Sample Assignment 3 Decoding of Linear Block Codes / Performance

Question 1

A binary linear block code is described by the generator matrix given below:

$$
G=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

(a) Find n and k as well as the code rate of this code.
(b) List all of the code words of the code and find the code's minimum distance.
(c) How many errors can this code correct?
(d) Find the parity check matrix for this code.
(e) Create the standard array for this code.
(f) Find the most likely transmitted codeword if the received word is $\mathrm{r}=101111$ using your standard array.
(g) Find the parity check matrix for this code.
(h) Find the syndrome S if $\mathrm{r}=111100$. From this syndrome, find the most likely bit(s) to be in error. Confirm your answer with your standard array.
(i) If there is a 5% chance that a bit is in error, what is the exact probability of an undetectable error in a received word? What is the probability that the decoder incorrectly decodes the codeword based on your standard array?

Question 2

Repeat Question 1 for the following code based on $\mathrm{GF}(4)$ symbols

$$
G=\left[\begin{array}{cccc}
1 & 0 & 1 & \propto \\
0 & 1 & \propto^{2} & 1
\end{array}\right]
$$

