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Introduction to Algebra 
 
The basics of finite field algebra are presented in this lecture.  We begin with some basic definitions 
followed by introduction to Galois fields.  We conclude with polynomial over Galois fields. 
 
Groups 
 
Let G be a set of elements and * is a binary operation defined on G such that for all elements a, b∈G then 
c = a*b∈G.  We say that the group is closed under operation *.  For example, if G is the set of all real 
numbers, then G is closed under the real addition (+) operation.   
 
Also, the operation is said to be associative if for a, b, c∈G, then (a*b)*c = a*(b*c). 
 
The set G on which the binary operation * is defined is referred to as a group if the following conditions 
are met: 
 

1) * is associative 
2) G contains an identity element.  In other words, for a, e∈G, e is an identity element if a*e = a for 

all a. 
3) For any element a∈G, there exists an inverse element a’∈G such that a*a’ = e. 

 
The group is a commutative group if for any a, b∈G, a*b = b*a. 
 
Examples 
 
a) G is the set of all real numbers under multiplication. 
 

1) Multiplication is associative 
2) a×1 = a for all a∈G and 1∈G. 
3) a×(1/a) = 1 and 1/a∈G. 

 
Furthermore, multiplication is commutative; therefore the set of real numbers is a commutative group 
under multiplication. 
 
b) G is the set of all positive integers plus 0 under addition 
 

1) Addition is associative 
2) a + 0 = a, 0∈G. 
3) a + (-a), -a∉G. 

 
G is not a group under addition. 
 
Theorem 1 
 
The identity element in any group is unique.  To prove this, let us assume that there are two identity 
elements; e, f∈G.  Then f*e = f and e*f = e.  But since f*e = e*f, then f = e. 
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Theorem 2 
 
The inverse of a group element is unique.  Again, let us assume that for a∈G, there exist two inverses, 
a’ and a’’.  Then a’ = a’*e.  Also, e = a*a’’.  Therefore a’ = a’*(a*a’’) = (a’*a)*a’’ = e*a’’ = 
a’’.  Therefore, this implies that a’ = a’’. 
 
Subgroups 
 
Let G be a group under the binary operation *.  Let H be a nonempty subset of G.  H is a subgroup of G if 
the following conditions are met: 
 

1) H is closed under *. 
2) For any element a∈H, the inverse of a, a’∈H. 

 
H is a group on its own.  Because a’∈H, then e∈H also.  Since H is made up of elements in G, the 
associative condition on * must hold on these elements as well.  Since H is a group that consists 
entirely of elements from G, then H is a subgroup of G. 
 
Example 
 
G is the set of all integers under addition. 
 

1) Addition is associative. 
2) a + 0 = a, 0∈G. 
3) a + -a = 0, -a∈G 

 
Let H be the set of all even integers under addition 
 

1) An even number added to an even number produces another even number, hence the set is closed 
2) a + -a = 0.  If a is even, then so is –a, hence -a∈H. 

 
Therefore H is a subgroup of G. 
 
Example 2 
 
Let F be the set of all odd integers.  F is a subset of G.  Is it a subgroup of G? 
 

1) Addition of two odd numbers produces an even number.  Even numbers are not in F, therefore F 
is not closed under addition.  It cannot be a group. 

2) We can show that all additive inverses are in F 
 
Since the first condition is not met, F is not a subgroup of G. 
 
Cosets 
 
Let H be a subgroup of a group G under the binary operation *.  Let a be any element in G.  Then 
the set of elements a*H which is defined as {a*h : h∈H} is called a left coset of H and the set of 
elements H*a which is defined as {h*a : h∈H} is called a right coset of H.  
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Example 
 

G = {0, 1, 2, 3, 4, 5} under modulo-6 addition is a group. 
 
Let H = {0, 2, 4} 
 
We can show that H is a group under modulo-6 addition; therefore H is a subgroup of G. 
 
Let a = 1 
 
(a+H)mod6 = {1, 3, 5} is a left coset of H.  (H + a)mod6 = {1, 3, 5} is a right coset of H.  
If, for the same a, the left and right cosets are equal, then G must be a commutative 
group.  In this case, we don’t refer to cosets as being left or right cosets.  They are simply 
referred to as cosets of H. 
 
(setting a = 2 or 4 produces H} 
(setting a = 3 or 5 produces (1+H)mod6) 

 
There are no other distinct cosets of H.  Note that H and its coset contain all of the elements in G.  In fact, 
a subgroup of G and its cosets are always disjoint and their union always forms G. 
 
Theorem 3 
 
Let H be a subgroup of G under *.  No two elements in a coset of H are identical. 
 
Since a coset of H is defined as a*H, then if h1, h2∈H are distinct elements, then a*h1, a*h2∈G.  Let a*h1 
= a*h2, then a’*(a*h1) = a’*(a*h2).  Since * is associative, this means that (a’*a)*h1 = (a’*a)*h2, or e*h1 
= h1 = e*h2 = h2.  This implies that for a*h1 = a*h2, h1 must equal h2.  Since h1 and h2 are different, a*h1 
and a*h2 must be different. 
 
Theorem 4 
 
No two elements in different cosets of a subgroup H of a group G are identical. 
 
Let a*H and b*H be two distinct cosets of H, where a, b∈G.  Let a*h1∈a*H and b*h2∈b*H where 
h1, h2∈H.  Let a*h1 = b*h2.  Therefore (a*h1)*h1’ = (b*h2)*h1’.  Because of the associative 
property of G, a*(h1*h1’) = b*(h2*h1’).  This implies that a = b*(h2*h1’). 
 
This also means that a*H = b*(h2*h1’)*H.  Since h1, h2∈H, this means that h1’∈H.  Thus 
h2*h1’∈H.  Thus we let h2*h1’ = h3∈H.  Therefore a*H = (b*h3)*H.  Every element in a*H is 
determined by (b*h3)*h = b*(h3*h).  Since h3, h∈H, then h3*h∈H.  Therefore b*h3*H = b*H.  
This means that a*H = b*H.  However, above we stated that a*H and b*H are distinct cosets.  
Therefore it is impossible to have distinct cosets with one or more identical elements. 
 
Let G be a group of order n (contains n elements).  Let H be a subgroup of G of order m.  Then m 
divides n and G is made up of the union of n/m cosets of H.  This fact is a consequence of 
theorems 3 and 4. 
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Fields 
 
A field is a set of elements on which we can perform addition, subtraction, multiplication and division 
without leaving the set.  More formally, a field is defined as follows. 
 
Let F be a set of elements on which two binary operations called addition ‘+’ and multiplication ‘×’ are 
defined.  The set is a field under these two operations if the following conditions are satisfied: 
 

1) F is a commutative group under addition.  The identity element with respect to addition is called 
the zero element of F and is denoted by 0. 

2) The nonzero elements of F ({F}-0} form a commutative group under multiplication.  The 
multiplicative identity is termed the unity element in F and is denoted by 1. 

3) Multiplication is distributive over addition.  In other words, for a, b, c∈F, a×(b+c) = a×b + a×c. 
 
A finite field contains a finite number of elements.  In order for the field to form a group over addition or 
multiplication, modulo arithmetic must be used. 
 
Properties of fields 
 

1) For every element a∈F, a×0 = 0×a = 0. 
a=a×1 = a×(1+0) = a+a×0.  Let -a = additive inverse of a.  Then -a+a = 0 = -a+a+ a×0 = 0 + a×0 
= 0. 

2) For every two non-zero elements a, b∈F, a×b ≠ 0. 
This is a direct consequence of the non-zero elements of F being a closed set under 
multiplication. 

3) a×b = 0 for a≠ 0 implies b = 0. (From properties 1 and 2). 
4) For any two elements in a field -(a × b) = (-a) × b = a × (-b). 

0=0×b = (a+-a) × b = a × b + (-a) × b.  Therefore (-a) × b is the additive inverse of a × b.  ie (-a) 
× b = -(a × b).  Similarly, we can show the same for -(a × b) = a × (-b). 

5) For a ≠ 0, a × b = a × c implies that b = c. 
a-1×(a×b) = a-1×(a×c) 
(a-1×a) ×b = (a-1×a)×c 

b = c 
 
The set of real numbers is a field under real-number addition and multiplication.  This field has an infinite 
number of elements.  Fields with a finite number of elements (finite fields) can be constructed.  Addition 
and multiplication for these fields must be defined. 
 
Galois Field 2 - GF(2): The Binary Field 
 
A binary field can be constructed under modulo-2 addition and modulo-2 multiplication.  Modulo-2 
addition and multiplication are shown in the tables below: 
 
 

+ 0 1  × 0 1 
0 0 1  0 0 0 
1 1 0  1 0 1 

 
     Modulo-2 Addition     Modulo-2 Multiplication 
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We can easily check that this field forms a commutative group under addition (ie {0,1} are closed under 
addition, addition is associative, there is an identity and each element has an inverse.  Furthermore, 
addition is commutative).  We can also show that {1} forms a commutative group under multiplication.  
Also, multiplication distributes over addition. 
 
Galois Field p – GF(p) 
 
Using the same idea as GF(2), we can generate any Galois field with a prime number, p, of 
elements over modulo-p addition and multiplication.  For example, GF(3) would have the 
following addition and multiplication tables: 

+ 0 1 2  × 0 1 2 
0 0 1 2  0 0 0 0 
1 1 2 0  1 0 1 2 
2 2 0 1  2 0 2 1 

 
     Modulo-3 Addition     Modulo-3 Multiplication 
 
It is not possible to construct finite fields with a nonprime number of elements in this manner.  In other 
words, GF(4) is not a four element field over modulo-4 arithmetic.  However, GF(4) can be constructed.  
We can construct GF(pm), where m is an integer provided it is an extension field of GF(p).   
 
Characteristic of a field 

Consider a finite field of q elements, GF(q).  Let ∑
=

=
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= 0.  Then λ is called the characteristic of the field GF(q).  For example, in GF(2), λ = 2 (since 1+1 = 0).  
In GF(3), 1+1+1 = 0, thus λ = 3. 
 
Theorem 5 
 
The characteristic of a field is always a prime number. 
 
Proof 
 
Suppose that λ is not prime and is equal to the product of two smaller integers k and m.  In other words,  
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which implies that either ∑
=

k

i 1
1 or ∑

=

m

j 1
1 is zero.  Thus λ = km cannot be the characteristic of the field since 

it is not the smallest number of successive additions of 1 which produces 0.  Therefore, λ must be prime. 
 
Order of an element in GF(q) 
 
Suppose α is a nonzero element in GF(q).  Since the non-zero elements in a field form a closed set under 
multiplication, then α2, α3, α4 … are also elements in GF(q).  The order of element α in GF(q) is the 
smallest integer, ord(α), for which αord(α) = 1. 
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Example GF(3) 
 

11 = 1.  Therefore ord(1) = 1. 
21 = 2, 22 = 1.  Therefore ord(2) = 2. 

 
Theorem 6 
 
Let α be a non-zero element in GF(q).  Then αq-1 = 1. 
 
Proof 
 
Let a1, a2, … aq-1 be the q-1 non-zero elements in GF(q).  Also α×ai and α×aj are distinct elements in 
GF(q) for i ≠ j.  Therefore α×a1, α×a2, …, α×aq-1 also makes up the q-1 non-zero elements in 
GF(q).  Thus  
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Since 121 ... −qaaa must be a non-zero element in GF(q), αq-1 must be 1. 
 
Theorem 7 
 
Let α be an element in GF(q).  Then ord(α) divides q-1. (ord(α)|q-1) 
 
Proof 
 
Suppose that ord(α) does not divide q-1.  Therefore q-1 = kord(α) + r, where 0 < r < ord(α). 
 
Then αq-1 = αkord(α)+r = αkord(α)αr.  Since αq-1 = 1 and αkord(α) = 1, then αr = 1 as well.  However, since r < 
ord(α), αr cannot equal 1.  Thus ord(α) must divide q-1. 
 
Primitive elements 
 
Any element in GF(q) whose order is q-1 is a primitive element in GF(q).  For example, in GF(3), 
element 2 has order 2.  Thus 2 is a primitive element in GF(3).  Let α be a primitive element in GF(q), 
then the series α1, α2, …, αq-1 produces q-1 distinct non-zero elements in GF(q).  In other words, the q-1 
successive powers of a produce all of the non-zero elements in GF(q).  Thus GF(q) = {0, α, α2, …, αq-1}. 
 
Polynomials over GF(q) 
 
The polynomial f(X) = f0 + f1X + f2X2 + … +fnXn is a polynomial of degree n over GF(q) if the coefficients 
fi come from GF(q) and obey GF(q) arithmetic. 
 
Suppose f(X) and g(X) are two polynomials over GF(q) and are given by: 
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and m < n.  Then f(X) + g(X) is given by 
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where all additions are performed as defined in GF(q). 
 
Also, f(X)g(X) = c0 + c1X + … cn+mXn+m, where the coefficients are given by: 
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Examples 
 

1) Consider the following polynomials over GF(2): 

2

3

1)(
1)(

XXg
XXXf
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Then f(X)+g(X) = (1+1) + (1+0)X + (0+1)X2 + (1+0)X3 = X + X2 + X3 and f(X)g(X) = 
(1+X+X3) × (1+X2) = 1 + X2 + X + X3 + X3 +X5 = 1 + X + X2 + (1 + 1)X3 + X5 = 1 + X + X2 
+ X5. 
 
2) Let us consider GF(4) which is the set of elements {0, 1, α, α2} on which addition and 
multiplication are defined as follows: 

 
+ 0 1 α α2  × 0 1 α α2 
0 0 1 α α2  0 0 0 0 0 
1 1 0 α2 α  1 0 1 α α2 
α α α2 0 1  α 0 α α2 1 
α2 α2 α 1 0  α2 0 α2 1 α 

 
    GF(4) Addition        GF(4) Multiplication 
 
 

Consider the two polynomials f(X) and g(X) over GF(4) which are given as: 
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Then f(X) + g(X) = X + αX2 and f(X)g(X) = 1 + X + α2X2 + X3. 
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It is clear that f(X)×0 = f(X)g(X)|g(X)=0, therefore gi = 0 and thus ci = 0.  Thus f(X)×0 = 0. 
 
Properties of Polynomials over GF(q) 
 
It can be easily verified that polynomials over GF(q) satisfy the following properties and conditions: 
 

1) Commutative 
 

a(X) + b(X) = b(X) + a(X) 
a(X)b(X) = b(X)a(X) 

 
2) Associative 
 

a(X) + [b(X) + c(X)] = [a(X) + b(X)] + c(X) 
a(X)[b(X)c(X)] = [a(X)b(X)]c(X) 

 
3) Distributive 

a(X)[b(X) + c(X)] = a(X)b(X) + a(X)c(X) 
 
Polynomial Division 
 
When we divide f(X) by g(X), we get two new polynomials; q(X) is the quotient and r(X) is the remainder.  
The remainder, r(X) has a smaller degree than g(X).  Thus: 
 

)()()()( XrXgXqXf +=  
 
Example 
 

Consider the division of f(X) = 1 + X2 + X5 by g(X) = 1 + X3 on GF(2).  By long division: 
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Therefore 1+X2+X5 = (1+X2)(1+X3) + X2. 
 

When f(X) is divided by g(X) and r(X) = 0, then g(X) is a factor of f(X) and we say that f(X) is divisible by 
g(X).  If a polynomial f(X) has no factors other than 1 and itself, then we say that the polynomial is 
irreducible.  Furthermore, any reducible polynomial can be expressed as the multiplication of a group of 
irreducible polynomials much like any number can be factored into a multiplication of primes.  For f(X) 
on GF(q) and β∈GF(q), if f(β) = 0, then β is a root of f(X) and f(X) is divisible by X-β.   
 
Example 
 

On GF(2), if f0 = 0 for any polynomial, then it is divisible by X.  If f0 = 1 and f(X) has an 
even number of terms, then f(1) = 0 and thus f(X) is divisible by X+1.  Consider all 
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polynomials of degree 2 where f0 = 1.  These are f1(X) = 1+X2 and f2(X) = 1+X+X2.  f1(1) 
= 0, thus f1(X)/(X+1) has no remainder.  In fact 1+X2 = (1+X)(1+X).  The polynomial f2(X) 
has an odd number of terms, thus f2(1) = 1 and f2(0) = 0.  Thus it is neither divisible by 1 
or X.  Any polynomial of degree 2 that is not equal to f2(X) will have a non-zero 
remainder, thus 1+X+X2 is irreducible in GF(2). 
 
Suppose we define f(X) = 1+X+X2 over GF(4).  Then f(0) = 1, f(1) = 1, f(α) = 1+α+α2 = 
α2+α2 = 0 and f(α2) = 1+α2+(α2)2 = 1+α2+α = 0.  Thus α and α2 are roots of 1+X+X2 in 
GF(4).  Thus 1+X+X2 = (X-α)(X-α2) = (X+α)(X+α2). 
 
The conclusion here is that a polynomial that is irreducible in GF(p), might not be 
irreducible in GF(pm). 
 

Theorem 8 
 
An irreducible polynomial on GF(p) of degree m divides 11 −−mpX . 
 
This will become apparent when we discuss minimal polynomials.  A proof of theorem 8 can be found in 
R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Boston: Kluwer Academic 
Publishers, 1988. 
 
Example 
 

We have seen that 1+X+X2 is irreducible in GF(2).  Therefore according to Theorem 8, it 
must divide 1+X3. 
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An irreducible polynomial on GF(p), f(X), is said to be primitive if the smallest value of n for which it 
divides Xn-1 is n = pm-1.  In other words, although all irreducible polynomials divide Xn-1 where n = pm-1, 
some polynomials also divide Xn-1 where n < pm-1.  These polynomials are not primitive. 
 
Example 
 

It can be shown that 1+X+X4 is irreducible.  Because of this, we know that it divides 
1+X15.  By exhaustive search, we can show that this polynomial does not divide 1+Xn for 
any value of n < 15.  Therefore 1+X+X4 is primitive. 
 
1+X+X2+X3+X4 is also irreducible, and it also divides 1+X15, however, it also divides 
1+X5.  Therefore it is not primitive. 
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Theorem 9 
 
An irreducible polynomial of degree m in GF(p) has roots in GF(pm) that all have the same order.  In other 
words, if f(X) is a polynomial of degree m and is irreducible in GF(p), and if f(α1) = f(α2) = 0 in GF(pm), 
then ord(a1) = ord(α2). 
 
Proof is long and can be found in S.B. Wicker, Error Control Systems for Digital Communications and 
Storage, Upper Saddle River, NJ: Prentice Hall, 1995. 
 
Theorem 10 
 
Primitive polynomials of degree m in GF(p) have roots in GF(pm) which have order pm-1.  In other words, 
if f(X) is primitive in GF(p), and f(α) = 0 in GF(pm), then α has order pm-1.  
 
Proof 
 

Since f(X) divides 11 −−mpX , and α is a root of f(X), then it is also a root of 11 −−mpX .  In other words, 

1or  01 11 ==− −− mm pp αα .  This means that ord(α) divides pm-1, or αord(α)-1 = 0.  This in turn implies 

that all of the roots in Xord(α)-1 are also in 11 −−mpX , thus Xord(α)-1 divides 11 −−mpX .   
 
Since f(X) is primitive, it must also be irreducible in GF(p).  Therefore, all of its roots have the same 

order, thus all of the roots in f(X) are in Xord(α)-1, thus f(X) divides Xord(α)-1 which divides 11 −−mpX , but 
the smallest value of n for which f(X) divides Xn-1 is n = pm-1, thus ord(α) must equal pm-1. 
 

If α is a root of f(X) in GF(pm) and α has order pm-1, then the series 12 ,...,, −mpααα produces all of the 
non-zero elements of GF(pm). 
 
Examples 
 

GF(4) as an extension field of GF(2) 
 
p(X) = 1+X+X2 is a primitive polynomial in GF(2)[X] of degree 2.  Thus its root in GF(4) 
has order 22-1 = 3.  The successive powers of the root of p(X) can then be used to 
represent the 3 non-zero elements in GF(4). 
 
Let α be the root of p(X).  Therefore p(α) = 0, or 1+α+α2 = 0, which means α2 = α+1.  
Also, α3 = α2×α = (α+1)α = α2+α = α+1+α = 1. 
 
Thus GF(4) = {0, 1, α, α2 = α+1}.  Addition and multiplication over GF(4) is shown on 
page 7.  It is left to the reader to verify that the addition and multiplication tables of page 
7 can be obtained using the definition α2 = α+1.  
 
If we consider GF(4) to be binary vectors of length 2 with a 1’s position and an α’s 
position, we can show that 0 = 0α+0, 1 = 0α+1, α = 1α+0 and α2 = 1α+1, or 0 = (0,0), 1 
= (0,1), α = (1,0) and a2 = (1,1).  In other words, GF(4) = GF(22) is simply two 
dimensional GF(2). 
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GF(8) as an extension field of GF(2) 
 
p(X) = 1+X+X3 is a primitive polynomial of degree 3 over GF(2).  Therefore its root can 
be used to describe GF(8). 
 
Let p(α) = 0, thus 1+a+α3 = 0, or α3 = α+1.  Thus the non-zero elements of GF(8) are α, 
α2, α3 = α+1, α4 = (α+1)α = α2+α, α5 = (α2+α)α = α3+α2 = α2+α+1, α6 = α3+α2+α = 
α2+1, α7 = α3+α = 1. 
 
0 = (0,0,0), 1 = (0,0,1), α = (0,1,0), α2  = (1,0,0), α3 = (0,1,1), α4 = (1,1,0), α5 = 
(1,1,1), α6 = (1,0,1). 
 
From the above vectors, we can see that, for example, α+α6 = α5.  Also, αx = 
αxmod(7).  For example, α6α2 = α8mod(7) = α. 

 
Minimal Polynomials and Conjugate Elements 
 
A minimal polynomial is defined as follows: 
 
Let a be an element in the field GF(qm).  The minimal polynomial of α with respect to GF(q) is the 
smallest degree non-zero polynomial p(X) in GF(q)[X] such that p(α) = 0 in GF(qm). 
 
Properties of minimal polynomials 
 
For each element α in GF(qm) there exists a unique, non-zero polynomial p(X) of minimal degree in 
GF(q)[X] such that the following are true: 
 

1) p(α) = 0 
2) The degree of p(X) is less than or equal to m 
3) f(α)=0 implies that f(X) is a multiple of p(X). 
4) p(X) is irreducible in GF(q)[X]. 

 
Proof of 1 and 2:  Since GF(qm) is an m-dimensional extension of GF(q), then the m+1 elements 1, α, α2, 
α3 … αm are linearly dependent.  Therefore, there exists at least one linear combination in GF(q) of the 
form a0+a1α+a2α2+…amαm = 0. 
 
Uniqueness:  We know that there exists at least one polynomial of minimal degree p(X) such that p(α) = 
0.  Suppose we have another polynomial of the same degree, g(X), such that g(α) = 0 that is not equally to 
p(X).  This means p(X) = g(X) + r(X), where r(X) has a smaller degree than p(X) and g(X).  Thus p(α) = 0 
= g(α)+r(α).  But g(α) = 0, thus r(α) = 0.   But this means that a smaller degree polynomial has α as its 
root, which means that p(X) is not the minimal polynomial of α.  Thus p(X) must be unique. 
 
Proof of 3: 
 
Let f(X) = p(X)g(X) + r(X), where the degree of r(X) is less than that of p(X), and f(α) = 0.  Thus we have 
0 = p(α)g(α) + r(α) = 0g(α) + r(α) = r(α) = 0.  Yet r(X) cannot be a non-zero polynomial of degree less 
than the degree of p(X) while satisfying r(α) = 0.  Thus r(X)=0 and f(X) = p(X)g(X). 
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Proof of 4:  If p(X) = f(X)g(X)where f(X) and g(X) have lower degrees than p(X), then p(α) = 0 means that 
either f(α) or g(α) = 0, and thus p(X) isn’t the minimal polynomial of α.  Thus p(X) is irreducible. 
 
Since primitive elements are the roots of primitive polynomials, then primitive polynomials are the 
minimal polynomials for primitive elements in a Galois field. 
 
Minimal polynomials and their relationship to higher order fields are important to the understanding of 
cyclic codes.   
 
Conjugates of field elements 
 
Let β be an element in GF(qm).  The conjugates of β with respect to GF(q) are ,...,,,

32 qqq ββββ  
 
The set made up of an element α and all of its conjugates with respect to GF(q) is called the conjugacy 
class of α. 
 
Theorem 11 
 

The conjugacy class of β ∈  GF(qm) with respect to GF(q) contains d elements, where ββ =
dq  is 

the first element in the sequence to repeat and d divides m. 
 
See S.B. Wicker, Error Control Systems for Digital Communication and Storage, Upper Saddle River, 
NJ: Prentice Hall, 1995, pages 55-56 for proof. 
 
Example 
 

Take GF(8) = GF(23) on page 11.  Let β = α6.  The conjugacy class of α6 is α6, (α6)2 = 
α12mod7 = α5, (α6)4 = ((α6)2)2 = α10mod7 = α3, (α6)8 = (((α6)2)2)2 = (α3)2 = α6. 
 
Thus the conjugacy class of α6 = {α3, α5, α6}.  It can be shown that the conjugacy class 
of α3 and α5 is also given by this set. 
 
It is left for the reader to verify that the conjugacy class of α ∈  GF(8) with respect to 
GF(2) is {α, α2, α4}, while the conjugacy class of 1 = {1}. 
 

Theorem 12 
 
Let β ∈  GF(qm) have a minimal polynomial p(X) with respect to GF(q).  The roots of p(X) are the 
conjugates of β with respect to GF(q). 
 
Proof: 
 

If p is a prime, then p divides 







k
p .  Thus 








k
p modp = 0.  Thus we can show that (α1 + α2 + … αt)

rp = 

(α1
rp + α2

rp  + … αt
rp ).  Since q = pr, p(β) = 0 implies that: 
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Therefore, if β is a root of p(X), so is βq.  We can show the same if we replace q in the above equation by 
qx.  Thus the conjugates of β are also roots of p(X). 
 
Therefore, if p(X) is a minimal polynomial with respect to GF(q) of β ∈  GF(qm), then: 

∏
−

=
−=

1

0
)()(

d

i

qi

XXp β  

 
Example 
 

The minimal polynomial of α, α2, and α4 in GF(8) with respect to GF(2) is 
(X+α)(X+α2)(X+α4) = X3+X2(α+α2+α4)+X(α6+α5+α3)+(α7) = X3+X+1. 
 

Factoring Xn-1 
 
The expression Xn-1 has n roots.  The roots, βi, of this expression have order, ord(βi), which divides n. 
Specifically, if n = pm-1, then the pm-1 roots of the expression must have an order that divides pm-1.  The 
pm-1 non-zero elements of GF(pm) all have order which divides pm-1.  Thus the roots of Xn-1 where n = 
pm-1 are the non-zero elements of GF(pm).  Since each non-zero element in GF(pm) has a primitive 
polynomial associated with it, then 11 −−mpX can be factored into the minimal polynomials of GF(pm). 
 
Example 

 
X15-1 in GF(2) has 15 roots of order that divides 15.  All non-zero elements of GF(16) 
have order which divides 15.  Thus we can factor X15+1 into the minimal polynomials of 
GF(16). 
 
GF(16) is an extension field of GF(2).  One primitive polynomial that we can use to 
define GF(16) is X4+X+1.  This implies that the primitive element, α, is defined by α4 = 
α+1. 
 
The conjugacy classes of GF(16) with respect to GF(2) are: 
{1}, {α, α2, α4, α8}, {α3, α6, α12, α9}, {α5, α10}, {α7, α14, α13, α11}.  It can be shown that 
the elements in these conjugacy classes have order 1, 15, 5, 3 and 15 respectively. 
 
The minimal polynomials for each conjugacy class are: 
 

Conjugacy Class Minimal Polynomial 
{1} X+1 

{α, α2, α4, α8} X4+X+1 
{α3, α6, α12, α9} X4+X3+X2+X+1 

{α5, α10} X2+X+1 
{α7, α14, α13, α11} X4+X3+1 

 
We can show that X15+1 = (X+1)(X4+X+1)(X4+X3+X2+X+1)(X2+X+1)(X4+X3+1). 
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In the general case, Xn-1 has n roots with order that divides n.  GF(pm) has elements with order that 
divides n if n divides pm-1.  For example, if we wish to factor X5+1 in GF(2), then we know that GF(16) 
has elements with order that divides 5.  Specifically, the conjugacy class {α3, α6, α12, α9} all have order 5 
and the element 1 has order 1 which divides 5.  Thus the five roots of X5+1 in these two conjugacy 
classes.   Thus X5+1 = (X+1)(X4+X3+X2+X+1). 
 
Example 
 

If we wish to factor X9+1 in GF(2), we need to find a Galois field, GF(2m) such that 9 
divides 2m-1.  Since 9 divides 63 = 26-1, we must go to GF(64) to find elements with 
order that divides 9.  In GF(64), α7 has order 9.  The conjugacy class of α7 is {α7, α14, 
α28, α56, α49, α35}, thus all of these elements have order 9.  The minimal polynomial 
associated with this conjugacy class is X6+X3+1.  In GF(64), α21 has order 3.  The 
conjugacy class of α21 is {α21, α42} which has minimal polynomial X2+X+1.  Finally, the 
element 1 has order 1 which also divides 9.  Therefore, X9+1 = (X6+X3+1)(X2+X+1)(X+1). 
 

Squaring Polynomials in GF(2)[x] 
 
Let p(X) = a0+a1X+…AmXm, where ai∈GF(2).  Then p2(X) = (a0+a1X+…AmXm)2 = (a0)2 + a0(a1X+…AmXm) 
+ a0(a1X+…AmXm) + (a1X+…AmXm)2.  In GF(2), (ai)2 = ai and x + x = 0.  Therefore p2(X) = a0 + 
(a1X+…AmXm)2.  Furthermore, (a1X+…AmXm)2 = (a1X)2 + a1X(a2X2+...+amXm) + a1X(a2X2+...+amXm) + 
(a2X2+…amXm)2 = a1X2 + (a2X2+…amXm)2.  Therefore, by induction, p2(X) = a0 + a1X2 + a2X4 + … amX2m. 
 
Suppose we wish to factor X6+1 in GF(2).  The roots of this polynomial must divide 6.  However 6 does 
not divide 2m-1 for any m.  Therefore, the roots of X6+1 must have order 3, 2 or1.  From the above 
discussion, we know that (X3+1)2 = X6+1.  We can factor X3+1 by employing the three non-zero elements 
of GF(4).  Thus X3+1 = (X+1)(X2+X+1) and consequently, X6+1 = (X+1)2(X2+X+1)2. 
 
 
 
 

 
 


