Sample Assignment 2 Minimal Polynomials and Intro to Linear Block Codes

Question 1

Using $\mathrm{p}(\mathrm{X})=1+\mathrm{X}^{2}+\mathrm{X}^{5}$ as the primitive polynomial, generate expressions for all elements of $\mathrm{GF}(32)$ as
functions of $1, \alpha, \alpha^{2}, \alpha^{3}$, and α^{4}. Produce an addition table for GF(32) (which will be helpful for question 2).

Question 2

Factor $\mathrm{X}^{31}+1$ by finding the minimal polynomials of $\mathrm{GF}(32)$ with respect to $\mathrm{GF}(2)$. (hint: you need to find the conjugacy classes of each element of $\mathrm{GF}(32)$. These are the roots of the minimal polynomials).

Question 3

A binary linear block code is described by the following generator matrix:

$$
G=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(a) What are n, k and r of the code?
(b) Find all codewords of the code.
(c) What is the minimum Hamming distance of the code?
(d) Find the parity check matrix H for this code.

Question 4

A systematic nonbinary code uses $\mathrm{GF}(4)$ symbols and has the following generator matrix:

$$
G=\left[\begin{array}{lllll}
1 & 0 & \alpha & 1 & \alpha^{2} \\
0 & 1 & \alpha^{2} & \alpha & 1
\end{array}\right]
$$

(a) What is the rate of this code?
(b) Find the parity check matrix H for this code.
(c) What is the minimum distance of this code?

