “Exception D may be thrown when the database is locked by

another process. Required action is to try again after a
random backoff period of not less than 34ms.”

• Crash-only failure model is a simple starting point for building a
taxonomy of failure behaviour. This work is just beginning.

Failure Semantics in a SOA Environment 10

Crash-Only Software

• Historically, developers have spent a lot of
effort making software resilient:
– Put borders around it so it will not affect other things if it fails
– Try to close it down cleanly
– Save state
– Reload the software component
– Restart and replay

• Trying to keep the client from becoming aware that a failure
occurred

• Crash-only software is the opposite
– Client accepts that the server may crash
– Power failure, network down, hardware, etc.
– Client must be able to recover or restart the process by itself

Failure Semantics in a SOA Environment 11

Crash-Only Software Principles

• Forget recovery - more trouble than it’s worth
• When the server senses a problem, it “crashes” and may

perform a “micro-reboot” to return to some original state
– e.g., a well-defined checkpoint

• The server is back working sooner than if it tried to recover via
logs and journals, etc.

• Simplifies failure models, testing, and implementation

• Principles fit the Web Services paradigm nicely!
– Loose coupling of services
– Little state shared among services

Failure Semantics in a SOA Environment 12

Runtime Governance
• Intermediary between the consumer and provider of services

(management). It has the necessary information to:
– add idempotency (no need to know internal state to make

decision to crash) and subscriber-dependent time-to-live
information to requests to the provider.

– monitor the provider for anomalous behaviour.
– be the trusted source of crash commands for the provider,

both as a result of delayed or insane response or as a result
of a need for rejuvenation.

– protect the provider, Z, while its crash recovery is in
progress, holding off or rejecting incoming requests until
recovery is complete.

– tell the consumers when to retry.
• Can be inserted easily in SOA

Failure Semantics in a SOA Environment 13

Failure Description

• Published service descriptions will contain three properties:
1. the failure and recovery type — in this case crash-only
2. whether the service is idempotent or not
3. the anticipated (modelled or measured) failure distribution

• Note that, if the service is not idempotent then all responsibility
for determining the state of a recovered server lies with the
consumer.

Failure Semantics in a SOA Environment 14

Failure and Availability

• Possible criticism of a crash-only architecture: potential
reduction in availability!

• Crash-only paradigm effectively removes layers of sophistication
built using fault-tolerant techniques

• Also trades Mean Time to Repair (MTTR) for Mean Time to
Failure (MTTF).

• Regarding availability: What is 99.999% uptime?
– 5 min 16 sec per year… but what about distribution?

• With crash-only, we assume it is simpler and more effective to
reduce MTTR than increase MTTF.

Failure Semantics in a SOA Environment 15

Example [Candea et al.]

• eBid: e-Bay-like auction system
• Java application with crash-only and micro-reboot
• MTTRs between 411 and 601 msec
• For 99.999% availability, we can then allow 526 to 769 outages

per year (i.e. an outage every 11 to 17 hours)
• Not difficult to meet, especially if we allow for “preventive” micro-

rejuvenation during periods of low usage.

• A 769 failures/year, each with 411 msecs recovery time, better
than a single failure of about 5 minutes per year?
– Depends on the application (there are cases where both

would be inappropriate), but goal likely easier to achieve.

Failure Semantics in a SOA Environment 16

Conclusions

• Currently, weak ways of characterizing non-functional aspects of
services for enabling composition.

• For failure modes, we propose crash-only as a first category.
• Not adequate for all web services, but suitable for an SOA

environment, and its semantic expression is relatively simple.

• Still much work remains to be done
– Inclusion of failure information in service interfaces
– Validation of usefulness
– Study of other categories of failures
– Study and integration of other qualities

