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Overview

• In a Service-Oriented Architecture (SOA), services 
publish descriptions to permit their composition or 
orchestration into larger services.

• There are serious gaps in the semantics of SOA 
service descriptions, and these hinder adoption in 
mission-critical applications. 

• We identify some of these issues and proposes a 
foundation for resolving one of them — service 
failure. 

• The technique of crash-only failure is proposed as a 
useful first step especially for web services in a SOA.
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The Crash-Only Model

• Software design approach
• Easier to restart quickly in a 

known state than to clean up 
and rebuild to recover from 
an error

George Candea and Armando Fox are
key proponents of crash-only software
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Orchestration Issues

• How to characterize and guarantee service-level agreement of service Z?
– Depends on the characteristics of services X and Y

• X and Y might be described using different ontologies
– Depends on the orchestration logic of service Z
– Services X and Y are typically not owned by Z

• Difficult to test…
– Failures of orchestrated services are often Heisenbugs - impervious to 

conventional debugging, generally non-reproducible
– Offering service-level guarantees based on testing only is dangerous…
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Orchestration Issues

• SOA specifications have 
provisions for specifying:
– Interface syntax
– Some behaviour
– Some contracts

• But what about other relevant 
characteristics, more non-
functional in nature?

• Availability and Reliability
• Failure
• Performance
• Management
• Security
• Privacy and Confidentiality
• Scalability
• Execution
• Internationalization
• Synchronization
• Etc.
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Availability and Reliability

• Availability: percentage of client requests to which the server 
responds within the time it advertised. 

• Reliability: percentage of such server responses which return 
the correct answer.

• In some applications availability is more important
– Many protocols used within the Internet are self-correcting 

and an occasional wrong answer is unimportant, whereas 
failure to give any answer can cause a major network 
upheaval. 

• In other applications reliability is more important
– If the service which calculates a person’s annual tax return 

does not respond occasionally it’s not a major problem - the 
user can try again 

– If that service respond with the wrong answer, then this 
could be disastrous
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Availability and Reliability

• Currently, apart from raw percentage figures, these properties 
are hard to characterize.
– Percentage time when the server is unavailable?
– Percentage of requests to which it does not reply?
– Different clients may experience these differently 

• A server which is unavailable from 00:00 to 04:00 every 
day can be 100% available to a client that only tries to 
access it in the afternoons.
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Failure

• The failure models of X and Y may be very different: 
– X fails cleanly and may, because of its idempotency, 

immediately be called again
– Y has more complex failure modes
– Z will add its own failure modes to those of X and Y 
– Predicting the outcome could be very difficult

• The complexity is increased because many developers do not 
understand failure modeling and, even if models were to be 
published, their combination would be difficult due to their 
stochastic nature.
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Failure

• One approach to describing a service’s failure model:
– Service publishes the exceptions that it can raise and 

associates the required consumer behaviour with each 
– “Exception D may be thrown when the database is locked by 

another process. Required action is to try again after a 
random backoff period of not less than 34ms.”

• Crash-only failure model is a simple starting point for building a 
taxonomy of failure behaviour.  This work is just beginning.
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Crash-Only Software

• Historically, developers have spent a lot of 
effort making software resilient:
– Put borders around it so it will not affect other things if it fails
– Try to close it down cleanly
– Save state
– Reload the software component
– Restart and replay

• Trying to keep the client from becoming aware that a failure 
occurred

• Crash-only software is the opposite
– Client accepts that the server may crash
– Power failure, network down, hardware, etc.
– Client must be able to recover or restart the process by itself
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Crash-Only Software Principles

• Forget recovery - more trouble than it’s worth
• When the server senses a problem, it “crashes” and may 

perform a “micro-reboot” to return to some original state 
– e.g., a well-defined checkpoint

• The server is back working sooner than if it tried to recover via 
logs and journals, etc. 

• Simplifies failure models, testing, and implementation

• Principles fit the Web Services paradigm nicely!
– Loose coupling of services
– Little state shared among services
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Runtime Governance
• Intermediary between the consumer and provider of services 

(management). It has the necessary information to:
– add idempotency (no need to know internal state to make 

decision to crash) and subscriber-dependent time-to-live 
information to requests to the provider.

– monitor the provider for anomalous behaviour.
– be the trusted source of crash commands for the provider, 

both as a result of delayed or insane response or as a result 
of a need for rejuvenation.

– protect the provider, Z, while its crash recovery is in 
progress, holding off or rejecting incoming requests until 
recovery is complete.

– tell the consumers when to retry.
• Can be inserted easily in SOA
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Failure Description

• Published service descriptions will contain three properties:
1. the failure and recovery type — in this case crash-only
2. whether the service is idempotent or not
3. the anticipated (modelled or measured) failure distribution

• Note that, if the service is not idempotent then all responsibility 
for determining the state of a recovered server lies with the 
consumer.
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Failure and Availability

• Possible criticism of a crash-only architecture: potential 
reduction in availability!

• Crash-only paradigm effectively removes layers of sophistication 
built using fault-tolerant techniques 

• Also trades Mean Time to Repair (MTTR) for Mean Time to 
Failure (MTTF). 

• Regarding availability: What is 99.999% uptime?
– 5 min 16 sec per year… but what about distribution?

• With crash-only, we assume it is simpler and more effective to 
reduce MTTR than increase MTTF.
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Example [Candea et al.]

• eBid: e-Bay-like auction system
• Java application with crash-only and micro-reboot
• MTTRs between 411 and 601 msec
• For 99.999% availability, we can then allow 526 to 769 outages 

per year (i.e. an outage every 11 to 17 hours)
• Not difficult to meet, especially if we allow for “preventive” micro-

rejuvenation during periods of low usage.

• A 769 failures/year, each with 411 msecs recovery time, better 
than a single failure of about 5 minutes per year? 
– Depends on the application (there are cases where both 

would be inappropriate), but goal likely easier to achieve.
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Conclusions

• Currently, weak ways of characterizing non-functional aspects of 
services for enabling composition.

• For failure modes, we propose crash-only as a first category.
• Not adequate for all web services, but suitable for an SOA 

environment, and its semantic expression is relatively simple.

• Still much work remains to be done
– Inclusion of failure information in service interfaces
– Validation of usefulness
– Study of other categories of failures
– Study and integration of other qualities


