
A Scalable P2P RIA Crawling

System with Fault Tolerance

Khaled Ben Hafaiedh

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for a Doctorate in Philosophy - Ph.D. degree in

Electrical and Computer Engineering

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

c© Khaled Ben Hafaiedh, Ottawa, Canada, 2016

Abstract

Rich Internet Applications (RIAs) have been widely used in the web over the last decade

as they were found to be responsive and user-friendly compared to traditional web appli-

cations. RIAs use client-side scripting such as JavaScript which allows for asynchronous

updates on the server-side using AJAX (Asynchronous JavaScript and XML).

Due to the large size of RIAs and therefore the long time required for crawling, dis-

tributed RIA crawling has been introduced with the aim to decrease the crawling time.

However, the current RIA crawling systems are not scalable, i.e. they are limited to a

relatively low number of crawlers. Furthermore, they do not allow for fault tolerance in

case that a failure occurs in one of their components. In this research, we address the

scalability and resilience problems when crawling RIAs in a distributed environment and

we explore the possibilities of designing an efficient RIA crawling system that is scalable

and fault-tolerant. Our approach is to partition the search space among several storage

devices (distributed databases) over a peer-to-peer (P2P) network where each database is

responsible for storing only a portion of the RIA graph. This makes the distributed data

structure invulnerable to a single point of failure. However, accessing the distributed data

required by crawlers makes the crawling task challenging when the number of crawlers

becomes high. We show by simulation results and analytical reasoning that our system is

scalable and fault-tolerant. Furthermore, simulation results show that the crawling time

using the P2P crawling system is significantly faster than the crawling time using both

the non-distributed crawling system and the distributed crawling system using a single

database.

ii

Acknowledgments

I would like to express my deepest gratitude toward my supervisors Dr. Gregor von

Bochmann (University of Ottawa), Dr. Guy-Vincent Jourdan (University of Ottawa) and

Dr. Iosif Viorel Onut (IBM) for their academic support during my study, and for their

helpful suggestions and advices. Thanks for converting my mistakes into lessons, pressure

into productivity and skills into strengths. Your comments on my failures and your

compliments on my performance, both motivate and inspire me to do better. This Ph.D

thesis would not be possible without your guidance.

This work was in part supported financially by IBM Center for Advanced Studies (IBM

CAS) and Natural Sciences and Engineering Research Council of Canada (NSERC). I

would like to express my sincere gratitude for your financial support during the school

session.

My deepest gratitude also goes out to my colleges at the Software Security Research

Group and IBM for their continuous support and guidance. Very special thanks go to my

colleges Muhammad Faheem, Salman Hooshmand, Emre Dincturk, Seyed M. Mirtaheri,

Di Zou, Suryakant Choudhary, Sara Baghbanzadeh, Akib Mahmud, Ali Moosavi and

Xinghao Xu. You showed me patience instead of anger, guidance instead of annoyance

and understanding instead of intolerance. Thanks for being so supportive. I am proud of

working with extraordinary colleagues like you. Thank you for making my work-life truly

extraordinary.

I would also like to thank all the people at the University of Ottawa I have had the

pleasure to work with.

The most special thanks go to my parents, my two sisters and their husbands who are

always there for me and pushing me to work hard for my education.

Finally, I would like to thank all the people who made this possible.

iii

Dedication

To the most loved people in my life

My parents Khaled Senior Hafaiedh and Nahla Senior Hafaiedh, my two sisters Nahla

Junior Hafaiedh Chelli and Nouha Hafaiedh, and my two brothers-in-law Mourad Chelli

and Slim Karray: Without you, my life would fall apart.

My beloved Dad, thank you for all the love, care and success for your family and children

that you want to them more than you want it to you , thank you for teaching me to

stand firm until the end, and never surrender, thank you for making me what I am today.

My beloved Mom, thank you for all the love you keep inside you, thank you for all the

sweetness and tenderness that emerges from your humble soul. I always think of you.

My beloved Sister Nahloula, thank you for your support and encouragement for what I

do. I wish you all the success for your professional career, I also wish you much love and

happiness with your husband Mourad, your little princess Nour Nahla and for your

familial and professional career.

My beloved Sister Nounou, thank you for always being there for me when I need it. You

have always taken care of me since we have been living under the same roof in Canada.

Your presence is very important to me. I wish you love, joy and happiness with your

future husband Slim.

My five best Friends Ali Bouthiba (France), Taieb Annabi (Tunisia), Yassine Ghazouani

(Morocco), Sadry Soudani (Canada) and Mohamed Fadhel Ben Rhouma (Tunisia), thank

you for being a different friend than everyone else, different from the friends who are only

there for the fun things. Thank you for doing all the things real best friends do. Thank

you for your care, kindness and thoughtfulness I will not soon forget. You are like a five

leaf clover, hard to find, and lucky to have.

iv

Table of Contents

List of Tables xi

List of Figures xii

Nomenclature xiv

List of Abbreviations . xiv

Mathematical Symbols . xiv

1 Introduction 1

1.1 Web Crawling . 1

1.2 Traditional Web Crawling . 1

1.3 Distributed Traditional Web Crawling . 2

1.4 RIA Crawling . 3

1.5 Distributed RIA Crawling . 5

1.6 Motivation and Research Question . 6

1.7 Overview and Organization . 8

2 Literature Review 9

2.1 Web Crawling . 9

v

2.1.1 Introduction to Web Graphs . 9

2.1.2 Traditional Web Crawling . 10

2.1.2.1 Crawl Ordering . 10

2.1.2.2 Page Freshness . 11

2.1.2.3 Politeness . 12

2.1.2.4 Eliminating Undesirable Content 12

2.1.2.5 Distributed Traditional Crawling 13

2.1.3 Deep Crawling . 13

2.1.4 RIA Crawling . 14

2.1.4.1 RIA Crawling Strategies with One Single Crawler 14

2.1.4.2 Distributed RIA Crawling 15

2.2 Distributed Processing . 17

2.2.1 Client-Server Systems . 17

2.2.2 Peer-to-Peer Systems . 17

2.2.2.1 Centralized . 18

2.2.2.2 Decentralized and Unstructured 18

2.2.2.3 Decentralized and Structured 19

2.3 Fault Tolerance . 21

2.3.1 Types of Failure . 22

2.3.1.1 Link Failure . 22

2.3.1.2 Software Failure . 22

2.3.1.3 Node Failure . 22

vi

2.3.2 Fault Tolerance Strategies . 24

2.3.3 Fault Tolerance Mechanisms . 25

2.3.4 Failure Detection Techniques . 26

2.3.5 Task Recovery and Data Recovery Strategies 27

2.4 Maintenance of Chord . 29

2.4.1 Active Approach . 31

2.4.1.1 Joining Node . 31

2.4.1.2 Leaving Node . 32

2.4.1.3 Failing Node . 33

2.4.2 Passive Approach . 34

2.4.2.1 Joining Node . 34

2.4.2.2 Leaving and Failing Node 35

2.4.2.3 Idealization . 36

3 Scalable Distributed P2P RIA Crawling with Partial Knowledge 38

3.1 Overview of the Distributed P2P RIA Crawling System 39

3.2 Assumptions . 40

3.3 The Greedy Strategy . 42

3.4 Protocol Description . 43

3.4.1 Data-Structures . 44

3.4.2 Exchanged Messages . 46

3.4.2.1 Message Types . 46

3.4.3 The P2P RIA Crawling Protocol 48

vii

3.4.4 Handling Traditional and RIA Crawling Simultaneously 50

3.4.5 Termination Detection . 50

3.5 Choosing the Next Event to Explore from a Different State 53

3.5.1 Global-Knowledge . 54

3.5.2 Reset-Only . 54

3.5.3 Local-Knowledge . 55

3.5.4 Shared-Knowledge . 55

3.5.5 Original Forward Exploration . 56

3.5.6 Locally Optimized Forward Exploration 59

3.5.7 Globally Optimized Forward Exploration 60

3.6 Message Complexities . 63

3.7 Conclusion . 67

4 Experimental Results of the Scalable Distributed P2P RIA Crawling

with Partial Knowledge 69

4.1 Implementation . 69

4.2 Test-Applications . 71

4.3 Comparing the crawling time of the different sharing schemes 71

4.4 Comparing the different variants of the Forward Exploration scheme to the

Shared-Knowledge scheme . 75

4.5 In-depth analysis of the exchanged messages 78

4.6 In-depth analysis of the Forward-Exploration approach: Non-executed events

found in different depths during the Forward Exploration operation 81

4.7 Conclusion . 86

viii

5 Fault-Tolerant RIA Crawling System 87

5.1 Assumptions . 87

5.2 Solutions . 88

5.2.1 Chord Maintenance . 88

5.2.2 Fault-Tolerant Crawling Protocol 89

5.3 Crawling Data Recovery Mechanisms . 92

5.3.1 Retry Strategy . 92

5.3.2 Redundancy Strategy . 93

5.3.3 Combined Strategy . 94

6 Analytical Evaluation of the Fault-Tolerant RIA Crawling System 95

6.1 Crawling Time with Normal Operation . 96

6.2 Processing Time per Message Type . 97

6.3 Failure Rate . 99

6.3.1 P2P Node Failures . 99

6.3.2 Failures of Dedicated Servers . 100

6.4 Failing Crawlers . 102

6.5 Failing Controllers with Low Load . 103

6.5.1 Retry Strategy . 103

6.5.2 Redundancy Strategy . 104

6.5.3 Comparison of Retry and Redundancy Strategies when Controllers

are Underloaded . 104

6.6 Combined Strategy at relatively High Load 105

ix

6.6.1 Redundancy Management Delay . 107

6.6.2 Retry Processing Delay . 108

6.6.3 Total Overhead introduced by the Combined Strategy 109

6.6.4 The value of Tp to minimize the Combined Strategy Overhead . . . 109

6.7 Impact of Extreme High Load on the Performance of the Combined Strategy 112

6.8 Comparison of the Data Recovery Mechanisms 114

7 Conclusion and Future Directions 115

7.1 Conclusion . 115

7.2 Contributions . 117

7.3 Future Directions . 118

References 120

x

List of Tables

4.1 Comparing the different variants of the Forward Exploration scheme with

the Shared-Knowledge scheme for crawling Bebop RIA. 76

4.2 Comparing the different variants of the Forward Exploration scheme with

the Shared-Knowledge scheme for crawling the JQuery File Tree RIA. . . . 77

4.3 Comparing the different variants of the Forward Exploration scheme with

the Shared-Knowledge scheme for crawling the ClipMarks RIA with 10 di-

visions. 77

4.4 Number and Percentage of non-executed events found in different depths

using the Forward Exploration scheme with 5 controllers and 100 crawlers

for crawling the ClipMarks, the JQuery File Tree and the Bebop RIAs. . . 85

6.1 Observed average session times in various peer-to-peer systems. 100

6.2 Observed average node failure rates in various private networks. 101

xi

List of Figures

3.1 Distribution of states and crawlers among controllers: Each state is asso-

ciated with one controller, and each crawler gets access to all controllers

through a single controller it is associated with. 40

3.2 Exchanged messages during the exploration phase. 44

4.1 Comparing different sharing schemes for crawling the ClipMarks RIA. . . . 72

4.2 Comparing different sharing schemes for crawling the JQuery file tree RIA. 72

4.3 Comparing different sharing schemes for crawling the Bebop RIA. 73

4.4 Average number of exchanged messages per newly explored transition with

the Shared-Knowledge scheme for crawling the Bebop RIA with 5 controllers

and 100 crawlers. 79

4.5 Average number of exchanged messages per newly explored transition with

the Locally Optimized Forward Exploration scheme for crawling the Bebop

RIA with 5 controllers and 100 crawlers. 79

4.6 Average number of exchanged messages per newly explored transition with

the Globally Optimized Forward Exploration scheme for crawling the Bebop

RIA with 5 controllers and 100 crawlers. 80

4.7 Transitions chosen in different depths per phase per controller for crawling

the Bebop RIA. 82

xii

4.8 Percentage of transitions chosen in different depths during the crawl of the

Bebop RIA. 82

5.1 The Fault-Tolerant P2P RIA Crawling during the exploration phase. . . . 91

6.1 Average processing time per message type in milliseconds for a crawling

system composed of 100 controllers and 1000 crawlers - ClipMarks 10 divs. 97

6.2 Comparing the Overhead of the Retry and the Redundancy strategies with

respect to the failure rate, assuming that controllers are not overloaded. . . 105

6.3 Measurements of the processing delay p for updating the database for an

increasing number of copied transitions. 107

6.4 Minimum Overhead of the Combined Strategy. 110

6.5 Comparison of the combined data-recovery overhead in the P2P Crawling

System for different values of δ. 113

xiii

Nomenclature

List of Abbreviations

(in alphabetical order)

• AJAX: Asynchronous JavaScript and XML.

• DHT: Distributed Hash Table.

• DOM: Document Object Model.

• P2P: Peer-to-peer.

• RIA: Rich Internet Application.

• URL: Uniform Resource Locator.

• XML: Extensible Markup Language.

Mathematical Notation

(in alphabetical order)

• c: Average communication delay of a direct message between two nodes. (in mil-

liseconds)

xiv

• e: Average time required for executing a new transition, which includes going through

a path of ordered transitions before reaching the state with the next transition to be

executed. (in milliseconds)

• emax: Maximum time required for executing a new transition. (in milliseconds)

• k: Number of transitions in a RIA.

• n: Number of controllers in the P2P Crawling system.

• Nt: Number of transitions to be updated in the database per update period for the

Combined strategy.

• m: Number of crawlers in the P2P Crawling system.

• p: Average processing time required for updating the database for the Redundancy

strategy. (in milliseconds per transition)

• r: Number of back-up copies maintained by neighboring controllers.

• s: Number of states in a RIA.

• T : Total crawling time with normal operation, i.e. with no failures among controllers

and crawlers.

• time− outCrawler: Time-out set for an assigned transition to be executed by a given

crawler. (in milliseconds)

• Tp: Update period for the Combined strategy. (in milliseconds)

• tt: Average time required for executing a new transition. (in milliseconds)

• λDedicatedServers: Failure rate of dedicated servers, where nodes can only communicate

with each other on a private network. (in failure per hour)

xv

• λP2P : Failure rate of the P2P network, where nodes are publicly accessible from a

P2P infrastructure. (in failure per hour)

• δ: Parameter describing the load of controllers.

xvi

Chapter 1

Introduction

1.1 Web Crawling

The typical purpose of a web crawler [23] is to systematically browse the World Wide Web,

typically for the purpose of web indexing, security and accessibility testing. Moreover,

web crawling potentially improves user experience by preventing the user from reaching

irrelevant or undesirable content, unreachable pages, unavailable or outdated pages and

even malicious pages. As the content on the internet is extremely large, web crawlers

must apply a good crawling strategy to decide how the exploration proceeds, so that more

relevant data is delivered to users during the allowed time slot.

1.2 Traditional Web Crawling

The typical interaction between the client and the server in a traditional web application

consists of sending a request for a URL from the client to the server so that the correspond-

ing web page is synchronously downloaded in response for each URL request. In traditional

web crawling, the web pages are exclusively generated on the server-side. While requests

are being processed on the server, users cannot interact with the client web page.

1

Traditional web crawlers usually crawl through a site a page at a time. The crawler

starts from a given URL, downloads the corresponding page, extracts all the URLs em-

bedded in the page and follows these URLs to other pages and so on, until all pages have

been discovered.

In a traditional web application graph model, each URL is modeled as a vertex of

the application graph and each link is modeled as an edge. Crawling a traditional web

application is to find all its URLs where each web page is identified by one URL and has only

a single state per URL. Any URL may be directly reached by exploring the corresponding

link leading to this URL. The client would continuously crawl the links contained for each

downloaded web page until all URLs of a given web domain are explored. Several studies

have been conducted to improve the time required for crawling traditional web applications

over the typical well-known search strategies such as the Breadth-First and the Depth-First

strategies [58].

1.3 Distributed Traditional Web Crawling

Other directions for improvement have been considered by distributing the crawling task

among multiple crawlers. In the concurrent environment, each crawler explores only a

subset of the state space by contacting one or more units that are responsible for storing

the application URLs and coordinating the exploration task among crawlers, referred to as

controllers. Different approaches have been categorized to concurrently crawl traditional

web applications [40]. We distinguish two types of distribution: The centralized and the

decentralized distributions. In a centralized distribution, a single controller is responsible

for storing a list of the newly discovered URLs and gives the instruction of loading each

non-explored URL to an idle crawler [40] [96]. However, such a system has a single point

of failure. If a failure occurs within the controller, all data collected by the crawlers is

lost. Moreover, the single controller may become overloaded as the number of crawlers

2

increases and it would not be able to efficiently process the concurrent requests when the

number of crawlers is high. Peer-to-peer traditional crawling systems have been introduced

to continue the crawling task, possibly at a reduced level, rather than failing completely,

by avoiding a single point of failure. In peer-to-peer [94] traditional crawling systems, the

URLs are partitioned over several databases where each database is responsible for a set

of URLs. In this system, crawlers can find locally the identifiers of a database by mapping

the hash of each discovered URL information using the Distributed Hash Table (DHT)

[107] [82], i.e. each URL is associated with a single database in the DHT. The crawler then

stores this URL on its corresponding database, thereby associating each database with

only a portion of the search space . Chord [39] [6] is one of the four original DHT protocols

over structured networks, along with CAN [102], Tapestry [117] and Pastry [108]. These

systems have been used in traditional web crawling in a faulty environment and are well

known for their scalability and low latency. However, their performance may degrade when

nodes are joining, leaving or failing, due to their tightly controlled topologies.

1.4 RIA Crawling

As the web has evolved towards dynamic content, modern web technologies gave birth to

interactive and more responsive applications, referred to as RIAs, which combine client-

side scripting with new features such as AJAX (Asynchronous JavaScript and XML) [47].

This allows the client to modify the currently displayed page without communicating with

the server, resulting in a smoother functionality and more interactive experience. In a

RIA, JavaScript functions allow the client to modify the currently displayed page and to

execute JavaScript events in response to user input asynchronously using its Document

Object Model (DOM) [31], without having the user to wait for a response from the server.

These new features introduce new challenges to automate the crawling of RIAs [57] as they

result in a graph of multiple states derived from each single URL.

3

In RIAs, states represent the distinct pages (DOM instances) in a RIA model [99], while

transitions illustrate the possible ways to move from one page to another, without changing

the URL. The triple (SourceState, event,DestinationState) describes a transition of a

RIA. Exploring a RIA is referred to as event-based crawling since a transition is usually

executed by triggering a JavaScript event at the user interface. Automated event-based

crawling consists of automatically invoking each of the possible user-interactions of a given

page, starting from the initial page that follows from loading its corresponding URL.

Formally speaking, the task of crawling a RIA page consists of finding all its DOM

states, starting from the original application URL, referred to as the initial DOM state.

The typical function of a RIA crawler is to automatically execute JavaScript events start-

ing from the initial DOM state, i.e. the crawler starts from a given URL, downloads the

corresponding page and reaches the initial state, extracts all the JavaScript events embed-

ded in the page and follows these events to other DOM states within the same URL and

so on, until all DOM states have been discovered.

In order to ensure that all DOM states have been identified, the crawler may explore

all transitions as it is not possible to know a priori whether the execution of an event

will lead to an already discovered state or not [99]. In RIA crawling, a Reset consists of

returning to the original URL page and re-executing the transitions that lead to a target

state. Unlike traditional web crawling where any state may be directly reached by loading

its corresponding URL, crawlers may have to go through a path of ordered states to move

from their current state to a target state in RIA crawling since it is not possible to directly

reach a target state, i.e. loading a URL in RIA crawling consists of returning to the

original URL page, which requires re-executing the transitions that lead to a target state.

This makes the RIA crawling challenging when compared to the traditional web crawling.

Efficiency of crawling a RIA is to discover as much of the RIA states as quickly as possible

in an automated an efficient manner, by minimizing the number of events executed and

reducing the number of Resets performed before executing each new transition, until all

4

states are discovered [99] [19, P. 20].

1.5 Distributed RIA Crawling

Distributed crawling consists of running two or more crawlers concurrently in order to

discover all RIA states. A distributed centralized scheme [74] for crawling RIAs has been

recently introduced with the aim of reducing the required amount of time to crawl RIAs, by

allowing each crawler to explore only a subset of a RIA simultaneously . In this system, all

states are maintained by a single entity, the controller. This entity is responsible for storing

information about the new discovered states including the non-executed events on each

state. In this system, all crawlers are associated with the central controller and each crawler

may communicate the information of the newly discovered state with the single controller

upon executing a new transition. The initial designed prototype consisted of statically

allocating the task executions among the crawlers so that each crawler is responsible for an

equal and fixed number of transitions. However, this requires load balancing mechanisms

to be applied as the time needed to explore each new transition is different from one

another and is not predictable in real systems, which results in making some crawlers idle

while some other ones are overloaded. One solution to overcome this issue consisted of

dynamically allocating the task executions among crawlers in a way the single controller

decides which transition to be executed next by each crawler. Even-though this strategy

is more efficient, it introduces more message overhead due to the communication overhead

between the crawlers and the central controller. Another major drawback of this system

resides in its centralization. In fact, maintaining the RIA states within a single unit may be

problematic for the following reasons: (1) Scalability: Preliminary analysis of experimental

results [74] have shown that a controller can support up to only 20 crawlers before becoming

overloaded. This is an important scalability issue that needs to be addressed when dealing

with distributed RIA crawling. (2) Fault tolerance: A failure occurring within the single

5

controller will result in the loss of the entire graph under exploration. In real distributed

systems, databases are vulnerable to different kinds of failures. If the system has no failure

detection and recovery capabilities, the system may not be able to achieve the crawling task

properly. In order to overcome these issues, a peer-to-peer architecture [76] for crawling

RIAs has been proposed in where nodes do not rely on a centralized unit to collect the

information required for the crawling. In this system, each node is responsible for crawling

a set of transitions. Upon executing a new transition, the node may broadcast it to all

other nodes, allowing them to find a better shortest path to execute the closest non-

executed transition that is available under their scope, starting from their current state.

This architecture is appealing due to its decentralization. However, it may introduce a

high message overhead since nodes are required to share every newly executed transition

with all other crawlers.

1.6 Motivation and Research Question

We address the scalability and resilience problems when crawling RIAs concurrently. We

propose a scalable fault-tolerant P2P crawling system that is capable of partitioning the

RIA states over multiple controllers, where each controller maintains a distinct subset of

the RIA model. Such a partition needs to be structured in a way that allows crawlers

to retrieve the required information from each of these controllers before executing a new

transition when needed. Moreover, each controller is associated with a set of crawlers that

can access other controllers in the system through it. The decentralized crawling of RIAs

is challenging for two reasons: (1) Unlike traditional web crawling where any state may

be directly reached by loading its corresponding URL, crawlers may have to go through a

path of ordered states in RIA crawling before exploring a new transition on a given state

since it is not possible to directly reach a state with a new transition to be explored. If

the states are partitioned among multiple controllers, it is unsuitable to communicate with

6

all controllers that are associated with the states in this path. (2) Traversing a long path

before executing a new transition is costly. Some coordination between the controllers

needs to be performed to allow crawlers to execute new transitions while the length of the

path to reach each of these transitions is minimized.

For scalability, we propose a RIA crawling system that is able to operate properly with a

very large number of concurrent crawlers. One important consideration when designing this

system is to not overload its crawlers and controllers by : (1) Distributing the search space

among multiple controllers, therefore reducing the loads among controllers. (2) Efficiently

partitioning the crawling task among the concurrent crawlers in a way the execution load

remains balanced among crawlers.

Moreover, fault tolerance is achieved when decentralizing the system by avoiding a single

point of failure. If a failure occurs in one of the controllers, only a relatively small part of

the entire data is lost. A fault-tolerant system must be able to achieve two functions: (1)

Detecting the faulty components and eliminating or isolating them from the system. (2)

Recovering from failures by eliminating its side-effects, regenerating the lost data by using

replication or other techniques and resume normal operation. Additional considerations

need to be addressed if we want to design an efficient fault-tolerant system with an effective

tradeoff between the amount of replicated data and the load on the databases. Attention

has also to be paid on who is responsible for recovering the lost data, how to locate it and

how to reach it efficiently with minimum communication overhead.

In this thesis, we aim to advance the current research on distributed crawling of RIAs

by exploring the possibilities of designing a distributed P2P system for crawling large-scale

RIAs capable of partitioning the RIA graph over several controllers, which allows in fault

tolerance. Moreover, a set of crawlers may be associated with each controller allowing for

the scalability of the system. Furthermore, we aim at making this system resilient and

capable of achieving the distributed RIA crawling even when node failures occur. To our

knowledge, efficiently crawling large-scale RIAs over P2P networks in a faulty environment

7

has not been investigated yet.

1.7 Overview and Organization

Two important problems that need to be addressed when designing a distributed system for

crawling RIAs are the scalability and fault tolerance issues. We introduce different sharing

schemes for efficiently crawling large-scale RIAs with a high number of crawlers while the

cost is minimized (number of event executions and Resets performed), which allows for

scalability. We also aim at designing different distributed architectures for crawling RIAs

that have resilience capabilities.

This thesis is organized as follows. Chapter 2 introduces the existing work related to

distributed RIA crawling. In this chapter, we first describe and compare the traditional web

crawling with RIA crawling. We then introduce the distributed processing. We emphasize

two architectures: The centralized and the decentralized distributed systems. Finally, the

resilience problem and the different detection and recovery mechanisms are reviewed. In

Chapter 3, we introduce the Scalable Distributed P2P RIA Crawling system with Par-

tial Knowledge. The decentralized distributed greedy strategy and the P2P RIA crawling

protocol are also described, along with different knowledge sharing schemes for efficiently

crawling RIAs in a decentralized system. Chapter 4 describes our experimental results and

compares the efficiency of the proposed distributed P2P RIA crawling strategies with par-

tial knowledge. Chapter 5 introduces our proposed Fault-Tolerant RIA Crawling system.

Different Data Recovery strategies for recovering lost data when node failures occur are

introduced. Chapter 6 analytically evaluates the fault-tolerant RIA Crawling System. A

conclusion is provided in Chapter 7 with some future directions for improvement.

8

Chapter 2

Literature Review

In this chapter, we first introduce the graph exploration problem related to web crawling.

We then introduce both traditional and rich internet applications (RIAs) and we highlight

the differences between them. We also give an overview of distributed processing and dis-

tributed databases. We emphasize the critical points and findings related to decentralized

distributed systems. Existing work related to fault tolerance is also presented.

2.1 Web Crawling

2.1.1 Introduction to Web Graphs

A web graph is a graph model consisting of a certain number vertices and edges connecting

these vertices in a graph. Several studies such as [114] and [53] have addressed the problem

of modeling large-scale real graphs such as the World Wide Web graphs (WWW). They

have demonstrated that there is a reverse power-law relationship for the proportion of

vertices with a given degree when searching a randomly growing graph. In 2002, Aiello et

al. [112] and Cooper et al. [20] addressed the problem of searching a randomly growing

web graph by a random walk. They considered a model of search in which a process called

9

spider makes a random walk on the nodes of an undirected graph. As the spider is walking,

the graph is growing, and the spider makes a random transition to whatever neighbors are

available at the time. Both investigations share a common characteristic which can be

described by the so-called power-law. In a power-law degree distribution, the fraction of

vertices with degree d is proportional to 1/d − α for some constant α > 0. They also

demonstrated that a web graph meets the power-law graph properties when it is randomly

crawled, i.e. it has a power-law degree distribution.

2.1.2 Traditional Web Crawling

The role of crawlers is to collect web content. Given a set of seed URLs, the basic function of

a traditional web crawler consists of downloading these URLs and extracting all hyperlinks

contained in these URL pages, and iteratively downloads the web pages that follow from

these hyperlinks. Olston et al. provides a survey [23] that outlines the important research

areas related to traditional crawling such as defining page relevance metrics, maintaining

content freshness, politeness, eliminating undesirable content, distributed crawling and so

on.

2.1.2.1 Crawl Ordering

The goal of the crawl ordering is to maximize the coverage of the discovered URLs achieved

over time by following some importance metric, i.e. important pages are downloaded

first depending on the purpose of crawling. Different crawl ordering policies have been

categorized based on which data retrieved from each URL they consider important:

• Batch crawling: It consists of exploring a crawl space until reaching a certain size or

time limit, without containing duplicate occurrences of any page. Three main types

of crawl ordering policies have been examined in the literature:

10

– Breadth-First [17]: Pages are downloaded in the order in which they are first

discovered in a Breadth-First search manner, i.e. all extracted links from each

page are executed next. Breadth-First crawling is found to be appealing [77]

due to its simplicity.

– Prioritization by In-Degree [42] : Pages with the highest number of incoming

hyperlinks from previously downloaded pages are downloaded first.

– Prioritization by PageRank [43] [97] [95] [68]: Pages are downloaded in descend-

ing order of PageRank, where each PageRank is associated with a score based on

the pages and links acquired by the crawler. PageRank scores may be updated

incrementally [97] or periodically [95].

• Incremental Crawling [95] [45]: It consists of continuously exploring the crawling

space and revisiting the discovered pages periodically to help keeping the content

up-to-date. Unlike Batch crawling where multiple pages do not appear multiple

times, the incremental crawling may contain duplicate pages with the same URL

which are used to detect any change in their content during the crawling.

• Scoped Crawling [42] [71] [17]: It attempts to crawl pages that fall within a particular

category. The search category may be defined according to a specific topic, geography,

language, format, genre and so forth.

2.1.2.2 Page Freshness

One important consideration when crawling traditional web applications is to maintain

freshness of old crawled content, i.e. the degree to which the downloaded pages remain

up-to-date, relative to the current downloaded web copies. Several freshness models have

been proposed, as follows:

• Binary Freshness Model [34]: Pages are evaluated by their change frequency. This

11

frequency can take two values: Either fresh or stale.

• Continuous Freshness Model [97]: The freshness of a page is evaluated based on

the elapsed time between the last discovery of a change in the cached page and the

discovery of a new change in the page.

• Content-based Freshness Model [24]: A page is divided into a set of content fragments,

each with a corresponding weight that evaluates the fragments relevance.

2.1.2.3 Politeness

Another consideration in crawling is to achieve a high performance without slowing down

the crawling. Overloading a server with high rate of requests is seen as being impolite and

several politeness policies may be applied to avoid such situations:

• Periodic approach [118] [41] : It consists of putting a fixed delay between successive

requests to the same server.

• Adaptive approach [77]: It consists of putting a changing delay that is proportional

to the time it took to download the last page.

• Exclusion approach [73]: It consists of specifying what pages crawlers are allowed to

download by excluding irrelevant pages from the crawling.

2.1.2.4 Eliminating Undesirable Content

There are many situations where automatic traditional crawling leads to undesirable con-

tent which can be wasteful or redundant. For example, different URLs may redirect or refer

to the same content [120]. Different web pages may also have the same content although

the elements are not in the same order [119]. Another source of duplication is mirroring

12

[59] of a web site, where parts of the same web site are provided on different hosts. Detect-

ing this kind of behavior is important in crawling and allows crawlers to avoid these URLs

without downloading them, thereby reducing the load on the crawler and diversifying the

set of search results. Many techniques have been proposed to detect these URLs [119]

[1] [7] [59] by introducing learning algorithms that can generate rules containing regular

expressions. These rules can be used by crawlers to detect and remove unwanted URLs.

2.1.2.5 Distributed Traditional Crawling

Increasing the crawling throughput may be achieved by using multiple crawlers in parallel

and partitioning the URL space such that each crawler is associated with a different subset

of URLs. The coordination between crawlers is required to prevent downloading the same

page by the concurrent crawlers. The coordination may be achieved either through a

central coordination process [96] [111] that is responsible of coordinating the crawling task,

or through a peer-to-peer crawling system [15] [107] [52] [13] [63] where crawlers employ

some distributed hash table (DHT) schemes [107] [82] in order to assign different subsets

of URLs to different crawlers.

2.1.3 Deep Crawling

Deep Web (or Hidden Web) addresses the problem of crawling some content that is ac-

cessible only by filling in HTML forms and cannot be reached by downloading hyperlinks.

Most researchers address the problem of crawling Deep content by dividing it into three

steps: Locating Deep Web content [64], selecting only the relevant content [83] [66] and

extracting it [50] [101].

13

2.1.4 RIA Crawling

2.1.4.1 RIA Crawling Strategies with One Single Crawler

Different strategies [99] have been previously introduced with the aim of efficiently crawling

RIAs. The basic and most known standard approaches are the Breadth-First (BF) [21]

[93] and the Depth-First (DF) [9] strategies. Although BF and DF are able to completely

explore RIAs, they are not efficient in most cases. One reason is that BF and DF explore

events in a strict order, i.e. the crawler knows a priori which transition has to be executed

next. Consequently, there is no flexibility on choosing another state among other available

states with non-explored events. Furthermore, if no path leading to a target state is known

to the crawler, it may return to the initial state to reach it, which may increase the number

of Resets performed. Other strategies have been introduced to overcome the high number of

events executed or Resets performed in BF and DF such as the greedy strategy [121]. This

strategy is to explore a non-executed event from the current state if there is an available

non-explored event. Otherwise, the crawler may use Dijkstra’s shortest path algorithm

[113] to find the closest state with non-executed events, starting from its current state.

The greedy strategy has been suggested [121] for RIAs crawling rather than BF and DF

for its flexibility and simplicity.

Moreover, model-based crawling has been introduced with the aim of reducing the

number of events executed and the number of Resets performed, by predicting the under-

lying RIA model. In this context, the Hypercube [19] and the Menu[98] models have been

proposed. The Hypercube model is based on the assumption that the events enabled in

a given state are independent, i.e. executing them in different orders leads to the same

state. On the other hand, the Menu model assumes that an event execution is indepen-

dent of a given source state, and that executing it will always lead to the same destination

state. Both Hypercube and Menu strategies outperform the Breadth-First and Depth-First

search strategies. However, their efficiency highly depends on the model of the crawled

14

application and how much it fits these models. Another strategy for crawling RIAs has

been recently introduced and addresses the problem of state space explosion when crawl-

ing RIAs, referred to as the Component-based crawling [10]. The strategy is based on

the greedy strategy and consists of partitioning the DOM into independent components

where each state represents a separate state, thereby reducing the state space effectively.

Although it is more complex to implement, experimental results showed that this strategy

significantly outperformed the current RIA crawling methods in terms of overall crawling

time and was able to cover complete content of RIAs.

2.1.4.2 Distributed RIA Crawling

A first study for distributed crawling of RIAs has been proposed in [93]. It extended some

existing sequential algorithms for crawling traditional web applications by first extracting

the URLs in the application, and then running independent crawling processes on the set

of discovered URLs to perform event-based crawling using the Breath-First search strategy.

The communication overhead is avoided by assigning each crawler to different URLs and

allowing crawlers to execute JavaScript events on the subset of URLs they are responsible

for, thereby eliminating the communication between crawlers.

Another research [9] proposed to distribute the RIA crawling task by using multiple

threads for each discovered URL. These threats run simultaneously but share a common

memory. In this system, a single thread is first initiated to perform a traditional web crawl-

ing. Then, for each URL that contains JavaScript events, multiple threads are initiated

and perform a Depth-First search starting for this URL.

A distributed centralized crawling [74] has been recently introduced and consists of run-

ning multiple crawlers and sharing the search space of the RIA within one single database,

referred to as controller. The crawlers explore only a subset of the application state and

communicate with the controller to keep the current discovered graph up-to-date. In this

15

system, the crawling task is partitioned in a static way, i.e. all transitions on each state are

associated to one of the crawlers, which has the responsibility of exploring them. Different

load balancing schemes have been proposed to balance the workload among concurrent

crawlers which have no equal processing powers, i.e. the execution of a sequence of tran-

sitions before reaching a non-executed event is different from a crawler to another. The

basic motivation behind load balancing in this context is to forward the responsibility of

executing transitions on a given state from overloaded crawlers to idle crawlers.

In order to eliminate the load balancing issue, another study [75] considers dynamically

allocating transitions among the concurrent crawlers by the single controller. After every

newly executed transition, the crawler communicates the information of its new current

state with this controller, requesting the next transition to be executed. The controller

applies the greedy strategy and locally finds the shortest path leading to a state with a

non-executed event from the crawler’s current state. This strategy provides an important

improvement over the static approach [74] for distributed crawling of RIAs. However, it

introduces more message overhead since crawlers have to communicate with the controller

every time a new transition is executed.

Furthermore, a P2P architecture for crawling RIAs [76] has been introduced where

crawlers do not rely on the single controller, they share every executed transition with

all other crawlers in the network, allowing every crawler to locally find the shortest path

leading to a state it is responsible for, starting from their current state. The main benefit

of this architecture is to avoid a single point of failure by eliminating the use of the con-

troller. However, a major drawback of this approach is the message overhead arising from

broadcasting every transition among all crawlers in the P2P network.

16

2.2 Distributed Processing

A distributed system is a software system composed of more than one processing entity in

a distributed network. Theses entities are independent from one another and communicate

and coordinate their actions by passing messages in order to achieve a common task.

Timing Model

A distributed system can either be synchronous or asynchronous. A synchronous system

assumes known bounds on message transmission delays between nodes as well as their

execution rates. In other words, any message sent from one node to another is received

and processed at the destination process within a bounded time. On the other hand,

asynchronous systems have no timeliness assumptions, i.e. no assumptions about message

transmission delays or execution rates. In this model, a message sent will eventually be

received and processed, but with no guarantee on the reception time.

Distributed Architecture Paradigms

We distinguish two important paradigms in relation with distributed systems. The

client-server paradigm and the peer-to-peer paradigm.

2.2.1 Client-Server Systems

A Client-Server system is a distributed system that is composed of two independent entities:

An entity that is responsible of providing a service, called server, and entities that are

responsible of using this service, called clients.

2.2.2 Peer-to-Peer Systems

In contrast to the traditional client-server architecture, a peer-to-peer system (P2P) [11]

[94] is a networking system in which each peer acts as both the client and the server. Such

17

architecture insures that the system control is cooperatively maintained by all the peers

with no hierarchical organization. The basic operations performed on a P2P system are the

insertion, look-up and deletion of data items. P2P systems are found to be more scalable,

robust and suitable for many applications.

P2P networks can be categorized into three classes [91]: Centralized, Decentralized and

Unstructured and Decentralized and Structured.

2.2.2.1 Centralized

In the centralized P2P system, peers are responsible for coordinating the exchange of

content of the entire network on a single storage device, the server. In this system, each

peer has to update the server for each new item. Peers may then access an item by

retrieving its corresponding access information from this server. Known as music exchange

system, Napster [60] represents the first generation of P2P systems along with Publius [78].

Napster and Publius have an updated object directory that is maintained in the central

Napster server. Upon logging in to the server, peers notify the directory with the list of

files they maintain. The searching can be performed by issuing a query from a peer to the

server to find which other peers hold their desired files. These two systems are simple and

easy to deploy, but they have a single point of failure and they are not scalable, although

they use several parallel servers to avoid a single point of failure.

2.2.2.2 Decentralized and Unstructured

These systems overcome a single point of failure by using a fully decentralized architecture

with no centralized directory, offering a better resilience. However, there is no precise

control over the network topology, which results in low query efficiency since the queries are

executed hop-by-hop through the network until success/failure or timeout. An example of

this type of of networks is Gnutella [37]. Gnutella uses the flooding approach for searching

18

data in the P2P network, where the query is communicated to all neighbors within a certain

radius or constrained by some Time-To-Live (TTL) or hop-limit mechanisms. However,

the flooding approach is not scalable since it generates large loads on the networked peers.

Some directions [91] have been proposed to improve the latency of look-ups such as the

dynamic TTL setting and the k-walker random walk.

2.2.2.3 Decentralized and Structured

Unlike the unstructured P2P networks where queries are unsure to be successful, the de-

centralized and structured P2P networks ensure that each query is guaranteed to success

after some deterministic hops in a non-faulty environment. These structured topologies

are usually constructed using distributed hashing table (DHT) [107] [82] techniques. The

DHT service allows data to be placed not at random nodes but at specified peers that will

make queries easier to satisfy. Moreover, the use of decentralized architectures using DHTs

is appealing since they provide a low latency and are well known for their tolerance to node

failures. In this context, different decentralized architectures using DHTs have been pro-

posed over different structured topologies (Mesh [117], Ring [39], d-dimension Torus [102]).

Although these P2P systems are found to be scalable and have no single point of failure,

their performance may degrade as nodes join, leave or fail, due to their tightly controlled

topologies. This requires some resilience mechanisms on top of each of these architectures

(See section 2.3).

We introduce three decentralized architectures that use DHTs in the following section:

CAN [102]: CAN is a P2P systems that provides hash-table functionality for mapping

data items to a point in dimensional space as its identifier around a d-dimensional Torus.

Every region in this closed surface is associated with a peer that holds all keys whose IDs

belong to this region. When a node is joining CAN, it randomly selects a point in the

dimensional space. It then splits its region into two parts and takes one of them. When a

19

peer leaves CAN, the region it occupies and its associated data items are simply handed

over to one of its neighbors. The routing and searching is performed by forwarding a query

at each search/routing-hop to the region closest to the actual position of the wanted key.

That is, the number of hops for each query is O(d
√
N) where d is the dimension of the

Torus and N is the number of peers in CAN.

Plaxton [35]:

Plaxton is based on the mesh data structure. Plaxton allows peers to locate objects and

route messages to them across an arbitrarily-sized overlay structure by maintaining pointers

to peers whose IDs match the data items of a tree-like structure of ID prefixes up to a digit

position. In order to provide a guaranteed peer from which a data item can be located, a

root peer must be maintained for each data item. Queries are thus incrementally routed

digit-by-digit from the right to the left until they reach the destination peer responsible

for the given data item. Plaxton is scalable and has a simple fault-handling mechanism.

However, its major limitation is that one requires global knowledge for assigning and

identifying root peers, as well as their vulnerability to node failures. Two important

variants of Plaxton have been introduced and allow for a better resilience: Pastry [108]

and Tapestry [117].

Chord [33] [39] [115]:

Chord is a ring-based look-up service that stores key/value pairs in a distributed setting.

Chord consists of storing the key/data item pair in the peer to which the key maps. Chord

is based on consistent hashing [26]: It provides a unique mapping between an identifier

space and a set of nodes by hashing every key to a unique node. Chord requires each node

to keep a ”finger table” storing up to m entries in a ring of N peers, where m ≤ log(N). The

ith entry of node n maintains the address of its (2i−1)mod2m subsequent nodes in the ring.

This allows the look-ups to act like a binary search, where the searching space is reduced

by half after each search/routing-hop. Therefore, the number of peers to be visited for

20

each query sent in a chord network of N nodes is O(log(N)). Chord is found to efficiently

adapt as nodes join and leave the system even if the system is continuously changing.

Moreover, Chord keeps the load among nodes balanced since the consistent hashing allows

nodes to be associated with roughly the same number of keys when the nodes and keys

are randomly chosen. The balanced load is maintained even when nodes join or leave

the system since for every node joining or leaving, only a fraction of O(1/n) of the keys

are moved to a different location. Other important features that distinguish Chord from

other P2P look-up protocols are its simplicity, scalability and performance [39]. However,

maintaining these features at their highest levels requires a continuous maintenance to

restore the topology as nodes join and leave the system. We outline different approaches

for maintaining the Chord P2P system including joining and leaving nodes as well as

the maintenance of Chord in the presence of failures required to reach a desired level of

efficiency in Section 2.4.

2.3 Fault Tolerance

A fault is defined as an unwanted state transition of a process as a result of two distinct

event classes [32]: Normal system operation and fault occurrences. A non-formal definition

of fault tolerance [22] is the ability of a system to behave in a well-defined manner once

faults occur. [2] provides a formal definition of a fault tolerance function as follows: To

preserve the delivery of expected services despite the presence of fault-caused errors within

the system itself. Errors are detected and corrected, and permanent faults are located and

removed while the system continues to deliver acceptable service.

21

2.3.1 Types of Failure

2.3.1.1 Link Failure

A link failure [3] is a type of failure in which two linked nodes cannot communicate with one

another. Different types of link failure may occur between two nodes: A message can be lost

completely due to noise in the linking channel. A transmitted message may be corrupted

and cannot reach its destination correctly. A link may also be broken temporarily causing

all messages sent through it to be lost (packet loss). One way to overcome link failures

is to attempt to retransmit lost messages through the same path several times until the

message is successively received or through another path whose links are working properly.

If the link failure is caused by a corrupted message, the destination node may detect the

erroneous message using error detecting techniques [3]. In this context, Aguilera et al.

[55] proposed several algorithms to detect link failures and introduces different solutions

to handle them.

2.3.1.2 Software Failure

This type of faults are due to software errors, programming mistakes, non-handled excep-

tions or bugs. A software can be protected against failures by using software redundancy

techniques [38]. N-version programming [2] is one of the software redundancy techniques

known as fault masking [109]. It uses static redundancy in the form of independently writ-

ten programs, each of which with a different version. These programs perform the same

functions and their outputs are voted at special checkpoints.

2.3.1.3 Node Failure

• Fail-Safe [18]: A Fail-Safe fault is a type of fault in which processors malfunction

but in a way that will cause no harm to the system, i.e. it will not respond in

22

any unpredictable way. Examples of Fail-Safe faults are omission faults (failures of

receiving a request or failures of sending a response), timing failures and data out of

bound. [89] categorizes Fail-Safe faults into four categories:

– Permanent fault: This type of faults is always present in the system an never

goes away.

– Transient fault: This type of faults causes a component to malfunction for

a limited period of time, and then goes away allowing the system to resume

normal operation.

– Intermittent fault: This type of faults appears from time to time but never goes

away entirely; it can be active, causing a malfunction, or inactive.

– Benign fault: This fault causes a unit to crash and go dead. Crash failures [22]

are a good example of benign faults in which processors simply stop executing

a task at a specific point in time without causing harm to the system.

• Malicious Failure: This is a type of faults in which processors may behave in

unpredictable or malicious ways. This behavior may be due to malicious attacks or

software errors. Malicious failures combine two classes of failures:

– Symmetric: Failures are identical in all components of the system and they

occur in a predictable way such as the omission faults.

– Asymmetric: Failures are not identical and components may fail in arbitrary

ways by processing requests incorrectly, corrupting their local state or by pro-

ducing incorrect outputs. This class of failures is referred to as commission

failures.

Byzantine faults [67] are a good example of malicious failures which combine both

omission and commission failures. When a Byzantine failure has occurred, the system

may respond in any unpredictable way, unless it is designed to have Byzantine fault

23

tolerance. Several solutions to solve the byzantine failures have been introduced

by Lamport et al. [67]. The trivial proposed solution is to solve the Byzantine

Generals Problem by reaching a consensus among loyal generals, where generals of the

Byzantine Empire’s army must decide unanimously whether to attack some enemy

army in the presence of traitors (faulty) among the loyal (non-faulty) generals. These

traitors may act arbitrary in order to confuse the loyal generals, forcing a decision

that is not consistent with the loyal general’s desires. Byzantine fault tolerance can be

achieved if the loyal generals succeed to make a consensus and reach an agreement

on their strategy if a limited number of generals behave maliciously following the

Byzantine fault model [67].

2.3.2 Fault Tolerance Strategies

Fail-Fast [48]:

The Fail-fast strategy belongs to the family of Fail-stop [48] fault tolerance where a

program should either function correctly or it should detect a failure and stop operating.

Fail-fast systems are designed to immediately detect and signal any failure and stop normal

operation without attempting to recover from the failure. Fail-fast programs are made

proactive by defensive programming, i.e. they allow for detecting failures early: They

check all their inputs, intermediate results, outputs and stop normal operation in case any

erroneous behavior occurs.

Fault Masking [109]: The fault masking consists of hiding the occurrence of faults

and prohibiting even momentary erroneous results from being generated. The majority

voting is a good example of this strategy. It consists of periodically performing a vote by

three or more identical nodes on their outputs. The majority results are transmitted, and

the minority results that are supposedly erroneous are discarded.

Reconfiguration [89]: This is a more popular strategy to tolerate faults in distributed

24

systems. It consists of eliminating faulty nodes from a system and restoring the system

to some operational state. [89] divides the reconfiguration problem into three steps: Fault

detection, Fault containment and Fault recovery. Fault detection is to detect and locate

faulty nodes. Fault containment is the process of isolating and avoiding the propagation

of errors throughout the system and eliminating any side effect that may occur after the

detection of these faults. Finally, fault recovery consists of resetting the system to any of

its operational states, allowing the system to resume normal operation.

2.3.3 Fault Tolerance Mechanisms

Several methods have been introduced for handling failures. [27] distinguishes two separate

approaches: The proactive approach and the reactive approach.

Proactive Approach: In the proactive approach, the network configuration is main-

tained and pre-computed in a way to handle a given fault before the assignment of a job

execution. When a failure occurs, the system makes minimum changes to handle it with-

out having to make major change for its reconfiguration. The failure management in this

case is usually straightforward and simple. However, one major drawback of this approach

is the permanent usage of many resources to handle failures even though most of these

resources are not always involved in the recovery.

Reactive Approach: The failure is handled after it has occurred and the system

should only react to the failure as a response to it. Different studies have addressed this

problem with the aim of minimizing the number of resources involved, allow the system for

its reconfiguration only when a fault is detected. Such systems are usually more efficient

than the proactive systems while their maintenance is more complex due to their dynamic

adaption to failures.

Combined Approach: Both the proactive and the reactive approaches are considered.

This is a more powerful approach since reactive and proactive techniques complement each

25

other.

2.3.4 Failure Detection Techniques

A major challenge when dealing with distributed systems is to identify faulty nodes so that

they can be isolated or repaired accordingly. The correct nodes must collect information

about the current execution or nodes that are involved in the distributed computation in

order to detect failures. [16] categorized fault detection services into two main models:

The Pull model and the Push model.

• Pull Model: In the pull model, nodes are responsible for sending periodic signals to a

fault detector. This detector can identify a failing node if it does not receive a signal

from this node after fixed period of time. Different fault-tolerant services use this

model such as Condor-G [46] and BFT proactive recovery [70].

• Push Model: In this model, the fault detector is responsible for sending a signal to

other nodes in the network. This detector can identify a failure if the node is not

responsive. The membership detection mechanism is a good example of the push

model and is implemented on several fault detection services such as Globus [69] and

Net Solve [87]. In the membership agreement, each node periodically sends an I am

alive message, referred to as a heartbeat [100]. Moreover, each node is listening for

the heartbeat messages from other nodes in the distributed system. A node decides

that another node has failed if it does not receive a heartbeat message from that

server for a sufficiently long time out. Recently, Shukri A. et al [12] introduced a

most popular technique for detecting failures using the heartbeat mechanism in very

short intervals, allowing the system for quickly detect any failure.

Unreliable fault detectors [88] are also a type of detectors in the push model and

have the ability to suspect malicious nodes by making a decision on a suspected

26

node. The fault detector is called unreliable because it may suspect a correct node

or it may fail to suspect a faulty node. Unreliable fault detectors are usually used to

detect failures in asynchronous distributed systems that are subject to crash faults

or Byzantine faults. Paul Stelling et al. [90] proposed a wide variety of techniques

for detecting and correcting faults using unreliable fault detectors to detect node

failures.

In the same context, [25] introduced a perfect failure detector that prevents wrong

suspicions, i.e. non-faulty nodes are never suspected and faulty nodes are eventually

suspected by everybody thereby preventing false alarms to occur. [25] showed that

perfect failure detectors correctly detect node failures in asynchronous systems under

the assumption that the communication is reliable (reliable communication delivery).

Perfect failure detectors allow non-faulty nodes to suspect a faulty neighbor if it does

not respond to an areyoualive message within twice the maximum round-trip time

for any previous areyoualive message, assuming that messages are never lost and

that the upper bound on message delay is known.

2.3.5 Task Recovery and Data Recovery Strategies

The task recovery is to maintain the state of a distributed task available to some other

nodes, allowing the system to start from a given state when a failure occurs. The data

recovery is to protect the database against data loss and reconstruct the database after

data loss. We mention the following task and data recovery strategies:

Retry [100]: This is the simplest failure recovery technique and consists of replaying

any erroneous task execution, hoping that the same failure will not occur in subsequent

retries. The basic idea behind the Retry strategy is that if a failure occurs, then a task

must restart from the beginning until it is successfully achieved.

Replication [100]: This consists of replicating the same task or data among several

27

nodes using backup copies, hoping that at least one of the replicated task would be suc-

cessfully executed despite its failure on other nodes, or at least one of the replicated data

remains available when data loss occurs on other nodes, respectively. One drawback of this

technique is that the number of backup copies may dramatically increase and the backups

management becomes very costly. A Fusion based technique [14] has been proposed to

minimize the update overhead of replication by maintaining only a set of fused backup

data structures which can be used to recover from a failure.

Message Logging [70]: All non-faulty nodes submit logging information about their

current tasks and data to a reliable storage. Upon the detection of a failure, a diagnostic

on these messages is performed in order to reset the system to a previous consistent global

state.

Check-Pointing [81]: This consists of periodically storing the state of the application

on a reliable storage. When a fault occurs, the application is resumed from the last

checkpoint rather than restarting from the beginning. There are three types of Check-

Pointing mechanisms [85]: Coordinated Check-Pointing, Uncoordinated Check-Pointing,

and Communication-induced Check-Pointing.

• Coordinated Check-Pointing: The check-points are synchronized to ensure that the

saved states are consistent with one another.

• Uncoordinated Check-Pointing: The scheduling of checkpoints is independently per-

formed by different components at different time slots with no coordination of the

check-point messages.

• Communication-induced Check-Pointing: Only few of the check-point messages are

coordinated.

Redundancy [36], [79]: This is one of the popular methods to tolerate faults in a

distributed system. Redundancy overcomes the drawback of Check-Pointing by making

28

multiple copies of each task or data on different nodes rather than a single one and using

this redundancy feature when needed. [89] claims that redundancy is the key for fault

tolerance: There can be no FT without redundancy. [110] distinguishes different types of

redundancy: Time redundancy, space redundancy, and the combination of both (hybrid

redundancy).

• Time Redundancy: The system exploits time redundancy by re-executing the same

task on the same node periodically. Time redundancy is usually used to handle a

certain type of failures that are not continuous and occurring at irregular intervals.

• Space Redundancy: Space redundancy consists of maintaining the same task or the

same data on one or more different nodes, assuming that nodes fail independently.

This kind of systems are used for a type of failures that are repetitive on the same

node and thus needs to be permanently handled by other nodes in the system. The

Primary-Backup approach [80] is applied in space redundancy.

• Hybrid Redundancy: In the case where some failure models require both time and

space redundancy to be applied [55].

2.4 Maintenance of Chord

The maintenance of Chord addresses the problem of maintaining its distributed state as

nodes fail, join or leave the system by properly updating the neighbor variables to maintain

the topology. Since Chord is a continuously evolving system as nodes join and leave the

system, it is required to continuously repair the overlay to ensure that the network remains

connected and supports efficient look-ups.

Ideally, Chord can resolve all look-up queries with a complexity of O(log n) messages

when the system is in the steady state, where n is the number of nodes in the system. By

29

steady state, we mean that the network have been reestablished correctly after a join, a

leave or a failure. In real P2P networks, this performance is hard to maintain and may

degrade in practice as nodes join, fail or leave the system arbitrarily. [84] [8] showed that all

look-up queries can be performed with a high probability with O(log2 n) when the system

is continuously changing, by finding an alternative path through other nodes using the

fingers, which guarantee that a node responsible for a key can always be found. Note that

the fingers improve performance, but do not affect correctness [115], i.e. only the correct

connectivity of the successor and predecessor nodes of a joining, failing or leaving node is

required for correctness [115] under the assumption that the system is vulnerable to only

fail-stop failures with perfect failure detection and reliable message delivery. Perfect failure

detectors belong to the push model family introduced in Section 2.3.4 for periodically

detecting failures, which ensure that faulty nodes are eventually detected by non-faulty

nodes with no false alarms.

There are mainly two different approaches for maintaining Chord: The active approach

and the passive approach. In the active approach, a node join consists of inserting a node

in the network and updating the finger tables of other nodes in the network immediately

after the join of the new node to reflect its addition. This is different from the passive

approach which consists of only updating the successor and the predecessor of a joining

node but leaving the finger tables of other nodes inaccurate. Since the fingers do not affect

the correctness of Chord, these inaccuracies may be passively handled in the future and

independently of the join operation, i.e. the finger updates of other nodes are handled peri-

odically by all nodes in Chord using the idealization protocol [28]. To perform idealization,

each node stores an extra predecessor pointer, used to record the closest predecessor of each

node. This pointer is used to look-up the predecessor of a given node as required by the

join, leave or fail operation. Moreover, the node leaving and node failing operations are

handled similarly in the passive approach. Authors in [28] assume that a node may leave

the network without notifying its neighbors. The idealization protocol allows for detecting

30

failures and to reestablish Chord along with updating periodically the finger table, the

predecessors and the successors of all nodes in Chord to keep them up-to-date. However,

in the active approach, the node leaving and the node failing operations are treated sepa-

rately . [39] and [115] argue that these two operations should be handled separately since

the leaving may occur more frequently than faults. Additionally, it appears simpler and

more convenient for a node to initiate a leave protocol rather than waiting for other nodes

to detect the disappearance of a node. In the following section, we briefly describe the

node joining, leaving and failing operations for both the active and the passive approaches.

2.4.1 Active Approach

2.4.1.1 Joining Node

A node join using the active approach consists of inserting a node nx with a unique ID(nx)

between two successive nodes na and nb in the ring such that ID(na) < ID(nx) < ID(nb)

, so that the consistent hashing criteria is satisfied [26]. Moreover, since the insertion of

the new node affects the finger table of other nodes, the finger table of some nodes have

to be updated accordingly to reflect the addition of nx.

We briefly describe the node joining protocol described in [115]. In order to start the

join operation of a new node nx, an arbitrary node n already existing in the ring must

know the identity of the node nx. We assume that the initiating node n knows the identity

of nx by an external mechanism. The active join operation of the node nx consists of the

following steps:

• Ask n to find the closet successor of nx using ID(nx) denoted by nb.

• Ask n to find the closet predecessor of nx using ID(nx) denoted by na.

• Insert nx between na and nb and updating its successor and predecessor accordingly.

31

• Update the successor of na and the predecessor of nb to reflect the addition of nx.

• Transfer all values associated with the keys that the node nx is now responsible for

from na.

• Transfer the finger table of na to nx and update the finger table of the predecessor

na to reflect the addition of nx.

• Finding and updating all nodes in the ring whose finger tables should refer to nx.

2.4.1.2 Leaving Node

The leave operation of the node nx may be actively performed by the node nx and is

described in [115] as follows:

• nx finds its closet successor nb using ID(nx).

• nx finds its closet predecessor na using ID(nx).

• Update the successor of na and the predecessor of nb to reflect the departure of nx.

• Transfer all values associated with the keys that the node nx was responsible for to

na.

• Transfer the finger table of nx to na.

• Remove nx from Chord.

• Finding and updating all nodes in Chord whose finger tables were referring to nx to

reflect the removal of nx.

32

2.4.1.3 Failing Node

Unlike the leaving node where a node can voluntary choose to leave Chord, a failing node

may disappear from the network without notifying its neighbors. In the active approach,

a node may choose to detect failures only when it actually needs to contact a neighbor.

A node n may perform actively the repair operation upon detecting the disappearance of

another node nx in the network, i.e. the node n trying to reach nx becomes aware that

nx is not responsive. Node n may then run a failure recovery protocol to recover from the

failure of nx using ID(nx) and to reestablish the ring. [115] has shown that the look-ups

would be able to proceed by another path despite the failure with high probability.

Node n performs the repair protocol to recover from the failure of nx as follows:

• n finds the closet successor of nx denoted na using ID(nx).

• n finds the closet predecessor of nx denoted nb using ID(nx).

• Updating the successor of na and the predecessor of nb.

• Finding and updating all nodes in the ring whose finger tables were referring to nx

to reflect the failure of nx.

One drawback of the active approach is that only the finger table of some neighboring

nodes are updated when a node joins, fails or leaves. When a node n joins or leaves Chord,

not only nodes that were previously pointing to n must be updated but all other nodes

preceding n that were pointing to any node succeeding n become inaccurate and therefore

must be updated. The passive approach solves theses inaccuracies by running periodically

a repair protocol by all nodes to maintain their finger tables up-to-date, which is more

realistic since Chord is continuously changing in the real world. However, the passive

approach may result in a considerable background traffic compared to the active approach

due to the periodic maintenance of the ring.

33

2.4.2 Passive Approach

In the real world, nodes may join, fail or leave Chord arbitrary without notifying their

neighbors. Authors in [28] suggest the use of a periodic and continuous maintenance

of the ring in the background, i.e. nodes using the passive approach are not immediately

updated when a join or a leave occurs, but a repair protocol runs periodically to restore the

topology. This protocol, referred to as the idealization protocol [28] runs periodically and

independently of the join and leave operations by every single node in the network which

attempts to reconstruct its finger table, while only minimal operations for maintaining the

connectivity of Chord are performed as nodes join, fail or leave the system. The goal of

idealization is to support efficient look-ups by achieving the ideal state where a look-up

query is resolved with O(log n).

2.4.2.1 Joining Node

The node joining operation using the passive approach provides the minimum requirement

for basic connectivity of the ring topology while the update of the finger table of all nodes

is performed periodically using the idealization protocol [115] independently of the join

operation. When a new node joins Chord, only the update of its direct neighboring nodes

is required to maintain the topology, i.e. it suffices to maintain the correctness of the

predecessor and the successor of a joining node [115]. Since the fingers only improve

the performance, the idealization protocol allows for updating the fingers of each node

periodically to keep them up-to-date. This allows older nodes to learn about newly joined

nodes. In other words, the joining operation using the passive approach is the same as the

joining operation using the active approach with the only difference that the finger table

of each node is not updated actively, i.e. it is updated periodically using the idealization

protocol that runs in parallel.

34

2.4.2.2 Leaving and Failing Node

In the passive approach, a node failing is handled similarly to the node leaving. In this

case, a node may simply leave Chord without notifying its neighbors. A neighboring node

may detect the disappearance of a given node by running continuously a repair protocol

which verifies whether a neighbor is responsive or not. This is different from the active

approach when a node may choose to detect failures only when it actually needs to contact

a neighbor. [28] suggests to use the passive approach for detecting failures to avoid the risk

that all node neighbors fail before the node notices any of the failures. The repair protocol

that runs periodically by every node n is described as follows:

• Verify whether the predecessor of n is correct and update it otherwise.

• Verify whether the successor of n is correct and update it otherwise.

• Verify and update all pointers in the finger table maintained by n.

Handling Simultaneous Node Failures:

[115] introduces a fault-tolerant Chord with successive node failures. This may be

achieved by letting each node maintain a list of r succeeding nodes following it in the ring

rather than having a single pointer to its direct successor, where r < n/2 in a Chord of n

nodes. The system tolerates less that n/2 node failures is due to the fact every node can

reach at most half of the nodes in Chord using the highest pointer in its finger table. If half

of the nodes fail simultaneously, the non-faulty nodes will not be able to reach any node

on the other half of the ring, and Chord becomes disconnected. To allow multiple failures

to occur simultaneously, every node periodically verifies if all its r succeeding nodes are

alive. If a sequence of r succeeding nodes of a given node n fail simultaneously, n may fetch

the successor list of the succeeding node following the last failing node in the sequence.

All nodes preceding the first failing node in this sequence may update their successor list

35

accordingly. The protocol for handling multiple failures is performed periodically by every

node as follows:

• Verify whether the predecessor of n is correct and update it otherwise.

• Verify whether the r successors of n are correct and update them otherwise.

• Verify and update all pointers in the finger table maintained by n.

2.4.2.3 Idealization

The idealization protocol consists of periodically updating the predecessor, the successors

and the finger table of every node so that the look-ups remain efficient. It was shown

that any idealization can be performed with O(log 2n) messages with high probability and

the system becomes ideal (all pointers are accurate) after O(log 2n) rounds of idealization

[39]. However, [28] distinguishes between weak idealization and strong idealization in

Chords and showed that the system described in [39] is weakly ideal and may lead to

routing inconsistencies. In a weakly ideal Chord, every node n maintains the following

property: n.Successor.Predecessor = n. However, another node n1 where n < n1 can be

a predecessor of n such that n < n1 < n.Successor. This may lead to cycles in Chord

where the same node can have more than one successor.

In other words, a weakly ideal Chord consists of a Chord topology in which successors

might be incorrect, i.e. a node may have more than one successor. This does not guarantee

the consistency of look-ups where nodes arbitrarily join, fail or leave the system, i.e. a

search for the same query may lead to two different nodes, and therefore some of the data

become unreachable from some other nodes. Solving this problem is to prevent cycles to

occur within Chord when the system keeps changing. The system, referred to as strong

ideal, handles the looping case to guarantee that every node has only a single successor.

The following two properties are maintained in the strongly ideal idealization protocol:

36

• Chord Connectivity: For every node n in Chord, n.Successor.Predecessor = n.

• Preventing cycles: There are no nodes n1 and n2 such that n1 < n2 < n1.Successor

Authors in [28] consider that strong idealization guarantees the correctness of all look-

ups in Chord as nodes concurrently join and leave the system, and that an arbitrary Chord

network becomes strongly ideal with O(n2) rounds of strong idealization.

37

Chapter 3

Scalable Distributed P2P RIA

Crawling with Partial Knowledge

In this chapter, we introduce a scalable distributed P2P RIA Crawling System [56] com-

posed of multiple controllers, where each controller maintains a list of states and is associ-

ated with a set of crawlers. The contributions of this chapter are as follows:

• The distribution of responsibilities for the states among multiple controllers in the

underlying P2P network, where each controller maintains a portion of the application

model, thereby avoiding a single point of failure, which allows for partial resilience.

• Defining and comparing different knowledge sharing schemes for efficiently crawling

RIAs in the P2P network.

The rest of this chapter is organized as follows: Section 3.1 gives an overview of the

Distributed P2P Architecture for Crawling RIAs with partial knowledge [56]. The as-

sumptions are described in Section 3.2. The decentralized distributed greedy strategy is

introduced in Section 3.3. Section 3.4 describes the P2P crawling protocol. Section 3.5

38

introduces different knowledge sharing schemes for efficiently crawling RIAs. The mes-

sage complexities of our exploration mechanisms are described in Section 3.6. Finally, a

conclusion is provided in the end of this chapter.

3.1 Overview of the Distributed P2P RIA Crawling

System

In this system, the P2P network is composed of a set of controllers, and each state is

associated with a single controller. Moreover, a set of crawlers is associated with each

controller, where crawlers are not part of the P2P network. Notice that both crawlers and

controllers do not share a common memory storage, i.e. they are independent processes

running on different computers. There are two types of working components in the P2P

RIA crawling system, as shown in Figure 3.1:

Controller : The controller is responsible for storing states and coordinating the

crawling task among the concurrent crawlers. We assume that controllers do not know the

number of controllers in the network. Each controller maintains a unique identifier which

is used to distinguish it among the controllers in the peer-to-peer network. In this system,

states are partitioned into disjoint sets, each of which is handled by a distinct controller.

Each state has a unique identifier that is used to identify the position of the controller that

is responsible for it in the peer-to-peer system. Furthermore, a set of crawlers is associated

with each controller.

Crawler : Crawlers are only responsible for executing JavaScript events in a RIA and

are not part of the P2P network. Each crawler is associated with one of the controllers in

the P2P network and gets access to all controllers in the P2P system through the controller

it is associated with. After executing an event, the crawler may find locally the identifier

of the controller of its current state by mapping the hash of its current state information

39

and contacts its corresponding controller using the underlying P2P network.

Figure 3.1: Distribution of states and crawlers among controllers: Each state is associated
with one controller, and each crawler gets access to all controllers through a single controller
it is associated with.

3.2 Assumptions

Joining and Leaving Controllers :

In the P2P crawling system described in Figure 3.1, controllers may join the P2P

network arbitrary when the P2P crawling system starts. The operation of a controller

nx joining the P2P network consists of inserting nx with a unique ID(nx) between two

40

successive controllers na and nb, where na is responsible for the states in the interval

[ID(na), ID(nb)], such that ID(na) < ID(nx) < ID(nb) , and transferring all states in the

interval [ID(nx), ID(nb)] from na to nx. We assume that the joining controller nx knows

the identity of at least one existing controller in the P2P network through some external

mechanism so that the join operation can be performed. On the other hand, when a con-

troller ny between two controllers nc and nd leaves the P2P network, the following actions

are performed: Removing ny from the network, reconnecting nc and nd, and transferring

all states associated with the keys that controller ny was responsible for from ny to nc.

Joining and Leaving Crawlers :

Crawlers may join and leave the P2P crawling system arbitrary during the crawl. We

assume that a joining crawler knows the address of the controller it associates with through

some external mechanism. Moreover, since crawlers are only responsible for executing an

assigned job, i.e. they do not store any relevant information about the state of the RIA, a

leaving crawler may simply leave the system arbitrary by communicating with the single

controller it is associated with, assuming that some other crawlers will remain crawling the

RIA.

Notice that for the RIA crawling to progress, there must be at least one controller and

one crawler that are able to achieve the RIA crawling in a finite amount of time.

RIA Model :

The RIA model is composed of states and transitions where each state and each transi-

tion has a unique identifier in the RIA. The unique identifier of a state may be derived by

hashing the content of the DOM page. On the other hand, a transition may be uniquely

identified by hashing the DOM page the transition belongs to, the XPath which specifies

the position of the transition in the DOM page, along with the information provided by the

Javascript event to be executed in the corresponding transition. Moreover, we assume that

all RIA states are reachable from the seed URL and all transitions are deterministic and

41

are executed in a finite amount of time. By deterministic, we mean that a event executed

from a given source state will always lead to the same target state if it is executed more

than once. Finally, we assume that loops are allowed in the RIA model where an event

that is executed from a given source state may lead to the same state with the same state

identifier, i.e. IDSourceState = IDDestinationState. However, since it is not possible to know a

priori if an executed event will lead to the same destination state, each transition must be

executed by the crawler to ensure that all states will be discovered.

3.3 The Greedy Strategy

The greedy strategy is to explore an event from the current state if there is any non-explored

event. Otherwise, the crawler may execute an non-explored event from the closest state to

its current state, until all transitions are traversed.

In the centralized RIA crawling system introduced in [75], all states are maintained by

a single entity, called a controller, and is responsible for storing information about the new

discovered states including the available events on each state. After the execution of a new

transition, the crawler retrieves the required graph information by communicating with

the single controller, and executes a single available event from its current state if such an

event exists, or moves to another state with some available events based on the information

available in the single database. When all transitions have been explored, crawlers may

move to the termination stage to make sure there is no remaining job. If so, the crawl is

achieved and the global termination is reached.

In order to eliminate the use of the single controller, a P2P RIA crawling system [76]

has been proposed where crawlers share information about the RIA crawling among other

crawlers directly, without relying on the single controller. In this system, each crawler is

responsible for exploring transitions on a subset of states from the entire RIA graph model

by associating each state to a different crawler. In order to find the shortest path from their

42

current state to the next transition to explore, crawlers are required to broadcast every

newly executed transition to all other crawlers. Although this approach is appealing due to

its simplicity, it may introduce a high message overhead due to the sharing of transitions

in case the number of crawlers is high.

In the P2P RIA crawling system we propose, each state is associated with a single

controller, allowing each controller to maintain a partial knowledge of the RIA graph

model. In this system, the controller responsible for storing the information about a newly

reached state is contacted when a crawler executes a new transition. For each request,

the controller returns in response a single event to be executed on this state. However, if

there is no event to be executed on the current state of a visiting crawler, the controller

associated with this state may look for another state with a non-executed event among the

states it is responsible for. Notice that maintaining a possible path from a source state

to a target state within the controller is necessary in RIA crawling as controllers must be

able to tell a visiting crawler how to reach a particular state starting from the crawler’s

current state.

Furthermore, a visited controller may forward the request for executing a job to its

succeeding controller in the ring if there are no events to be executed on the states the

visited controller is responsible for. This operation is repeated until a subsequent controller

finds an event to be executed on one of the states it maintains, or until the request is

received back by the visited controller, allowing for initiating the termination phase, as

described in Section 3.4.5.

3.4 Protocol Description

The P2P RIA crawling is performed as follows, as shown in Figure 3.2: Initially, each

crawler receives a Start message from the controller it is associated with, which contains

the seed URL. Upon receiving the message, the crawler loads the URL and reaches the

43

initial state. The crawler then sends a StateInfo message using the ID of its current state

as a key, requesting the receiving controller to find a new event to be executed from this

state. The controller returns in response an ExecuteEvent message with an event to be

executed or without any event. If the ExecuteEvent message contains a new event to be

executed, the crawler executes it and sends an acknowledgment for the executed transition.

It has reached a new state and sends a new StateInfo message to the controller which

is associated with the ID of the new current state as a key. In case a crawler receives an

ExecuteEvent message without an event to be executed, it sends a RequestJob message to

the controller it is associated with. This message is forwarded in the ring until a receiving

controller finds a job or until the system enters a termination phase.

Figure 3.2: Exchanged messages during the exploration phase.

3.4.1 Data-Structures

• State: This represents a state of the application and has the following variables:

– Integer stateID: The identifier of the state, which may be obtained by hashing

44

the information of the state.

– Set < Transition > myTransitions : The set of transitions that can be exe-

cuted from this state.

– (initial URL, Sequence < Transition >) path: A pair of the initial URL and a

sequence of transitions describing a path to this state from the initial state.

• Transition: This represents a transition of the application and has the following

variables:

– Enumeration status (non− executed, assigned, executed):

1. non− executed: This is the initial status of the transition.

2. assigned: A transition is assigned to a crawler.

3. executed: The transition has been executed.

– Integer eventID: The identifier of the JavaScript event on this transition.

– Integer destStateID: The identifier of the destination State of this transition.

It is null if its status is not executed.

Processes: We describe the processes involved during the crawl.

• Crawler: Crawlers are only responsible for executing JavaScript events in a RIA.

Each crawler has the following variables:

– Address myAddress: The address of the crawler.

– Address myController: The address of the controller that is associated with

this crawler.

• Controller: Controllers are responsible for storing states and coordinating the crawl-

ing task. Each controller has the following variables:

– Address myAddress: The address of the controller.

45

– Set < State > myDiscoveredStates: The discovered states that belong to this

controller.

– String URL: The seed URL to be loaded when a Reset is performed.

3.4.2 Exchanged Messages

The following section describes the different type of messages that are exchanged between

controllers and crawlers during the crawl. Each message type has the form (destination,

source, messageInformation)

• destination: This identifies the destination process. It is either an address , or an

identifier, as follows:

– AdressedByAddress: This is when a message is sent directly to a known

destination process.

– AdressedByKey: It is a message forwarded to the appropriate process using

the DHT look-up based on the given identifier in the P2P network.

• source: It maintains the address of the sending process.

• messageInformation: It consists of the message type and some parameters that

represent the content of the message.

3.4.2.1 Message Types

We classify the message type with respect to the messageInformation included in the

message as follows:

• Sent from a crawler to a controller:

46

– StateInfo(State currentState): This is to inform the controller about the

current state of the crawler. The message is addressed by key using the ID

of the crawler’s current state, allowing the controller to find an event to be

executed.

– AckJob(Transition executedTransition): Upon receiving an acknowledg-

ment, the controller updates the list of non-executed events by setting the status

of the newly executed event to executed. The destination state of this transition

is updated accordingly.

– RequestJob(State currentState): RequestJob is a message sent by an idle

crawler looking for a job after having received an ExecuteEvent message without

an event to be executed. This message is forwarded around the ring until a

receiving controller finds a non-executed event, or the same message is received

back by the controller that is associated with this crawler, leading to entering

the termination detection phase (see Section 3.4.5).

• Sent from a controller to a crawler:

– Start((URL): Initially, each crawler establishes a session with its associated

controller. The controller sends a Start message in response to the crawler to

start crawling the RIA.

– ExecuteEvent((initial URL, Sequence < Transition >) path): This is

an instruction to a crawler to execute a given event. The message includes the

execution path, i.e. the ordered transitions to be executed by the crawler, where

the last transition in the list contains the event to be executed. Furthermore,

the message may contain a URL, which is used to tell the crawler that a Reset

is required before processing the executionPath. The following four cases are

considered:

∗ Both the URL and the path are NULL: There is no event to be executed in

47

the scope of the controller.

∗ The URL is NULL but the path consists of one single transition: There is

an event to be executed from the current state of the crawler.

∗ The URL is NULL but the path consists of a sequence of transitions: It is

a path from the crawler’s current state to a new event to be executed.

∗ The URL is not NULL and the path consists of a sequence of transitions:

A Reset path from the initial state leading to an event to be executed.

We refer to a message execution from a controller to a crawler with an event to

be executed as a Positive ExecuteEvent message, while a Negative ExecuteEvent

message has no event to be executed

3.4.3 The P2P RIA Crawling Protocol

The following section defines the P2P RIA crawl protocol in more detail as executed by

the controller and the crawler processes.

Controller process: Upon Receiving StateInfo
(stateID, crawlerAddress, currentState)
Local variables:
executionPath← ∅
path←< URL, ∅ >
1: if stateID /∈ myDiscoveredStates then
2: add currentState to myDiscoveredStates
3: end if
4: if ∃ t ∈ currentState.transitions such that t.status = non− executed then
5: executionPath← t
6: t.status← assigned
7: URL← ∅
8: else if ∃ s ∈ myDiscoveredStates and t′ ∈ s.transitions such that
t′.status = non− executed then

9: executionPath← s.path+ t′

10: t′.status← assigned
11: end if
12: path←< URL, executionPath >
13: send ExecuteEvent(crawlerAddress,myAddress, path)

48

Controller process: Upon Receiving AckJob
(controllerAddress, crawlerAddress, executedTransition)
1: Get t from myDiscoveredStates.transitions such that
t.eventID = executedTransition.eventID

2: t.status← executed

Controller process: Upon Receiving RequestJob
(controllerAddress, crawlerAddress, currentState)
Local variables:
executionPath← ∅
path←< URL, ∅ >
1: if ∃ s ∈ myDiscoveredStates and t ∈ s.transitions such that
t.status = non− executed then

2: executionPath← s.path+ t
3: t.status← assigned
4: path←< URL, executionPath >
5: send ExecuteEvent(crawlerAddress,myAddress, path)
6: else
7: forward RequestJob to nextController
8: end if

Crawler process: Upon Receiving Start
(URL)
Local variables:
currentState← ∅
1: currentState← load(URL)
2: currentState.path← ∅
3: for all e ∈ currentState.transitions do
4: e.status← non− executed
5: end for
6: send StateInfo(stateID,myAddress, currentState)

Crawler process: Upon Receiving ExecuteEvent
(crawlerAddress, controllerAddress, executionPath)
1: if executionPath 6= ∅ then
2: if URL 6= ∅ then
3: currentState← load(URL)
4: currentState.path← ∅
5: end if
6: while executionPath.hasNext do
7: currentState← process(executionPath.next)
8: end while
9: send AckJob(controllerAddress,myAddress, executionPath.last)

10: currentState.path← executionPath
11: for all e ∈ currentState.transitions do
12: e.status← non− executed
13: end for
14: send StateInfo(stateID,myAddress, currentState)
15: else
16: send RequestJob(nextController,myAddress, currentState)
17: end if

49

3.4.4 Handling Traditional and RIA Crawling Simultaneously

The proposed P2P RIA crawling system can easily handle both RIA and traditional web

crawling simultaneously since an initial state of a RIA is equivalent to a downloaded URL

in traditional web crawling. Since RIA crawlers have the feature of executing a hyperlink

by loading a given URL when performing a Reset is required, a crawler may simply move

from a state in one URL to another state in a different URL by loading the new URL

when a Reset path with a different URL is returned in response from the visited controller

by means of an ExecutedEvent message, i.e. when a controller contacted by a visiting

crawler returns in response a Reset path with a URL that is different from the current

URL of the crawler, prompting the visiting crawler to execute a Javascript event or a

hyperlink from a different URL page. Notice that the contacted controller must have

previously discovered at least one RIA state on a different URL from the URL described

in the StateInfo message sent by the visiting crawler. However, for the crawling to be

consistent in the case when multiple URLs are derived from the original URL in a RIA,

a crawler may only move from a URL page to another if one of the following two criteria

is satisfied: (1) The contacted controller responsible for finding a new transition to be

executed from the crawler’s current state cannot find a new transition to be executed on

the current URL page of the crawler. However, the controller has previously discovered a

state with non-executed events from a different URL. (2) The cost of the best computed

execution path from the crawler’s current state to another state in the same URL page is

higher than the cost of performing a Reset in order to execute a new transition on a state

that is in a different URL from the current URL of the visiting crawler.

3.4.5 Termination Detection

The distributed termination problem is to detect whether a computation within a dis-

tributed system has terminated. Taking this fundamental problem to the field of dis-

50

tributed RIA crawling consists of reaching a termination phase where all crawlers and

controllers reach the same final state, i.e. all transitions have been executed, and that this

state is not susceptible to change in the future.

Misra [51] introduced an algorithm for detecting termination of distributed computa-

tions using markers. In Misra’s algorithm, a marker visits all the processes in the network

and checks to see if they are passive or active. Since the messages are in transit, the marker

cannot assert that the computation has terminated if it finds all processes to be passive

after one round of visits. For the special case of a network in which processes are arranged

in the form of a ring (every process has a unique predecessor from which it can receive

messages and a unique successor to which it can send messages), the marker can assert

that the computation has terminated if it finds after two rounds of visits that every pro-

cess has remained continuously passive since the last visit of the marker to that process.

The marker turns a process white when it leaves a passive process. A process changes

to black if it becomes active. If the marker arrives at a white process, it can claim that

the process has remained continuously passive since the marker’s last visit. The marker

detects termination if it visits N white processes, where N is the number of processes in

the ring. Misra’s termination algorithm [51] is applied in this study with the following

additional considerations: (1) Markers are messages of type CheckTerm and are used to

check whether all controllers have no jobs to assign to a crawler. That is, a controller

that receives a CheckTerm messages will mark it white if and only if it has no jobs to

assign to the visiting crawler. The message will then be forwarded to the next controller

in the P2P system. (2) Since executing a single event is not immediate and may take an

unpredictable amount of time, it is possible that a controller has assigned all its jobs but

did not receive all acknowledgments back from the crawlers executing these jobs, signaling

the entire execution of an event. Consequently, the termination may be reached without

executing some events. Therefore, a controller that receives a CheckTerm message from

a crawler must reject it, i.e. it turns a process black, if it has some jobs to assign to the

51

visiting crawler or if not all assigned events are acknowledged.

A trivial solution for handling acknowledgments during the termination phase consists

of maintaining a counter by each controller for the assigned jobs it is responsible for, called

assignedJobsCounter. Initially, assignedJobsCounter is set to zero. When a controller

assigns a new job to a visiting crawler, assignedJobsCounter is incremented. However,

when an acknowledgment for a given job execution is received, assignedJobsCounter is

decremented. A controller who has no jobs to assign to idle crawlers accepts a CheckTerm

message and forwards it to its neighbor if and only if assignedJobsCounter is 0. This way,

every controller ensures that the termination is not reached before all controllers have

received acknowledgments for their assigned jobs.

The termination detection may be initiated by one or more idle crawlers. For simplicity,

we restrict the task of checking termination to a single crawler. This can be achieved by

performing a leader election among crawlers. Two steps are considered in order to elect

one of the crawlers in the P2P system to initiate the termination phase: (1) First, the

controller with the highest ID among all controllers in the P2P system is elected. This

can easily be applied in the ring as controllers are ordered in the clockwise direction in

the underlying P2P system. (2) The crawler with the highest ID among all crawlers that

are associated with this controller is elected to initiate the termination. Notice that idle

crawlers other than the leader will keep asking for jobs from different controllers until they

receive a given task, or until the termination is reached. The termination is reached when

the initiating crawler receives its own CheckTerm message in two rounds, signaling that all

controllers have accepted twice the termination CheckTerm message without interruption,

i.e. The CheckTerm message is marked white: All controllers have no remaining jobs to

assign to idle crawlers and all their assigned jobs have been acknowledged. The crawler

then declares global termination by forcing all crawlers and controllers in the P2P system

to terminate.

52

3.5 Choosing the Next Event to Explore from a Dif-

ferent State

If no event can be executed from the current state of a visiting crawler, the controller that

maintains this state may look for another state with some non-executed events without

necessary performing a Reset, depending on its available knowledge about the graph under

exploration. Moving from a state to another usually consists of going through a path

of ordered states before reaching a target state. Reducing the cost of such a path is

challenging for distributed RIA crawling for two reasons: (1) State distribution: Each state

is associated with a single controller in the network. It may be unsuitable to communicate

with all controllers on the path to find the closet non-executed event. (2) Transition

knowledge required: Moving from a state to another usually consists of following a path

of ordered transitions before reaching the state, which requires a prior knowledge about

the executed transitions. In a non-distributed environment, the crawler may have access

to all the executed transitions, which allows for finding the closest state with non-executed

events, starting from the current state. However, in the distributed environment, sharing

the knowledge about executed transitions may introduce a high message overhead and

may produce bottlenecks on some controllers if the number of crawlers is high. Typically,

sharing more transitions results in raising the overall number of messages in the crawling

system. Therefore, there is a trade-off between the shared knowledge which improves the

choice of the next event to be executed and the message overhead in the system. We

introduce in the following different approaches with the aim to reduce the overall time

required to crawl RIAs by executing as few transitions as possible , while the message

overhead and the number of Resets performed are minimized.

53

3.5.1 Global-Knowledge

The Global-Knowledge scheme consists of sharing all executed transitions among all con-

trollers in the system. That is, for each executed transition by a visiting crawler, the

controller responsible for the reached state, upon receiving its state information, may

broadcast the newly executed transition to all controllers in the network. This means that

the RIA information is replicated in all controllers. Although not realistic in our setting,

the Global-Knowledge scheme allows all controllers to have instant access to a globally

shared information about the state of knowledge at each controller. This may introduce a

high message overhead and may produce bottlenecks on controllers due to the repetitive

update of the application graph among all controllers. Note that this approach is consid-

ered for comparison only and would give the same number of event executions as the single

controller in the centralized crawling system [75].

3.5.2 Reset-Only

With this scheme, a crawler can only move from a state to another by performing a

Reset. In this case, the controller returns an execution path, starting from the initial

state, allowing the visiting crawler to load the seed URL and to traverse a Reset path

before reaching a target state with a non-executed event. In order to reduce the number

of transitions to be traversed from the initial state to a target state, dynamic updates of

Reset paths may be applied. This allows each controller to compare the size of the visiting

crawler path and update it if necessary by only maintaining the shortest known path from

the initial state to every target state the controller is responsible for. Note that the Reset-

Only approach is a simple way for concurrently crawling RIAs. However, this approach

results in a high number of Resets performed, which may increase the time required to

crawl a given application (cost).

54

3.5.3 Local-Knowledge

With the Local-Knowledge scheme, a visited controller may use its local transitions knowl-

edge to find a short path from the crawler’s current state leading to a state with a non-

executed event. This local knowledge consists of the states the controller is responsible for

and the executed transitions on these states, along with all executed transitions provided

within the path of each visiting crawler. Unlike the Reset-Only approach where only one

path from a URL to the target state is stored, controllers store all executed transitions

with their destination states and obtain then a partial knowledge of the application graph.

This local knowledge is used to find a short path from the crawler’s current state to a state

with a non-executed event based on the available knowledge of the controller. Since the

knowledge is partial, this may often lead to a Reset path even though according to global

knowledge, there exists a short direct path to the same state.

Notice that the dynamic updates of Reset paths are also maintained by a given controller

when visited, similarly to the Reset-Only scheme, and are used as an optional choice in

case the cost of the computed short path is higher than the cost of performing a Reset to

reach the same target state. That is, when a visiting crawler communicate its path to a

newly reached state, the controller updates its knowledge by adding all transitions on this

path. The controller then locally finds a short path from the crawler’s current state to the

closest state with a non-executed event and returns it to the visiting crawler in response

if the cost of executing this path is shorter than the costs of executing a possible path to

the target state after performing a Reset. If no such a path is found, the controller may

force the visiting crawler to perform a Reset, similarly to the Reset-Only approach.

3.5.4 Shared-Knowledge

With the Shared-Knowledge scheme, the transitions contained in the StateInfo messages

are stored by the intermediate controllers when the message is forwarded through the

55

underlying P2P system. This way, the transitions knowledge of controllers is significantly

increased without introducing any message overhead compared to the Local-knowledge

scheme. Therefore, the controllers will be able to find better short paths.

3.5.5 Original Forward Exploration

Two important drawbacks of the short path approach are the partial knowledge of con-

trollers: (1) Since each state is associated with a single controller in the network, short

paths can be only computed toward states the visited controller is responsible for. If other

neighboring states to a crawler’s current state exist with a non-executed event and belong

to a controller other than the visited controller, this controller cannot choose an event to

be executed from one of these states. (2) Short paths found may not be optimal since they

are based on the knowledge available to the controller. An alternative consists of globally

finding the optimal choice based on the Breadth-First search by forwarding the exploration

to the controllers that are associated with the neighboring states of the crawler’s current

state rather than locally finding a non-executed event from one of the states each controller

is responsible for.

The Original Forward Exploration search is initiated by the visited controller and con-

sists of distributively performing a Breadth-First search: It begins by inspecting all neigh-

boring states from the current state of the crawler if there are no available events on its

current state. For each of the neighbor states in turn, it inspects their neighbor states

which were unvisited by communicating with their corresponding controllers, and so on.

The controller maintains two sets of states for each Forward Exploration query: The first

set, called statesToV isit, is used to tell a receiving controller which states are to be visited

next. On the other hand, the second set, called visitedStates, is used to prevent loops,

i.e. states that have been already discovered by the Forward Exploration. Additionally,

each state to be visited has a history path of ordered transitions from the crawler’s current

56

state to itself, called intermediatePath.

Initially, when a visited controller receives a StateInfo message from a crawler, it

will pick a non-executed event from the crawler’s current state. If no non-executed event

is found, the controller waits for acknowledgments for the assigned transitions that have

not been acknowledged yet, by putting the current Forward Exploration query along with

all subsequent Forward Exploration queries on that state to a list called parkedQueries.

Once all transitions have been acknowledged, the controller picks all destination states

of the executed transitions on this state and adds them to the set statesToV isit. The

intermediatePath from the crawler’s current state to each of these state is updated by

adding the corresponding transition to this path. This controller then picks the first state

in the list. It first adds it to the set visitedStates to avoid loops, and then sends a

Forward Exploration message containing both statesToV isit and visitedStates to the

controller responsible for these states. When a controller receives the Forward Exploration

message, it checks if there is a non-executed event from the current state. If not, it adds the

destination states of the transitions on that state at the beginning of the list statesToV isit

after verifying that these destination states are not in the set visitedStates and that all

transitions have been acknowledged on this state. It will then pick the last state in the list

statesToV isit and send again a Forward Exploration message which will be received by

the controller that is responsible for that state.

We note that globally performing a distributed Breadth-First search is appealing since it

allows for completely removing the termination detection phase introduced in Section 3.4.5,

i.e. when a state with no non-executed events is reached when performing a global Breadth-

First search starting from the initial state of the RIA and its neighbors have already been

visited and have no non-executed events, the termination is directly reached. This can be

achieved by adding the initial state to the list of statesToV isit when the cost of executing

the next transition with a global Breadth-First search starting from the crawler’s current

state is equal to the cost of performing a Reset and initiating a global Breadth-First search

57

starting from the initial state of the RIA. Three cases arise from this approach: (1) The

cost of executing the next transition with a global Breadth-First search starting from the

crawler’s current state is less than the cost of performing a Reset and performing a global

Breadth-First search from the initial state, i.e. the number of transitions to be traversed

from the crawler’s current state are less than the cost of performing a Reset and traversing a

number of transitions before reaching a state with a non-executed transition: The controller

allows the visiting crawler to execute this transition starting from the crawler’s current state

without performing a Reset. (2) The cost of executing the next transition by performing

a Reset and initiating a global Breadth-First search from the initial state is less than

the cost of executing the next transition with a global Breadth-First search starting from

the crawler’s current state: The controller allows the visiting crawler to execute the next

transition by performing a Reset and a global Breadth-First search starting from the initial

state of the RIA. (3) The controller cannot find neither a transition to be executed with

a global Breadth-First search starting from the crawler’s current state nor a transition to

be executed by performing a Reset and a global Breadth-First search from the initial state

of the RIA: The controller can claim that the global Breadth-First search is terminated

without finding an event to be executed from the initial state since the search for the next

transition to be executed includes the global Breadth-First search starting from the initial

state, which proves termination of the crawling task. Therefore, the termination phase of

Section 3.4.5 is not required.

The following algorithm describes the Original Forward Exploration protocol, as exe-

cuted by the controller process (Algorithm.UponReceivingForwardExploration).

Additionally, line 4 to line 13 of Algorithm.UponReceivingStateInfo are replaced by Al-

gorithm.UponReceivingForwardExploration, allowing for initiating the Forward Exploration

operation by a controller that is receiving a new StateInfo message.

Finally, Algorithm.UponReceivingAckJob is updated, allowing for processing each of the

parked ForwardExploration messages that are waiting for all assigned events on a state to

58

be acknowledged.

Controller process: Upon Receiving ForwardExploration
(controllerAddress, crawlerAddress, currentState,
sourceController, statesToV isit, visitedStates)
Local variables:
executionPath← ∅
path←< URL, ∅ >
nextState← ∅
parkedF lag ← false

1: if ∃ t ∈ currentState.transitions such that t.status = non− executed then
2: executionPath← currentState.intermediatePath+ t
3: t.status← assigned
4: URL← ∅
5: path←< URL, executionPath >
6: send ExecuteEvent(crawlerAddress,myAddress, path)
7: else if @ t ∈ currentState.transitions such that t.status = assigned then
8: for all t ∈ currentState.transitions do
9: if t.destinationState /∈ visitedStates then

10: nextState.intermediatePath← currentState.intermediatePath+ t
11: statesToV isit← t.destinationState+ statesToV isit
12: end if
13: end for
14: else if ∃ t ∈ currentState.transitions such that t.status = assigned then
15: push ForwardExploration(controllerAddress, crawlerAddress, currentState,

sourceController, statesToV isit, visitedStates) to parkedQueries
16: parkedF lag ← true
17: end if
18: if !parkedF lag then
19: if statesToV isit 6= ∅ then
20: nextState← statesToV isit.last
21: remove statesToV isit.last
22: push nextState to visitedStates
23: send ForwardExploration(nextState.controllerAddress, crawlerAddress, nextState,

sourceController, statesToV isit, visitedStates)
24: else
25: send ExecuteEvent(crawlerAddress,myAddress, ∅)
26: end if
27: end if

3.5.6 Locally Optimized Forward Exploration

One drawback of the Original Forward Exploration approach is that a controller repeti-

tiously sends queries that are started from a given state to the controllers associated with

all neighboring states to this state, in order to reach the closest state with a non-executed

event, even though these controllers did not find an event to be executed on their states

previously. One way to overcome this issue is to make controllers remember the controller

where the last query that was started from the same state has stopped, i.e. the state in

which the last Forward Exploration query succeeded to find a non-executed transition. This

59

Controller process: Upon Receiving AckJob
(controllerAddress, crawlerAddress, executedTransition)
1: Get t from myDiscoveredStates.transitions such that
t.eventID = executedTransition.eventID

2: t.status← executed
3: if @ t ∈ currentState.transitions such that t.status = assigned then
4: for all ForwardExploration(controllerAddress, crawlerAddress, currentState,

statesToV isit, visitedStates,messageKnowledge) ∈ parkedQueries do
5: receive ForwardExploration(controllerAddress, crawlerAddress, currentState,

statesToV isit, visitedStates,messageKnowledge)
6: end for
7: end if

way, this controller is directly contacted during a subsequent query from the same state.

When a contacted controller finds a non-executed transition on a target state, it sends a

RememberMe message containing the sets of nextStatesToV isit and nextV isitedStates

leading to that state to the original controller, i.e. the controller from where the For-

ward Exploration was initiated, allowing it to move directly to this state whenever a new

Forward Exploration query is initiated from the same state. The parameters of the next re-

ceived Forward Exploration query to the same state (statesToV isit, visitedStates) will be

updated with the new stored parameters nextStatesToV isit, nextV isitedStates) respec-

tively, thereby allowing controllers to start from where the last query from the same state

has stopped. This results in reducing the message overhead by eliminating repetitions of

different Forward Exploration queries from the same state to neighboring controllers with

no non-executed events on their target states.

3.5.7 Globally Optimized Forward Exploration

In the Locally Optimized Forward Exploration scheme introduced in Section 3.5.6, the

controller responsible for the state from where a Forward Exploration query is initiated

remembers the target state where the previous query has found a state with a non-executed

event, so that the controller can forward the next query that is starting from the same

state directly to the controller responsible for the target state. This way, the exploration

is resumed from where the previous query has stopped. One drawback of this scheme

60

is that controllers only remember the states where the last query has stopped, not the

intermediate states explored in the path of the query. If two distinct queries are initiated

from two states that are associated with two different controllers, it is possible that the

queries explore some same intermediate states before reaching a state with a non-executed

event.

In order to prevent different controllers from visiting intermediate states that have

already been visited by other controllers during the Forward exploration and have no non-

executed events, controllers may share during the Forward Exploration their knowledge

about all executed transitions on the intermediate states that have been already explored

by the Forward Exploration and has no event to be executed, with other controllers in

the network. If the executed transitions on the next intermediate state to be explored

by the Forward Exploration are available to the visited controller, i.e this controller is

aware that other controllers in the network have already visited this intermediate state

and there is no benefit from visiting this state again, the Forward Exploration jumps over

this state and reaches directly the destination states of each of the transitions on it. This

allows for preventing the intermediate states with no non-executed events that have been

already explored by the Forward Exploration, from getting visited again. The knowledge

sharing of executed transitions that have been already seen by the Forward Exploration

is made by means of the messageknowledge parameter included in each of the Forward

Exploration queries. Therefore, the sharing of additional knowledge about intermediate

states that have been already explored by other controllers during the Forward Exploration

but have no event to be executed is performed during the Forward Exploration with no

message overhead. Notice that all executed transitions must be acknowledged on each vis-

ited intermediate state before they can be shared, i.e. for each reached intermediate state,

a controller can only jump over a visited intermediate state if and only if all transitions

have been executed on the intermediate state and their destination states are known to

the controller associated with this state. This approach is called the Globally Optimized

61

Forward Exploration scheme.

The following figure describes the Globally Optimized Forward Exploration protocol,

as executed by the controller process upon receiving a ForwardExploration message.

Controller process: Upon Receiving ForwardExploration
(controllerAddress, crawlerAddress, currentState,
statesToV isit, visitedStates,messageKnowledge)
Local variables:
executionPath← ∅
path←< URL, ∅ >
nextState← ∅
noJumping ← false

1: transitionsKnowledge← messageKnowledge+ transitionsKnowledge
2: if ∃ t ∈ currentState.transitions such that t.status = non− executed then
3: executionPath← currentState.intermediatePath+ t
4: t.status← assigned
5: URL← ∅
6: path←< URL, executionPath >
7: send ExecuteEvent(crawlerAddress,myAddress, path)
8: else if @ t ∈ currentState.transitions such that t.status = assigned then
9: for all t ∈ currentState.transitions do

10: transitionsKnowledge← t+ transitionsKnowledge
11: end for
12: for all t ∈ currentState.transitions such that t.status = executed do
13: if t.destinationState /∈ visitedStates then
14: t.destinationState.intermediatePath← currentState.intermediatePath+ t
15: statesToV isit← t.destinationState+ statesToV isit
16: end if
17: end for
18: while statesToV isit 6= ∅ or !noJumping do
19: nextState← statesToV isit.last
20: remove statesToV isit.last
21: push nextState to visitedStates
22: if nextState.transitionsKnowledge 6= ∅ then
23: for all t ∈ nextState.transitionsKnowledge do
24: if t.destinationState /∈ visitedStates then
25: t.destinationState.intermediatePath← nextState.intermediatePath+ t
26: statesToV isit← t.destinationState+ statesToV isit
27: end if
28: end for
29: else
30: noJumping ← true
31: send ForwardExploration(nextState.controllerAddress, crawlerAddress, nextState,

statesToV isit, visitedStates, transitionsKnowledge)
32: end if
33: end while
34: if statesToV isit = ∅ and !noJumping then
35: send ExecuteEvent(crawlerAddress,myAddress, ∅)
36: end if
37: else if ∃ t ∈ currentState.transitions such that t.status = assigned then
38: push ForwardExploration(controllerAddress, crawlerAddress, currentState,

statesToV isit, visitedStates,messageKnowledge) to parkedQueries
39: end if

62

3.6 Message Complexities

The message complexity is measured in terms of the maximum number of transmitted

messages that may be required by each of the different sharing schemes during the crawling

phase, i.e. upper bound. Moreover, the lower bound corresponds to the special case where

a minimum number of messages is required. We use the following notation: k is the

total number of transitions in the RIA, n is the number of controllers and s is the total

number of states in the RIA. We assume a non-faulty environment in this section where

a message from a source node x to a destination process y reaches y in a finite amount

of time with no message loss. We are interested in the scalability of the proposed P2P

RIA crawling system in respect to the number of controllers. Therefore, both the number

of states and the number of executed transitions are also important scaling factors and

are therefore considered in this analysis. Additionally, we assume that the time for a

message communication is much smaller than the time for executing an event in a RIA.

We distinguish two types of message: The search messages in the P2P network that require

log(n) real messages, and direct messages that require one real message.

Reset-Only:

For each newly executed transition, the StateInfo message is search message that is

forwarded to the appropriate controller in the P2P system, resulting in a log(n) number

of real messages. Additionally, there is an additional initiating StateInfo direct message

sent from the crawler to the controller it is associated with before getting access to other

controllers in the P2P network. The maximum number of sent messages is given by:

M1 ≤ k(log(n) + 1)

k is the total number of transitions

n is the number of controllers

Upon receiving the StateInfo message, the controller sends an ExecuteEvent direct

63

message back to the original crawler from where the StateInfo message was sent, resulting

in k additional direct messages:

M2 ≤ k

The receiving crawler then executes the transition and sends an AckJob direct message

back to the controller associated with the source state of the newly executed transition:

M3 ≤ k

The maximum number of messages sent during the crawling phase for the Reset-Only

scheme is given by:

MReset−OnlyExploration
≤M1 +M2 +M3 ≡ k(log(n) + 3)

The message complexity of the Reset-Only scheme is therefore given by:

CReset−OnlyExploration
= O(k log n)

For the termination detection phase, the message complexity of Misra’s termination

algorithm [51] that is applied in this study is given by:

CTermination = O(n log n)

Since the total number of executed transitions in a RIA is higher than the number of

controllers, the complexity of the Reset-Only approach during both the exploration and

the termination phase is the following:

CReset−Only = O(k log n) +O(n log n) = O(k log n)

64

Note that this is the minimum communication requirements for crawling a RIA in

a P2P network and all subsequent approaches have a similar or worse complexity than

the Reset-Only approach even-thought they may outperform it in terms of the cost and

crawling time.

Shortest-Path schemes:

The shortest-path schemes have the same complexity as the Reset-Only scheme. When

the Local-knowledge scheme is applied, controllers may locally find a short path to a target

state they are responsible for by using the executed transitions on these states, without

exchanging extra messages. On the other hand, when the Shared-knowledge scheme is

applied, all forwarding controllers in the chordal ring may also update their transitions

knowledge before the StateInfo search message is forwarded, resulting in a better transi-

tions knowledge with no message overhead. Therefore, the complexity of both the Local-

knowledge and the Shared-knowledge schemes is equal to the complexity of the Reset-Only

scheme.

Original Forward Exploration:

The Original Forward Exploration consists of two steps: (1) Minimum requirements for

crawling a RIA using the P2P system, which is equal to the complexity of the Reset-Only

scheme. (2) Performing the distributed Breadth-First search starting from the crawler’s

current state. It consists of sequentially sending a search message to explore all neighboring

states of the crawler’s current state until it finds an event to be executed from a neighboring

state. For every newly executed event, a controller may at most visit all RIA states before

reaching a non-executed event using the distributed Breadth-First search, resulting in a

maximum of s(log(n)) messages sent per newly executed transition, where s is the total

number of states in the RIA, as follows:

M2 ≤ ks(log(n)).

65

That is, the maximum number of messages sent for the Original Forward Exploration

scheme is given by:

MOriginal−Forward−Exploration ≡ k(log(n) + 3) + ks(log(n)) ≡ k(log(n) + 3 + (s(log(n))))

Therefore, the complexity of the Original Forward Exploration approach is given by:

COriginal−Forward−Exploration = O(ks log n)

Locally Optimized Forward Exploration:

The Locally Optimized Forward Exploration consists of remembering states from where

the last Forward Exploration query has stopped, allowing for preventing a controller to

visit states it has already visited with no non-executed events, which clearly reduces the

number of messages sent when performing a Breadth-First search compared the basic

Forward Exploration approach. Additionally, remembering states from where the last

Forward Exploration query has stopped consists of sending an additional RememberMe

direct message for each newly executed transition. The minimum number of messages sent

during the Breadth-First search for the Locally Optimized Forward Exploration is reached

when the RIA under exploration follows the Breadth-First model, i.e. a controller receiving

a forward exploration query always finds a non-executed event from a state that is reached

by the last forward exploration. Therefore, the minimum number of messages sent during

the Breadth-First search for the Locally Optimized Forward Exploration is given by:

M2 > k(log(n) + 1)

Therefore, the lower and upper bounds complexity of the Locally Optimized Forward

Exploration are as follows:

k(log(n) + 3) + k(log(n) + 1) < MLocally−Optimized−Forward−Exploration <

MOriginal−Forward−Exploration

2k(log(n) + 4) < MLocally−Optimized−Forward−Exploration < MOriginal−Forward−Exploration

66

Globally Optimized Forward Exploration: The Globally Optimized Forward Ex-

ploration scheme is an optimization to the Locally Optimized Forward Exploration scheme

and consists of sharing additional knowledge about intermediate states that have been al-

ready explored by other controllers during the Forward Exploration but have no event to be

executed, which allows for reducing the number of messages sent when globally performing

the Breadth-First search. Since the sharing is performed during the Forward Exploration

with no message overhead, the controller maintaining the next state to be visited by the

global search is sequentially updated. Therefore, the updates only depend on the structure

of the RIA graph, which makes the message complexity of the Globally Optimized For-

ward Exploration scheme comparable to the message complexity of the Locally Optimized

Forward Exploration.

3.7 Conclusion

One goal of this thesis is to address the scalability problem when crawling large-scale

RIAs concurrently. We conducted a simulation study of a P2P RIA crawling system [56]

composed of multiple controllers, where each controller maintains a partial knowledge

of the RIA model, and each controller is associated with a set of crawlers, allowing for

scalability by avoiding the system bottleneck that occurs when the single controller is

simultaneously accessed by a high number of crawlers [74]. Furthermore, we proposed

different sharing schemes for efficiently crawling large-scale RIAs, including the Reset-

Only, the Local-knowledge, the Shared-knowledge and the Forward Exploration schemes.

Additionally, we proposed two variants of the original forward exploration approach.

The first variant, called the Locally Optimized Forward Exploration strategy, consists

of reducing the message overhead when performing the Forward Exploration by allowing

controllers to remember the last state reached by the distributed Breadth-First that was

performed from each state the controller is associated with. As a consequence, controllers

67

can start all subsequent Breadth-First queries from the state where the last Forward Ex-

ploration has stopped.

The second variant of the Forward Exploration, called the Globally Optimized Forward

Exploration strategy, consists of sharing all transitions on states that have been already

visited by the controllers during the Forward Exploration but have no event to be executed,

with other controllers. This way, other controllers may jump over these states, by directly

reaching the destination states on these transitions without having to revisit their states

again. The sharing of these transitions is performed within the Forward Exploration queries

with a little overhead.

68

Chapter 4

Experimental Results of the Scalable

Distributed P2P RIA Crawling with

Partial Knowledge

In this chapter, we introduce the simulation results related to the distributed P2P RIA

crawling with partial knowledge [56] described in Chapter 3.

We first introduce the developed software and the test-applications used in the simula-

tion. We then compare the performance in crawling time of the different sharing schemes,

followed by a performance comparison of the Original Forward Exploration strategy and

its variants. Furthermore, an in-depth analysis of the exchanged messages is presented. We

also give an in-depth analysis of the Forward-Exploration strategy. Finally, a conclusion

is provided at the end of this chapter.

4.1 Implementation

The simulation software that we developed is written in the Java programming language

using the Kepler Service Release 1 of the Eclipse software development environment. For

69

the purpose of simulation, we used the Java SSIM simulation package [5].

SSIM is an object-oriented utility library written in Java that provides discrete event

process-based simulation. SSIM is available free to users since 2003. SSIM implements a

simulator to run reactive discrete-time processes. These processes execute actions in terms

of discrete execution steps performed at given times in response to an event where events

describe a piece of information exchanged between two processes through the simulator.

During the execution of an action, a process may schedule other future actions for itself,

or it may signal events to other processes, which will respond by processing the signaled

events at the given further time. These processes are defined by the interface Process and

must be implemented by a simulated process. The SSIM library defines the basic interface

of a process, and provides the main simulation scheduler, including methods for creating,

starting, and stopping processes, and for scheduling events or signaling other events. For

instance, a process can start an action immediately once being created or can stop an

action being executed. It can also execute an action in response to an event signaled to its

process by another process or execute an action in response to a timeout.

This simulation is performed using Java programming language on an Intel(R) Core(TM)

i7 CPU running at 2.67 GHz. The system is of type 64-bit operating system with an

installed memory (RAM) of 8.00 GB. For figures and charts, We used the MATLAB nu-

merical computing environment. Developed by MathWorks, MATLAB allows plotting of

functions and data, creation of user interfaces and interfacing with programs written in

other languages , including C, C++ , Java and Fortan. Notice that the experimental re-

sults illustrated in this study are based only on the execution environment described above.

Using a different execution environment may introduce different results but do not affect

the consistency of this study, i.e. the experimental results may be different but they are

expected to remain comparable to the results obtained in this study.

70

4.2 Test-Applications

The first real large-scale RIA we consider is an AJAX-based ClipMarks 1 RIA. ClipMarks

consists of 2,663 states and 355,201 transitions and the Reset cost is the equivalent of 32

transition executions. The second real large-scale application considered is the JQuery-

based AJAX file browser 2 RIA, which is an AJAX-based file explorer. The number of

states and transitions of the file browser depends on the system content. The AJAX-based

file explorer we consider has 4,622 states and 429,654 transitions with a Reset cost that

is equivalent to 12 transition executions. The third and largest tested real large-scale

application is the Bebop 3 RIA. It consists of 5,082 states and 468,971 transitions with a

Reset cost that is equivalent to 3 transition executions. Notice that in an effort to minimize

any influence that may be caused by considering events in a specific order, the events at

each state are randomly ordered for each crawl.

4.3 Comparing the crawling time of the different shar-

ing schemes

This section presents the simulation results of crawling the test-applications using our simu-

lation software. Based on preliminary analysis of experimental results [74], a controller can

support up to 20 crawlers without becoming overloaded. For each of the test-applications,

we plot the simulated time (in seconds) for an increasing number of controllers from 1 to

20, with steps of 5, while the number of crawlers is constant and set to 20 crawlers. In

this simulation, we plot the cost in time required for crawling each of the test-applications

and we compare the efficiency of the proposed schemes to the Global-knowledge scheme

1http://www.clipmarks.com/ (Local version: http://ssrg.eecs.uottawa.ca/clipmarks/)
2http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/ (Local version:

http://ssrg.eecs.uottawa.ca/seyed/filebrowser/)
3http://www.alari.ch/people/derino/apps/bebop/index.php/ (Local version:

http://ssrg.eecs.uottawa.ca/bebop/)

71

where all controllers have instant access to a globally shared information about the state

of knowledge at all controllers. Notice that the Global-knowledge scheme is unrealistic in

our setting and is used only for comparison.

Figure 4.1: Comparing different sharing schemes for crawling the ClipMarks RIA.

Figure 4.2: Comparing different sharing schemes for crawling the JQuery file tree RIA.

The worst performance is obtained with the Reset-Only strategy, followed by the Local-

Knowledge scheme. This is due to the high number of Resets performed as well as the

partial knowledge compared to all other strategies. Our simulation results also show that

the Local-Knowledge scheme converges towards the Reset-Only strategy as the number of

72

Figure 4.3: Comparing different sharing schemes for crawling the Bebop RIA.

controllers increases, which is due to the low partial knowledge available on each controller

when the number of controllers is high.

The Shared-Knowledge scheme comes in the second position and significantly outper-

forms both the Reset-Only and the Local-Knowledge schemes as controllers have more

knowledge about the application graph. However, it is worst than the Forward Explo-

ration strategy due to its partial knowledge.

For all applications, the best performance is obtained with the Forward Exploration

strategy. This strategy has performed significantly better than the Reset-Only and the

Local-Knowledge schemes and it slightly outperformed the Shared-Knowledge scheme.

This is due to the fact that short paths can be only computed toward states the visited

controller is responsible for, while the Forward Exploration strategy consists of finding

globally the optimal choice based on the distributed Breadth-First search. However, the

message overhead introduced by the Forward Exploration scheme is larger than for the

Shared-Knowledge scheme.

We conclude that the Reset-Only and the Local-Knowledge schemes are bad strategies.

On the other hand, the Forward Exploration strategy is near optimal compared to the

Global-knowledge scheme which makes it the best choice for RIA crawling in a decentralized

73

P2P environment. The Shared-Knowledge scheme is the second best choice being only

approximately 10 % worst than for the Global-knowledge scheme for a large number of

controllers.

Our simulation results show that the simulated time for all schemes increases as the

number of controllers increases, which explains the difficulty of decentralizing the crawling

system.

74

4.4 Comparing the different variants of the Forward

Exploration scheme to the Shared-Knowledge scheme

We crawled the Bebop, the JQuery File Tree and the ClipMarks RIAs with 5 controllers

and 100 crawlers, and we compared in Table 4.1, Table 4.2 and Table 4.3 the efficiency

of crawling these RIAs with the Forward Exploration strategy. Each table illustrates the

total cost (in number of executed transitions), the total number of exchanged messages,

and the simulated crawling time (in milliseconds) between the Shared-Knowledge, the

Locally Optimized Forward Exploration and the Globally Optimized Forward Exploration

Schemes, respectively.

In all applications, the total cost of both the Locally Optimized Forward Exploration

and the Globally Optimized Forward Exploration schemes is significantly decreased com-

pared to the Shared-Knowledge scheme. This is due to the global search performed by

the Forward Exploration which allows to find the shortest path from the crawler’s current

state compared to the Shared-Knowledge scheme where a short path can only reach states

the visited controller is responsible for.

Additionally, both the Locally Optimized Forward Exploration and the Globally Opti-

mized Forward Exploration schemes have more message overhead compared to the Shared-

Knowledge scheme. This is due to the Forward Exploration messages that are sent toward

neighboring controllers of the crawler’s current state, along with the RememberDepth

messages that are sent to the controllers from where the Forward Exploration operations

have started, which allows controllers to start from where they stopped. We also observe

that the number of Forward Exploration messages with the Globally Optimized Forward

Exploration scheme is significantly reduced compared to the Locally Optimized Forward

Exploration scheme as controllers share transitions on states that have been already visited

by other controllers with no non-executed events, which allows for avoiding the repetitive

task of revisiting neighboring states that have been already visited by other controllers

75

during the previous Forward Exploration operations.

In terms of crawling time, the Globally Optimized Forward Exploration outperforms

both the Locally Optimized Forward Exploration and the Shared-Knowledge schemes,

allowing the global search by the Forward Exploration to reach its highest performance by

avoiding as much as possible the repetition of the work that have been already performed

by other controllers to reach the same states with no non-executed events.

Furthermore, our measurements show that the number of messages for these two vari-

ants of the Forward Exploration are much higher than for the Shared-Knowledge scheme,

but a very small difference in total cost and simulation time. This high number of messages

may have an impact in network bottleneck due to the extra work performed by the Forward

Exploration to find globally the optimal choice using the distributed Breadth-First search.

However, the Forward Exploration does not guarantee a good improvement in cost and

simulation time over the Shared-Knowledge scheme. This improvement mainly depends

on the RIA application and the number of controllers involved during the crawling. As we

increase the number of controllers, the Shared-Knowledge scheme performs worse than the

Forward Exploration scheme as controllers have more difficulty to share their knowledge.

Thus, we believe that the Forward Exploration scheme would significantly outperform the

Shared-Knowledge scheme when the number of controllers is very high.

Table 4.1: Comparing the different variants of the Forward Exploration scheme with the
Shared-Knowledge scheme for crawling Bebop RIA.

Strategy Cost Updating Breadth-First Total number Crawling
(Transitions) depth messages messages of messages Time (ms)

Shared-Knowledge 3116092 0 0 1795184 110812

Locally Optimized 3059602 304599 1296928 3360286 110259
Forward Exploration

Globally Optimized 3059544 249233 448539 2472503 109289
Forward Exploration

76

Table 4.2: Comparing the different variants of the Forward Exploration scheme with the
Shared-Knowledge scheme for crawling the JQuery File Tree RIA.

Strategy Cost Updating Breadth-First Total number Crawling
(Transitions) depth messages messages of messages Time (ms)

Shared-Knowledge 1953017 0 0 2151770 31220

Locally Optimized 1890958 334619 8900600 10904140 39005
Forward Exploration

Globally Optimized 1890599 272327 396030 2477898 30402
Forward Exploration

Table 4.3: Comparing the different variants of the Forward Exploration scheme with the
Shared-Knowledge scheme for crawling the ClipMarks RIA with 10 divisions.

Strategy Cost Updating Breadth-First Total number Crawling
(Transitions) depth messages messages of messages Time (ms)

Shared-Knowledge 430117 0 0 1556324 6646

Locally Optimized 414869 28507 366347 2094430 6953
Forward Exploration

Globally Optimized 414345 20323 33516 1560460 6462
Forward Exploration

77

4.5 In-depth analysis of the exchanged messages

We analyzed the different types of exchanged messages during the crawling of our largest

RIAs with 5 controllers and 100 crawlers. In an effort to easily distinguish between the

different types of messages involved at the beginning, in the middle and at the end of

the crawling, we divided the distributed crawling task into 20 phases, where each phase

corresponds to the execution of (1/20) of the total number of newly executed transitions.

Notice that the used number of phases is considered for in-depth analysis only and does

not affect the results obtained in this study. We consider the Bebop RIA as an example.

In Bebop RIA, the total number of newly executed transitions is 468,971. Therefore, each

phase corresponds to the execution of approximately 23,449 transitions. The following

figures show the number of exchanged messages when crawling the Bebop RIA with the

Shared-Knowledge, the Locally Optimized Forward Exploration and the Globally Opti-

mized Forward Exploration schemes, respectively.

Moreover, a high number of Request Job messages are sent during the last crawling

phase (before reaching the termination) for crawling the RIA with the Shared-Knowledge

scheme (Figure 4.4). However, since the Forward Exploration consists of globally finding

the shortest path to a state with a non-executed event, Request Job messages are eliminated

in both the Locally Optimized Forward Exploration and the Globally Optimized Forward

Exploration (Figure 4.5 and Figure 4.6) since any state can be globally reached by the

Forward Exploration.

Moreover, the number of Forward − Exploration and RememberMyDepth messages

with the Globally Optimized Forward Exploration (Figure 4.6) are significantly less than

the ones with the Locally Optimized Forward Exploration scheme (Figure 4.5). This is

due to the global sharing of the transitions from states that have been already visited with

no event to execute with other controllers, which allows for globally preventing these states

from getting visited again.

78

Figure 4.4: Average number of exchanged messages per newly explored transition with the
Shared-Knowledge scheme for crawling the Bebop RIA with 5 controllers and 100 crawlers.

Figure 4.5: Average number of exchanged messages per newly explored transition with
the Locally Optimized Forward Exploration scheme for crawling the Bebop RIA with 5
controllers and 100 crawlers.

79

Figure 4.6: Average number of exchanged messages per newly explored transition with
the Globally Optimized Forward Exploration scheme for crawling the Bebop RIA with 5
controllers and 100 crawlers.

80

4.6 In-depth analysis of the Forward-Exploration ap-

proach: Non-executed events found in different

depths during the Forward Exploration operation

The following figure illustrates the number of non-executed events found in different depths

using the Forward Exploration scheme with 5 controllers and 100 crawlers. Note that the

depth in which the non-executed events are found is necessarily the same for the Forward

Exploration scheme and its variants since they all perform the same Breadth-First search

to reach states with non-executed events, while the only difference between these variants

is the reduction of the number of messages that are sent when performing the distributed

Breadth-First search.

In the following figure, each depth corresponds to the distance of a non-executed event

found in a neighboring state from the crawler’s current state which is reached by the

Forward Exploration. Moreover, the Reset Path executions are non-executed events chosen

by a visited controller that cannot be reached by the Forward Exploration scheme, starting

from the crawler’s current state. Additionally, a non-executed event found from a Request

Job message corresponds to an assigned event to an idle crawler.

For all applications, most of the non-executed events are found in lower depths and thus

are close to the crawler’s current state. The highest depths are reached as we approach

the end of the crawling. The figure below shows the non-executed events found in different

depths using the Forward Exploration scheme for crawling the Bebop RIA with 5 controllers

and 100 crawlers.

The following table shows the number and percentage of non-executed events found in

different depths using the Forward Exploration scheme with 5 controllers and 100 crawlers

for crawling the ClipMarks, the JQuery File Tree and the Bebop RIAs. The last row of

the table shows the compared average size of the Reset path execution if the Forward

81

Figure 4.7: Transitions chosen in different depths per phase per controller for crawling the
Bebop RIA.

Figure 4.8: Percentage of transitions chosen in different depths during the crawl of the
Bebop RIA.

82

Exploration scheme is not applied, i.e. by applying the Shared-Knowledge scheme for

choosing a non-executed event from a state the visited controller is responsible for. When

crawling the ClipMarks RIA, more than 96 % of the non-executed events are found in a

depth that is less than 2 transitions, where the compared average size of the Reset path

execution, if the Forward Exploration scheme is not applied, is 2 transitions. For the

JQuery File Tree RIA, around 90 % of the non-executed events are found in a depth that

is less than 7 transitions, where the compared average size of the Reset path execution is

7 transitions. When crawling the Bebop RIA, around 74 % of the non-executed events are

found in a depth that is less than the compared average size of the Reset path execution of

8 transitions. Therefore, most of the non-executed events when crawling all RIAs using the

Forward Exploration are found with a better short path compared to the short path found

with the previous schemes. This is due to the global search performed by the Forward

Exploration, which makes it a good choice for crawling RIAs.

Additionally, since states are distributed among controllers in the P2P Crawling System,

the size of the short path executions from states the controller is responsible for may

increase as we increase the number of controllers if the Forward Exploration scheme was

not applied. The reason is that controllers may not find the shortest path from the crawler’s

current state to a non-executed event on a state they are responsible for due to the partial

knowledge they maintain. Since the Forward Exploration consists of globally reaching

events on neighboring states even though these states are associated with other controllers,

it is guaranteed that controllers find the shortest path to a non-executed event from a

neighboring state, in contrast to the other approaches where a controller can only choose an

event from a state it is responsible for. This makes the Forward Exploration scheme a better

choice than the previous approaches as the number of controllers increases. We conclude

that the Forward Exploration scheme scales with the number of controllers for crawling

large-scale RIAs. However, it may introduce more messages due the communication delay

required by the Breadth-First search between controllers to globally find the shortest path

83

to a non-executed event from a neighboring state using the Forward Exploration scheme.

84

Table 4.4: Number and Percentage of non-executed events found in different depths us-
ing the Forward Exploration scheme with 5 controllers and 100 crawlers for crawling the
ClipMarks, the JQuery File Tree and the Bebop RIAs.

Depth ClipMarks with 10 divisions JQuery File Tree Bebop

0
321903 47911 31018

90.6256 % 11.1511 % 6.6141 %

1
19723 50482 30500

5.5526 % 11.7495 % 6.5036 %

2
11979 66169 27970

3.3725 % 15.4005 % 5.9641 %

3
878 77181 21017

0.2472 % 17.9635 % 4.4815 %

4
6 62722 38307

0.0017 % 14.5983 % 8.1683 %

5
25 47239 57569

0.0070 % 10.9947 % 12.2756 %

6
17 33082 70721

0.0048 % 7.6997 % 15.0800 %

7
0 16661 69510

0 % 3.8778 % 14.8218 %

8
0 12541 55278

0 % 2.9189 % 11.7871 %

9
0 7327 36665

0 % 1.7053 % 7.8182 %

10
0 3989 19782

0 % 0.9284 % 4.2182 %

11
0 1754 8020

0 % 0.4082 % 1.7101 %

12
0 857 2220

0 % 0.1995 % 0.4734 %

13
0 441 328

0 % 0.1026 % 0.0699 %

14
0 220 0

0 % 0.0512 % 0 %

15
0 94 0

0 % 0.0219 % 0 %

Execution of a transition 452 881 57
on another state 0.1273 % 0.2050 % 0.0122 %

Request Job execution
218 103 9

0.0614 % 0.0240 % 0.0019 %

Average size 2 7 8
of Reset Path execution

85

4.7 Conclusion

In this chapter, we compared the different sharing schemes introduced in Chapter 3 through

simulation. Simulation results showed that the Shared-Knowledge scheme is efficient, sim-

ple and scalable, while the Reset-Only and Local-Knowledge schemes do not scale with

the number of crawlers. Additionally, the Globally Optimized Forward Exploration strat-

egy is near optimal compared to the ideal setting and outperforms the Reset-Only, the

Local-Knowledge, the Shared-Knowledge, the Original Forward Exploration and the Lo-

cally Optimized Forward Exploration schemes. This is due to its ability to globally finding

the shortest path with little overhead, compared to all other strategies. This makes the

Forward Exploration a good choice for general purpose crawling in a decentralized P2P

environment, followed by the Shared-Knowledge scheme. Moreover, the Globally Opti-

mized Forward Exploration outperformed the Original Forward Exploration, the Locally

Optimized Forward Exploration and the Shared-Knowledge schemes by avoiding as much

as possible the repetition of the work that have been already done by other controllers to

reach the same states with no non-executed events.

86

Chapter 5

Fault-Tolerant RIA Crawling System

In this chapter, we address the resilience problem when using the proposed P2P RIA

crawling system introduced in Chapter 3 when both crawlers and controllers are vulnerable

to node failures. By fault tolerance, we mean that the non-faulty crawlers and controllers

will still be able to achieve the RIA crawling, knowing that some crawlers and controllers

may fail at an arbitrary time during the crawling. We introduce three recovery mechanisms

for crawling RIAs in a faulty environment: The Retry, the Redundancy and the Combined

mechanisms.

5.1 Assumptions

• The unreliable chordal ring network is composed of a set of controllers, and a set

of crawlers is associated with each of these controllers where both crawlers and con-

trollers are vulnerable to Fail-stop failures, i.e. they may fail but without causing

harm to the system. We also assume a perfect failure detection and reliable message

delivery which allows nodes to correctly decide whether another node has crashed or

not. This prevents false suspicions of failures, i.e. a node appears failed when it is

actually alive.

87

• Crawlers can be unreliable as they are only responsible for executing an assigned job,

i.e. they do not store any relevant information about the state of the RIA. Therefore,

a failed crawler may simply disappear or leave the system without being detected,

assuming that some other non-faulty crawlers will remain crawling the RIA. However,

for the RIA crawling to progress, there must be at least one non-faulty crawler that

is able to achieve the RIA crawling in a finite amount of time. We also assume that

a joining crawler knows the address of the controller it is associated with through

some external mechanism.

5.2 Solutions

In the fault-tolerant P2P RIA crawling system, crawlers and controllers must achieve two

goals in parallel: Maintaining the ring topology and performing the fault-tolerant RIA

crawling. The maintenance of Chord consists of maintaining the ring topology as nodes

join and leave the network and repairing the ring when failures occur, independently of the

RIA crawling. On the other hand, the RIA crawling must be able to achieve the intended

crawling task despite the permanent change of the Chord structure as nodes join, leave

or fail using a data-recovery mechanism. We discuss these two operations separately. We

first introduce the maintenance of the Chord structure, including the failure detection and

recovery techniques. We then introduce the fault-tolerant RIA crawling protocol and the

different data-recovery mechanisms.

5.2.1 Chord Maintenance

Controllers maintain the topology of the P2P RIA crawling system and are responsible

for storing information about the RIA crawling. If a controller fails, the connectivity

of the Chord structure is affected and some controllers become unreachable from other

88

controllers. Since Chord is a continuously evolving system, it is required to continuously

repair the overlay to ensure that the ring remains connected and supports efficient look-ups.

The maintenance of the Chord structure consists of maintaining its topology as controllers

join and leave the network and repairing the ring when failures occur among controllers

independently of the RIA crawling.

There are mainly two different approaches for maintaining the Chord structure when

failures occur as introduced in Section 2.4 : The active and the passive approaches. In

this study, we use the passive approach for maintaining the Chord structure where less

than n/2 successive nodes may fail simultaneously, under the assumption that the system

is vulnerable to only fail-stop failures with perfect failure detection and reliable message

delivery.

5.2.2 Fault-Tolerant Crawling Protocol

A major problem we address in this section is to make the proposed P2P RIA crawling

system described in Chapter 3 resilient to node failures, i.e. to allow the system to achieve

the RIA crawling when both crawlers and controllers may fail. The fault-tolerant crawling

system is required to discover all states of a RIA despite failures, so that the entire RIA

graph is explored. In the P2P crawling system, controllers are responsible for storing part

of the discovered states. If a controller fails, the set of states maintained by the controller

is lost. For the P2P crawling system to be resilient, controllers are required to apply a data

recovery mechanism so that lost states and their transitions can be eventually recovered

after the reestablishment of the ring. For the data recovery to be consistent, i.e. all lost

states can be recovered when failures occur, each newly reached state by a crawler must

be always stored by the controller the new state is associated with before the transition

leading to the state is assumed to be executed. If a new state is not stored by the controller

it is associated with, the controller performing a data-recovery will not be aware about the

89

state and the data-recovery becomes inconsistent if the state is lost. As a consequence, the

state becomes unreachable by crawlers and the RIA graph cannot be fully explored.

In the P2P RIA crawling system introduced in Chapter 3, an acknowledgment for

an assigned transition consisted of a crawler informing the controller responsible for the

transition about the destination state that follows from the transition execution, as shown

in Figure 3.2. However, in a faulty environment, a crawler may fail after having sent the

result of a transition execution to the previous controller and before contacting the next

controller. As a consequence, the destination state of the executed transition may never

be available to the next controller and data-recovery of the state cannot be performed. For

the P2P crawling system to be resilient, every newly discovered state must be stored by

the next controller before the executed transition is updated by the previous controller.

Therefore, we introduce a change to the P2P crawling system described in Chapter 3 to

make it fault-tolerant, as shown in Figure 5.1: When the next controller responsible for a

newly reached state by a crawler is contacted, the controller stores the newly discovered

state and forwards the result of the transition execution, i.e. an AckJob message, to the

previous controller. As a consequence, the controller responsible for the transition can only

update the destination state of the transition after the newly reached state is stored by the

next controller. Moreover, the fault-tolerant P2P system requires each assigned transition

by a controller to be acknowledged before a given time-out. When the time-out expires

due to a failure, the transition is reassigned by the controller to another crawler at a later

time.

The data recovery mechanisms allow for either recovering lost states a failed controller

was responsible for, reassigning all transitions on the recovered states to other crawlers and

rebuilding the RIA graph model, or for making back-up copies of the RIA information on

neighboring controllers when a newly reached state or an executed transition is available

to a controller so that crawlers can resume crawling from where a failed controller has

stopped, as introduced in the following section.

90

Figure 5.1: The Fault-Tolerant P2P RIA Crawling during the exploration phase.

91

5.3 Crawling Data Recovery Mechanisms

We introduce three data recovery mechanisms to achieve the RIA crawling task properly

despite node failures, which are based on existing data recovery mechanisms introduced in

the literature in Section 2.3.5, as follows:

5.3.1 Retry Strategy

The Retry strategy [100] consists of replaying any erroneous task execution, hoping that the

same failure will not occur in subsequent retries. The Retry Strategy may be applied to the

P2P RIA crawling system by re-executing all lost jobs a failed controller was responsible

for. When a controller becomes responsible for the set of states a faulty controller was

responsible for, the controller allows crawlers to explore all transitions on these states

again. However, since all states held by the failed controller disappear, the new controller

may not have the knowledge about the states the failed controller was responsible for

and therefore can not reassign them. To overcome this issue, each controller that inherits

responsibility from a failed controller may collect lost states from other controllers.

The state collection operation consists of forwarding a message, called CollectStates

message, which is sent by a controller replacing a failed one. The message goes around

the ring and allows all other controllers to verify if the ID of any destination state of

executed transitions they maintain belongs to the set of states the sending controller is

responsible for; such state will be appended to the message. This can be performed by

including the starting and ending keys defining the set of state IDs the sending controller

is responsible for as a parameter within the CollectStates message. A controller receiving

its own CollectStates message considers the transitions on the collected states as non-

explored. A situation may arise during the state collection operation where a lost state

that follows from a transition execution is not found by other controllers. In this case, a

controller responsible for a transition leading to the lost state must have also failed. The

92

transition will be re-executed and the controller responsible for the destination state of

the transition will be eventually contacted by the executing crawler and therefore becomes

aware about the lost state. For the special case where the initial state can be lost, a

transition leading to the initial state may not exists in a RIA. As a consequence, the

CollectStates message may not be able to recover the initial state. To overcome this issue,

a controller that inherits responsibility from a failed controller always assumes that the

initial state is lost and asks a visiting crawler to load the SeedURL again in order to reach

the initial state. The controller responsible for the initial state is then contacted by the

crawler and becomes aware about the initial state.

5.3.2 Redundancy Strategy

The Redundancy Strategy is a strategy based on Redundant Storage [100] and consists of

maintaining back-up copies of the set of states that are associated with each controller,

along with the set of transitions on each of these states and their status, on the successors

of each controller. Notice that a back-up copy of states is not cached by a neighboring con-

troller. It is stored as a copy in the database in a distinct set of states called backUpStates

to distinguish it from the discovered states in the set of myDiscoveredState the controller

is responsible for. The main feature of this strategy is that states that were associated with

a failed controller and their transitions can be recovered from neighboring controllers, which

allows for reestablishing the situation that was before the failure i.e. the new controller

can start from where the failed controller has stopped. This strategy consists of immedi-

ately propagating an update from each controller to its r back-up controllers in the ring

when a new relevant information is received, where r is the number of back-up controllers

that are associated with each controller, i.e. a newly discovered state or a newly executed

transition becomes available to the controller. When a newly reached state is stored by a

controller, the controller updates its back-up controllers with the new state before sending

an acknowledgment to the previous controller. This ensures that every discovered state

93

becomes available to the back-up controllers before the transition is acknowledged. Note

that the controller responsible for the new state must receive an acknowledgment of recep-

tion from all back-up controllers before sending the acknowledgment. On the other hand,

each executed transition that becomes available to the previous controller is also updated

among back-up controllers before the result of the transition is locally updated by the pre-

vious controller. In case some of the r succeeding controllers fail simultaneously , the lost

states along with their executed transitions remain available to at least one of the (r + 1)

controllers that are maintaining back-up copies [115]. Furthermore, when a controller fails,

the list of succeeding controllers maintained by each controller may change. If a controller

notices a change on its list of successors, it may update the new controllers in this list with

all states it is associated with, along with the executed transitions on these states so that

the back-up copies become available to its new successors.

5.3.3 Combined Strategy

One drawback of the Redundancy strategy is that an update is required for each newly

executed transition received by a controller. This may be problematic in RIA crawling

since the number of transitions is usually much higher than the number of states. The

Combined Strategy overcomes this issue by periodically copying the executed transitions

a controller maintains so that if the controller fails, a portion of the executed transitions

remains available to the back-up controller, and the lost transitions that have not been

copied have to be re-executed again. The advantage of using the Combined data recovery

strategy is that all executed transitions maintained by a controller are copied one time at

the end of each update period rather than copying every newly executed transition when

the result of the transition execution becomes available to a controller, as introduced by

the Redundancy Strategy. Note that the state collection operation used by the Retry

strategy is required by the Combined Strategy since not all states are recovered when a

failure occurs.

94

Chapter 6

Analytical Evaluation of the

Fault-Tolerant RIA Crawling System

In this chapter, we compare the efficiency of the Retry, the Redundancy and the Combined

data recovery strategies during the crawling phase as crawlers and controllers fail. We

are mainly interested in the overhead introduced by a node failure for each of the data

recovery strategies, under the assumptions introduced in Section 5.1. We use the following

notation: tt is the average required time required for executing a new transition, T is the

total crawling time with normal operation, k is the total number of transitions in the RIA,

c is the average communication delay of a direct message between two nodes, n is the

number of controllers, m is the number of crawlers, s is the total number of states in the

RIA and e is the average time required for executing a new transition which includes going

through a path of ordered transitions before reaching the state with the next transition

to be executed. Moreover, since the recovery of Chord is performed in parallel and is

independent of the RIA crawling, we ignore the delay introduced by the log2(n) rounds

of idealization and we assume that queries are resolved with only log(n) messages after a

short period of time after the failure of a controller. We also assume that there are no

simultaneous failures of successive controllers, which means that only one back-up copy is

95

maintained by each controller, i.e. r is equal to 1.

6.1 Crawling Time with Normal Operation

The RIA crawling time with normal operation, i.e. with no failures, using the P2P Crawling

System introduced in Fig. 5.1 is approximated as follows:

For each newly executed transition, a StateInfo search message is forwarded to the

appropriate controller in the P2P system, resulting in a delay of c.log(n) units of time per

transition. Additionally, there is an additional initiating StateInfo real message sent from

the crawler to the controller it is associated with before getting access to other controllers

in the P2P network. This results in a total of c.(log(n) + 1) messages for each StateInfo

message sent. Upon receiving the StateInfo message, the controller stores the newly

reached state and then sends an acknowledgment back to the previous controller, allowing

the receiving controller to update the destination state of the executed transition. A

new transition to be executed is also returned back to the visiting crawler, resulting in

one additional real message. Furthermore, the controller sets a time-out to the executing

crawler called time − outCrawler in order to detect failing crawlers that do not return

messages. To prevent false alarms when executing a new transition which takes a longer

time than usual, we set the value of time − outCrawler to twice the maximum round-trip

time for the ExecuteEvent message, i.e. time − outCrawler = 2(c + emax), where emax is

the maximum time required for executing a new transition by a crawler. If the time-out

expires before the crawler has sent an acknowledgment back to the visited controller, the

transition is reassigned to another crawler at a later time. In this section, we are interested

in the delay of executing a new transition without failures among crawlers, i.e. the average

delay for executing a new transition with normal operation is equivalent to e units of

time. The crawling time with a failing crawler is described in Section 6.4. Assuming that

crawlers do not fail during normal operation, the receiving crawler executes the assigned

96

transition, resulting in an average delay of e units of time. The crawler finally forwards

the information about the newly reached state to the next controller.

Therefore, the delay of executing a new transition with normal operation, called tt, for

a crawling system composed of n controllers and one crawler is given by:

tt = c.(log(n) + 2) + e units of time

6.2 Processing Time per Message Type

In order to evaluate the impact of the message processing time on the crawling performance,

we perform a simulation study on experimental data-sets with a crawling system composed

of 100 controllers and 1000 crawlers in the execution environment introduced in Section

4.1. We measure the processing time of messages involved during the crawling and we

compare the processing time of the Search, ExecuteEvent, Acknowledgment and Backup

update messages, assuming that controllers are underloaded, as shown in Fig. 6.1.

Figure 6.1: Average processing time per message type in milliseconds for a crawling system
composed of 100 controllers and 1000 crawlers - ClipMarks 10 divs.

• Search Message: Fig. 6.1 shows that the search message with the Reset-Only scheme

97

has the lowest processing time, followed by the Local-knowledge scheme. This is due

to the ability of the Reset-Only and Local-knowledge schemes to find non-executed

events locally based on their local knowledge, which usually leads to a Reset, along

with a long path of ordered transitions before reaching the target state. On the other

hand, the Shared-knowledge and the Forward-Exploration schemes take more time to

find a non-executed event by finding a shortest path based on their shared knowledge

or by globally performing a distributed Breath-First search respectively , usually not

performing a Reset.

However, since the ExecuteEvent message processing time is usually much higher

than the Search message processing time (at least 100 times higher), the processing

time of the Search message has a low impact on the overall crawling performance.

• Acknowledgment Message: The processing time of the Acknowledgment message

is comparable in all crawling strategies since it consists of updating the executed

transition with the newly available destination state independently of the crawling

strategy. Notice that the Acknowledgment Message processing time is significantly

faster than both the Search and the ExecuteEvent messages since the controller only

updates an executed transition with the destination state rather than searching for

a new event or executing an assigned event respectively.

• Back-up Update Message: The processing time of the back-up update message is

comparable in all crawling strategies since it consists of storing a back-up transition

on the database of a back-up controller independently of the crawling strategy. Fur-

thermore, Fig. 6.1 shows that the back-up update message processing time is slightly

faster than the Acknowledgment message processing time. This is due to the fact that

back-up transitions are only updated on the database of a back-up controller while

processing an acknowledgment consists of finding the source state of the executed

transition before storing the result of the transition execution.

98

Based on the measurements of Fig. 6.1, the back-up update Message processing time

is significantly faster than the processing time of all other messages involved during the

crawling (at least 10 times higher). Therefore, the processing time of the back-up update

message has an insignificant impact on the crawling performance when the underloaded

controllers concurrently perform the back-up update operation. Moreover, Fig. 6.1 shows

that the back-up update message processing times are comparable for all crawling strate-

gies. We conclude that the fault tolerance overhead introduced by the Redundancy strategy

is independent of the crawling strategy.

6.3 Failure Rate

We assume a resource allocation of interconnected computers for crawling RIAs and we

distinguish between two categories of system architectures with corresponding failure char-

acteristics: (1) P2P node failures, where nodes are publicly accessible from a P2P infras-

tructure. (2) Dedicated servers of Non-P2P context, where nodes can only communicate

with each other on a private network.

We also assume a distribution function of node failures according to a Poisson process

[65] where failures may occur randomly, continuously and independently at a constant

average rate λf during the crawling phase.

6.3.1 P2P Node Failures

P2P node failures are measured based on the average online time of a peer remaining

active in a P2P network before the peer disappears due to a disconnection (connectivity

root cause), i.e. a node that disappears from the P2P network is assumed to have failed.

The Median Session Time [103] of a node is a measurement metric of churn in peer-to-

peer networks and is defined as the elapsed time between the time when the node joins the

99

network and the time when the node subsequently leaves the network. The Average Online

Time is also found in the literature and has a similar definition as the median session time.

Measurement studies have shown that the Median Session Time ranges from as long as

an hour to as short as a few minutes depending on the peer-to-peer structure deployed, as

shown in Table 6.1:

Table 6.1: Observed average session times in various peer-to-peer systems.

Study Peer-to-peer Measured Median Failure
Reference Structure Session Time Rate

[103], [92], [4] structured overlays less than 1 failure
(Bamboo, Overnet, Kademlia, Chord) 60 minutes per hour

[104] unstructured overlays less than 1 failure
(Gnutella and Napster) 60 minutes per hour

[44] unstructured overlays (Gnutella and Napster) less than 6 failures
(Gnutella and Napster) 10 minutes per hour

[86] unstructured overlays (Kazaa) less than 6 failures
(Kazaa) 10 minutes per hour

[105] unstructured overlays (FastTrack) less than 60 failures
(FastTrack) 1 minute per hour

Table 6.1 shows that different measurements of the median session time of a node in

a structured P2P network are found to be approximately 1 hour [103] [92] [4]. However,

the median session time of a node in unstructured P2P networks is much shorter due to

their lack of structure. [103] argues that a structured peer-to-peer network built on a DHT

should be robust for session times of at most 1 hour. In this study, we assume that the

failure rate λf is equal to the average failure rate of a node in structured P2P overlay

networks λP2P , which is equivalent to 1 failure per hour.

6.3.2 Failures of Dedicated Servers

Failures of dedicated servers are categorized based on multiple root causes in a private

network composed of one or more interconnected nodes. There are mainly five high level

root causes for failures of dedicated servers: Hardware, software, network failures (connec-

100

tivity), human and environment failures (power outages or A/C failures). Various studies

measured the node failure rates in different private networks using three metrics: The

length of the measurements, the number of computers deployed in the private network

and the root causes of the failure. The failure rate measurements with all root causes

(hardware, software, connectivity, human and environment) are shown in Table 6.2, as

follows:

Table 6.2: Observed average node failure rates in various private networks.

Study Test Number Number Failure
Reference Length of Nodes of Failures Rate

[48], [49] 3 years 4,000 800 7.61 e-6
(Machines in Tandem systems) failures per hour

[72] 6 months 70 1,100 3.588 e-3
(Windows NT mail servers) failures per hour

[29] 3-6 months 3,000 501 5.080 e-5
(Machines in Internet services) failures per hour

[30] 8 months 7 364 8.898 e-3
(Machines in VAX systems) failures per hour

[116] 22 months 13 300 1.436 e-3
(VICE file servers) failures per hour

[61] 3 years 2 456 8.67 e-3
(IBM machines of 370/169 mainframes) failures per hour

[62] 1 year 395 1285 3.711 e-4
(Nodes in machine room) failures per hour

[106] 1-36 months 70 3200 3.383 e-3
(Nodes in university and Internet services) failures per hour

[54] 4 months 503 2127 1.447 e-3
(Nodes in corporate environment) failures per hour

The average failure rate λDedicated−Servers of all measurements introduced in Table 6.2

is equivalent to 3.095e− 3 failure per hour. Notice that the average failure rate in the P2P

context is approximately 1000 times higher than for the dedicated servers.

101

6.4 Failing Crawlers

A controller that has assigned a new job to a visiting crawler becomes aware that the crawler

is non responsive when the time-out of the assigned transition, called time−outCrawler has

expired, independently of the data-recovery mechanism applied. If a crawler fails before the

result of a transition is received by its appropriate controller, the transition is reassigned to

another crawler at a later time. Therefore, each failure of a crawler during the execution

of a new job introduces a delay of the time − outCrawler plus one transition execution,

where time− outCrawler is equivalent to 2(c+ emax) units of time. Notice that the crawling

performance after the failure has occurred is reduced since only remaining crawlers will be

active for exploring next transitions. The probability of having a failing crawler depends on

the total crawling period, which varies from one RIA to another. We consider the situation

when a single crawler fails during the total crawling period. With a number of executed

transitions Kt at time t before the crawler fails during a transition execution, the total

crawling time is ((Kt.tt)/m) + ((time− outCrawler + tt)/(m− 1)) + (((K −Kt).tt)/(m− 1))

units of time. Clearly, the time of occurrence of failures during the total crawling period

has an impact on the crawling performance: If a crawler fails at the beginning of the

crawling period, the system performance is slightly degraded since only remaining (m− 1)

crawlers will be active for exploring almost k transitions, with a decline of 1/m on the time

performance. On the other hand, if a crawler fails at the end of the crawling period, the

impact is negligible since crawlers have already explored most of the transitions before the

failure occurred. Assuming that a crawler fails in the middle of the crawling period, i.e. kt

is equal to k/2, the overhead introduced by a failed crawler is 1/(2.m).

102

6.5 Failing Controllers with Low Load

Preliminary analysis of experimental results [75] have shown that a controller can support

up to 20 crawlers before becoming a bottleneck. In this section, we assume that each

controller is associated with at most 20 crawlers so that controllers are not overloaded.

The delay introduced by each data recovery mechanism, when a controller fails, is as

follows:

6.5.1 Retry Strategy

When a controller fails, all states associated with the controller are lost and all transitions

on these states have to be re-executed. The impact of the time when a controller fails during

the total crawling time is important when the Retry strategy is performed. Since states

are randomly distributed among controllers, the number of transitions to be re-executed

when a controller fails is of the order of 1/n at the beginning of the crawling period, and a

percentage of 1/n at the end of the crawling period. Assuming that a controller fails in the

middle of the total crawling period T , the delay introduced by the failure of a controller

is equivalent to λf .T/(2.n). Additionally, the state collection operation results in a delay

of c.(n− 1) units of time before the message is received back by the neighbor responsible

for the recovered states, which is very small compared to the first delay and could be

neglected. Note that the performance of making a choice by the neighbors for the next job

to be executed may decrease during the state collection operation since the controller will

not have the knowledge about states it is newly associated with. Therefore, the overhead

of the Retry strategy is equivalent to (λf .T)/(2.n).

103

6.5.2 Redundancy Strategy

In the Redundancy Strategy, the update operations are performed concurrently. When a

controller fails, all states associated with the controller along with the executed transitions

on these states are recovered by the Redundancy strategy. To do so, each result of a

newly executed transition that becomes available to a controller is updated on its successor

before the transition is locally updated. However, since the next controller responsible for

sending the result of the executed transition is not required to wait for the transition to

be acknowledged before finding a job for the visiting crawler, the delay introduced by

the transition update operation is very short and therefore can be ignored. Notice that

controllers may possibly become a bottleneck due to the additional processing messages if

the number of transitions is high, i.e. due to the update of all newly executed transitions

among the back-up controllers. However, this possibility is ignored in the following.

Finally, a controller noticing a change on its list of successors due to a failed neighbor

updates its new successor with all states and transitions the controller maintains and waits

for an acknowledgment of reception from the back-up controller before proceeding, resulting

in one additional update operation per failure to be performed with a delay of 2c units

of time, assuming that the size of the message is relatively small. Notice that the update

operation delay increases as the size of the data included in the message increases. The

overhead of the Redundancy strategy is given by (2.c)/(tt).

6.5.3 Comparison of Retry and Redundancy Strategies when

Controllers are Underloaded

Fig. 6.2 compares the overhead of the Retry and the Redundancy strategies with respect

to the P2P node failure failure λf when controllers are not overloaded. Fig. 6.2 shows that

the Redundancy strategy significantly outperforms the Retry strategy as the number of

failures increases and is as better as the Retry strategy at the failure rate in the P2P context

104

λP2P (Red Line in Fig. 6.2). We conclude that the Redundancy strategy outperforms the

Retry strategy when controllers are underloaded. Notice that this conclusion holds true

under the condition that each controller is associated with at most 20 crawlers, so that

controllers remain underloaded. In the case that more that 20 crawlers are associated

with each controller, controllers may become a bottleneck and the Redundancy strategy

may not remain efficient compared to the Retry strategy, due to the repetitive back-up

update of every executed transition required for redundancy, i.e. processing backup updates

by controllers would result in a high delay when controllers are overloaded, which could

have a negative impact on the crawling performance, and would possibly exceed the delay

introduced by the Retry strategy.

Figure 6.2: Comparing the Overhead of the Retry and the Redundancy strategies with
respect to the failure rate, assuming that controllers are not overloaded.

6.6 Combined Strategy at relatively High Load

The Combined Data Recovery Strategy consists of periodically copying the executed tran-

sitions a controller maintains so that, if the controller fails, a portion of the executed

transitions remains available in the back-up controller, and lost transitions that have not

105

been copied have to be re-executed again. The advantage of using the combined data

recovery strategy when controllers are relatively overloaded is that all executed transitions

maintained by a controller are copied together at the end of each update period rather

than copying every newly executed transition separately when the result of the transition

execution becomes available to a controller, as introduced by the Redundancy Strategy.

Notice that the update operations using the Combined Strategy are performed concurrently

between back-up controllers, i.e. the update operations are processed in parallel.

Let Nt be the number of executed transitions maintained by a given controller per

update period. The update period, i.e. the time required for executing Nt transitions,

called Tp, is given by:

Tp = Nt.tt units of time (6.1)

We are interested in the additional delay introduced by the Combined Strategy com-

pared to the update period Tp. The Overhead introduced by the Combined Strategy is

defined as follows:

Overhead =
Additional delay in one update period

Normal Operation delay in one update period

The overhead introduced for fault handling using the combined data recovery strategy

includes two parts: The redundancy management and the retry processing operations. We

aim to minimize the sum of the two operations which depends on two parameters: The

update period Tp and the failure rate λf . We ask the following question: What is the value

of Tp that minimizes the Combined Strategy Overhead given the failure rate λf .

106

6.6.1 Redundancy Management Delay

We measure by simulation the processing time required for updating the database with

back-up transitions using the simulation software introduced in Section 4.1. In this sim-

ulation, we plot the average delay required for processing the back-up updates with an

increasing number of transitions when crawling the test-applications introduced in 4.2

with a crawling system composed of 100 controllers and 1000 crawlers. Notice that only

one back-up copy is maintained by each controller in this simulation, i.e. r is equal to 1.

Let p be the delay required for processing the update of backup transitions.

Fig. 6.3 shows the measurement of the processing delay p introduced when updating

the database in milliseconds, with an increasing number of transitions from 1 to 1000, with

steps of 100 (excluding the communication delay for sending and receiving an acknowledg-

ment back by the backup controller). The best Fit Line in Fig. 6.3 (Red Line) corresponds

to the overhead of the Redundancy strategy with respect to the number of transitions to

be updated.

Figure 6.3: Measurements of the processing delay p for updating the database for an
increasing number of copied transitions.

Based on the processing time measurements of Fig. 6.3, we obtain the linear equation

107

OverheadRedundancy as a function of the number of copied transitions per update period

Nt, as follows:

OverheadRedundancy = 0.0001094.Nt + 0.00030433 (in milliseconds) (6.2)

The curve of OverheadRedundancy corresponds to the delay required for processing the

update of backup transitions called p. The delay required for processing one back-up copy

is Tp.p/tt units of time, where p is shown in Fig. 6.3. Moreover, there is an additional com-

munication delay required for sending the backup copy and receiving the acknowledgment

back from the back-up controller of 2.c units of time. Therefore, the total delay introduced

by the redundancy management operation at the end of each period, called Tbp, is given

by:

Tbp =
Tp.p

tt
+ 2.c (6.3)

Notice that the redundancy update operations are performed periodically and therefore

are independent of the failure rate λf .

6.6.2 Retry Processing Delay

The Retry Processing operation consists of re-executing, after a failure, the lost transitions

that were executed after the last redundancy update operation. We assume that failures

among controllers occur on average in the middle of the update period. Given the failure

rate λf , the failure probability of a given controller is λf .Tp. In this case, on average Nt

transitions must be executed again, which takes Tp/2 units of time.

Trp =
λf .T

2
p

2
(6.4)

108

6.6.3 Total Overhead introduced by the Combined Strategy

The overhead introduced by the redundancy management and the retry processing opera-

tions is given by:

OverheadCombinedStrategy =
Additional delay in one period

Normal Operation delay in one period
=
Tbp + Trp

Tp

=

Tp.p

tt
+ 2.c+

λf .T
2
p

2

Tp

OverheadCombinedStrategy =
λf .Tp

2
+

2.c

Tp
+
p

tt
(6.5)

The minimum value of Tp corresponds to an update period with only one transition

execution, i.e. Tp = tt. On the other hand, the maximum value of Tp corresponds to

an update period with an average of k/n transition execution, where k/n is the average

maximum number of transitions that can be maintained by each controller, i.e. Tp = k.tt/n.

6.6.4 The value of Tp to minimize the Combined Strategy Over-

head

At the minimum value of OverheadCombinedStrategy, we have:

dOverheadCombinedStrategy/dTp = 0

which implies

109

λf
2
− 2.c

T 2
p

= 0

and

Tp =

√
2.c
λf
2

That is, the minimum value of Tp is given by:

Tp = 2

√
c

λf
(6.6)

The value of Tp with the minimum Combined Strategy Overhead, as a function of the

failure rate λf , is shown in Fig. 6.4.

Figure 6.4: Minimum Overhead of the Combined Strategy.

Clearly, the value of Tp with minimum overhead is inversely proportional to the failure

rate λf , as shown in Equation 6.6. If λf is low, Tp is high, i.e. many transitions are

executed before the next update operation, allowing for prioritizing the Retry Strategy

over the Redundancy Strategy, hoping that failures are unlikely to occur in the future.

110

In contrast, if λf is high, Tp becomes low and a few transitions are executed before the

next update operation, allowing for prioritizing the Redundancy Strategy over the Retry

Strategy since failures are likely to occur in the future.

111

6.7 Impact of Extreme High Load on the Performance

of the Combined Strategy

We aim to evaluate the impact of the load of controllers on the performance of the Com-

bined strategy when controllers are overloaded. We ask the following question: Given the

average failure rate of a node in the P2P overlay networks λP2P and the processing time

for updating the database p, how does the high load of controllers affect the performance

of the Combined strategy ?

In order to evaluate the impact of the Combined strategy on the crawling performance

when controllers are overloaded, we measure the average delays for sending and receiving

back-up messages in the P2P Crawling System during the crawling phase.

Let tSend and tReceive be the processing delays for sending and receiving a back-up

message respectively. Based on our measurements, the average processing time for sending

a message tSend is in the order of 10−3 milliseconds, while the average processing time

for receiving a message tReceive is in the order of 10−4 milliseconds, when controllers are

underloaded.

Additionally, let δ be a parameter describing the load of controllers. The factor 1/(1−δ)

describes the factor by which the performance of controllers is degraded where 0 ≤ δ ≤ 1.

Notice that a very small value of δ means that the controllers are underloaded, while the

controllers are considered highly overloaded when δ is very close to 1.

In order to include the impact of the delay resulting from the sending and receiving

back-up messages on the crawling performance when controllers are overloaded, we assume

that tSend and tReceive are directly proportional to the factor 1/(1− δ). We add tSend and

tReceive to the processing time p and we multiply their sum by the factor 1/(1 − δ) in the

overhead introduced by the Combined data-recovery strategy in Equation 6.5, as follows:

112

OverheadCombinedStrategy−HighLoad =
λf .Tp

2
+

2.c

Tp
+

(p+ tSend + tReceive)

tt.(1− δ)
(6.7)

Notice that the high load of controllers δ when sending, receiving and processing back-

up messages may also increase the total overhead of the Combined Strategy. However, this

possibility is ignored in the following.

We compare the combined data-recovery overhead in the P2P Crawling System during

the crawling phase when the controllers are highly overloaded for different values of δ, as

shown in Fig. 6.5.

Figure 6.5: Comparison of the combined data-recovery overhead in the P2P Crawling
System for different values of δ.

Fig. 6.5 shows that the performance of the Combined strategy significantly decreases

as the load on controllers increases. However, Fig. 6.5 indicates that the Combined strat-

egy converges towards the Redundancy strategy as the load on controllers increases. For

extremely large values of δ, i.e. controllers are extremely overloaded with δ ≥ 0.9999, the

Combined strategy and the Redundancy strategy are comparable. We conclude that the

Combined strategy is appealing for crawling RIA in a faulty environment when controllers

are not extremely overloaded.

113

6.8 Comparison of the Data Recovery Mechanisms

Analytical results show a high delay related to the Retry and the Combined strategies

compared to the Redundancy strategy when controllers are underloaded. This is due to the

re-execution of the same task when a controller fails while the Redundancy strategy allows

for a faster recovery with an insignificant and constant overhead, i.e. the delay introduced

by the Redundancy strategy remains insignificant and constant as the number of failing

controllers increases. However, the Redundancy Strategy may not remain efficient in the

case when controllers are overloaded. This is due to the high processing time introduced by

the back-up update operations. In fact, one major drawback of the Redundancy strategy

is that controllers may become a bottleneck since an update operation is required for each

newly executed transition. The Combined strategy overcomes this issue by periodically

copying the executed transitions a controller maintains so that if the controller fails, a

portion of the executed transitions remains available in the back-up controller, which allows

for significantly reducing the number of updates performed, thereby reducing the impact

of the possible bottleneck on the crawling performance when the controllers are relatively

overloaded. This makes the Combined strategy a good choice for crawling RIAs in a faulty

environment when controllers are relatively overloaded. However, when the controllers are

extremely overloaded, the Combined strategy is not as better as the Redundancy strategy.

114

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this research, we addressed the scalability and resilience problems when crawling RIAs

in a distributed environment. First, we proposed a scalable P2P crawling system for crawl-

ing RIAs [56]. Our approach is to partition the RIA model that results from the crawling

over several storage devices called controllers in a peer-to-peer (P2P) network, and a set of

crawlers is associated with each controller, which allows for scalability. Moreover, the re-

sponsibilities for the RIA states were distributed among these controllers in the underlying

P2P network, where each controller maintains a portion of the application model, thereby

avoiding a single point of failure. We also defined different knowledge sharing schemes for

efficiently crawling RIAs in the P2P network: the Global Knowledge, Reset-Only, Local-

Knowledge, Shared-Knowledge, Original Forward Exploration, Locally Optimized Forward

Exploration and Globally Optimized Forward Exploration sharing knowledge schemes.

We conducted a simulation study to compare the efficiency of the sharing schemes by

crawling real large-scale RIAs using the proposed P2P crawling system [56]. Simulation

results showed that the Shared-Knowledge scheme, despite its simplicity, is efficient and

scalable compared to the Reset-Only and Local-Knowledge schemes which did not scale

115

with the number of controllers. Additionally, the Globally Optimized Forward Exploration

strategy was near optimal compared to the ideal setting and outperformed the Reset-Only,

the Local-Knowledge, the Shared-Knowledge, the Original Forward Exploration and the

Locally Optimized Forward Exploration schemes. We conclude that the Forward Ex-

ploration scheme is a good choice for general purpose crawling in a decentralized P2P

environment, followed by the Shared-Knowledge scheme.

Moreover, we integrated a fault-tolerant scheme to the scalable P2P RIA crawling

system assuming that crawlers and controllers are vulnerable to fail-stop failures, and we

modified the system architecture accordingly, allowing the proposed P2P RIA crawling

system to resume crawling RIAs despite failures. Additionally, we introduced three data

recovery mechanisms for crawling RIAs in an unreliable environment: The Retry, the

Redundancy and the Combined mechanisms and we showed how to adapt the recovery

mechanisms to the existing crawling strategies. We evaluated the performance of the

recovery mechanisms and their impact on the crawling performance through analytical

reasoning. Our analysis showed that the Redundancy strategy with parallel back-up update

operations is optimal and significantly outperforms the Retry strategy when controllers are

underloaded. However, the Redundancy strategy was vulnerable to produce bottlenecks

on controllers due to the update of every single transition. In the case that controllers are

relatively overloaded, the Combined strategy outperformed the Redundancy strategy by

periodically copying the executed transitions a controller maintains rather than copying

every executed transition, so that if the controller fails, a portion of the executed transitions

remains available in the back-up controller, i.e. by prioritizing the Retry Strategy over

the Redundancy Strategy, which allows for significantly reducing the number of updates

performed compared to the Redundancy strategy. Consequently, the impact of possible

bottlenecks on the crawling performance is significantly reduced. However, our analysis

showed that the Combined strategy is not as good as the Redundancy strategy when

controllers are extremely loaded.

116

7.2 Contributions

The contributions of the thesis apply to the problem of crawling Rich Internet Applications

using concurrent processing in a system of distributed computers. The main contributions

are the following:

• Scalability: A scalable system where a high number of crawlers may be associated

with each controller, without having a central bottleneck that may result from a

single database simultaneously accessed by all crawlers.

• Partial Resilience: The distribution of responsibilities among multiple controllers

in the underlying P2P network, where each controller maintains a portion of the

application model, thereby avoiding a single point of failure, which allows partial

resilience.

• Knowledge Sharing: Defining and comparing the performance of different knowledge

sharing schemes for efficiently crawling RIAs in the P2P network:

– Global Knowledge scheme

– Reset-Only scheme

– Local-Knowledge scheme

– Shared-Knowledge scheme

– Original Forward Exploration scheme

– Locally Optimized Forward Exploration scheme

– Globally Optimized Forward Exploration scheme

• Termination Detection: Defining a distributed termination detection algorithm for

crawling RIAs in a P2P network.

117

• Fault Tolerance: Defining a fault-tolerant RIA crawling system that is able to achieve

the crawling task despite node failures.

• Data-Recovery of RIAs: Defining and comparing different Data Recovery mechanisms

for crawling RIAs in a faulty environment:

– Retry Data Recovery mechanism

– Redundancy Data Recovery mechanism

– Combined Data Recovery mechanism

7.3 Future Directions

Some future directions of this research are:

• Applying other crawling strategies besides the greedy strategy to the RIA crawling

system, such as the menu model, the component-based model and the probabilistic

strategy to the fault-tolerant RIA crawling system.

• Dynamic Adaptive Combined Strategy: In this thesis, the proposed Combined Strat-

egy consisted of periodically copying the executed transitions a controller maintains

rather than copying every executed transition with the aim of avoiding the possible

bottleneck on back-up controllers that may occur when the Redundancy strategy is

applied. The combined strategy could be improved by periodically evaluating the

load of crawlers and controllers, and dynamically prioritizing the Retry strategy or

the Redundancy strategy accordingly, i.e. if the crawlers are most likely to remain

overloaded compared to the controllers, the system automatically prioritizes the Re-

dundancy strategy over the Retry strategy, which allows for moving the future load

from crawlers to controllers. On the other hand, if the controllers are most likely

118

to remain overloaded compared to the crawlers, the system automatically prioritizes

the Retry strategy over the Redundancy strategy.

• Evaluating the impact of the data recovery strategies on the crawling performance

when controllers are overloaded through simulation studies.

119

References

[1] Agarwal A., Koppula H. S., Leela K. P., Chitrapura K. P., Garg S., GM P. K., Haty

C. Roy A., and Sasturkar A. Url normalization for de-duplication of web pages.

In Proceedings of the 18th International Conference on Information and knowledge

management, ACM CIKM 09, New York, NY, USA, pages 1987–1990, 2009.

[2] Avizienis A. The n-version approach to fault-tolerant software. In IEEE Transac-

tions on Software Engineering, Piscataway, NJ, USA, volume 11, pages 1491–1501,

December 1985.

[3] Bernstein P. A., Hadzilacos V., and Goodman N. Concurrency Control and Recovery

in Database Systems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, January 1987.

[4] Binzenhofer A., Kunzmann G., and Henjes R. A scalable algorithm to monitor chord-

based p2p systems at runtime. In Proceedings of the 20th International Parallel and

Distributed Processing Symposium, IEEE IPDPS 06, Rhodes Island, Greece, April

2006.

[5] Carzanig A. and Rutheford M. SSim, a simple Discrete-event

Simulation Library. University of Colorado, Technical Report,

http://www.inf.usi.ch/carzaniga/ssim/index.html, 2003.

120

[6] Crainiceanu A., Linga P., Machanavajjhala A., Gehrke J., and Shanmugasundaram

J. P-ring: an efficient and robust p2p range index structure. In Proceedings of

International Conference on Management Of Data, ACM SIGMOD 07, New York,

NY, USA, pages 223–234, 2007.

[7] Dasgupta A., Kumar R., and Sasturkar A. De-duping urls via rewrite rules. In

Proceedings of the 14th International Conference on Knowledge discovery and data

mining, ACM SIGKDD 08, New York, NY, USA, pages 186–194, 2008.

[8] Fiat A. and Saia J. Censorship resistant peer-to-peer content addressable networks.

In Proceedings of the thirteenth annual symposium on Discrete algorithms, ACM

SODA 02, Philadelphia, PA, USA, pages 94–103, 2002.

[9] Mesbah A., Van Deursen A., and Lenselink S. Crawling ajax-based web applications

through dynamic analysis of user interface state changes. In ACM Transactions on

the Web (TWEB), New York, NY, USA, volume 6, March 2012.

[10] Moosavi A. Component-based crawling of complex rich internet applications. Mas-

ter’s thesis, School of Information Technology and Engineering, Faculty of Engineer-

ing, University of Ottawa, Ottawa, Ontario, Canada, 2014.

[11] Nascimento M. A. Peer-to-peer: Harnessing the power of disruptive technologies. In

ACM SIGMOD Record, New York, NY, USA, pages 57–58, June 2003.

[12] Shukri A., Noor M., and Deris M. M. Distributed dynamic failure detection. In

Journal of Software, volume 9, pages 1342–1347, May 2014.

[13] Singh A., Srivatsa M., Liu L., and Miller T. Apoidea: A decentralized peer-to-peer

architecture for crawling the world wide web. In SIGIR 03 Workshop on Distributed

Information Retrieval, Toronto, Canada, volume 2924, pages 126–142, August 2003.

121

[14] Balasubramanian B. and Garg V. K. Fused data structures for handling multiple

faults in distributed systems. In Proceedings of the 31st International Conference on

Distributed Computing Systems, IEEE ICDCS 11, Minneapolis, Minnesota, USA,

pages 677–688, June 2011.

[15] Bamba B., Liu L., Caverlee J., Padliya V., Srivatsa M., Bansal T., Palekar M., Patrao

J., Li S., and Singh A. Dsphere: A source-centric approach to crawling, indexing

and searching the world wide web. In Proceedings of the IEEE 23rd International

Conference on Data Engineering, Istanbul, Turkey, pages 1515–1516, April 2007.

[16] Nazir B. and Khan T. Fault tolerant job scheduling in computational grid. In IEEE

International Conference on Emerging Technologies, Peshawar, Pakistan, pages 708–

713, November 2006.

[17] Pinkerton B. Finding what people want: Experiences with the web crawler. In

Proceedings of the 2nd International Conference on World Wide Web, ACM WWW

94,Geneva, Switzerland, May 1994.

[18] Rutherford D. B. What do you mean - It is fail-safe. Local transit, Vancouver,

British Columbia, Canada, 1992.

[19] Benjamin C. A strategy for efficient crawling of rich internet applications. Master’s

thesis, School of Information Technology and Engineering, Faculty of Engineering,

University of Ottawa, Ottawa, Ontario, Canada, 2010.

[20] Cooper C. and Frieze A. Crawling on simple models of web graphs. In Internet

Mathematics, volume 1, pages 57–90, 2003.

[21] Duda C., Frey G., Kossmann D., Matter R., and Zhou C. Ajax crawl: Making

ajax applications searchable. In Proceedings of the International Conference on Data

Engineering, IEEE ICDE 09, Shanghai, China, pages 78–89, March 2009.

122

[22] Gartner F. C. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. In ACM Computing Surveys, CSUR 99, New York, NY, USA, vol-

ume 31, pages 1–26, March 1999.

[23] Olston C. and Najork M. Web crawling. In Foundations and Trends in Information

Retrieval, Hanover, MA, USA, volume 4, pages 175–246, March 2010.

[24] Olston C. and Pandey S. Recrawl scheduling based on information longevity. In

Proceedings of the 17th International Conference on World Wide Web, ACM WWW

08, New York, NY, USA, pages 437–446, 2008.

[25] Chandra T. D. and Toueg S. Unreliable failure detectors for reliable distributed

systems. In Journal of the ACM, JACM 96, New York, NY, USA, volume 43, pages

225–267, March 1996.

[26] Karger D., Lehman E., Leighton F., Levine M., Lewin D., and Panigrahy R. Consis-

tent hashing and random trees: Distributed caching protocols for relieving hot spots

on the world wide web. In Proceedings of the 29th Annual Symposium on Theory of

Computing, ACM STOC 97, New York, NY, USA, pages 654–663, May 1997.

[27] Kavila S. D., Raju G. S. V. P., Satapathy S. C., Machiraju A., Kinnera G. V. L.,

and Rasly K. A survey on fault management techniques in distributed computing. In

Proceedings of the International Conference on Frontiers of Intelligent Computing:

Theory and Applications, FICTA 13, Bhubaneswar, Odisa, India, volume 199, pages

593–602, 2013.

[28] Liben-Nowell D., Balakrishnan H., and Karger D. Analysis of the evolution of peer-

to-peer systems. In Proceedings of the 21st Symposium on Principles of Distributed

Computing, ACM PODC 02, New York, NY, USA, pages 233–242, July 2002.

[29] Oppenheimer D., Ganapathi A., and Patterson D. A. Why do internet services fail,

and what can be done about it? In Proceedings of the 4th International Conference

123

on USENIX Symposium on Internet Technologies and Systems, ACM USITS 03,

Berkeley, CA, USA, volume 4, pages 1–1, 2003.

[30] Tang D., Iyer R. K., and Subramani S. S. Failure analysis and modeling of a vax

cluster system. In Proceedings of the 20th International Symposium on Fault-Tolerant

Computing, IEEE FTCS 20, Digest of Papers, Newcastle Upon Tyne, UK, pages 244–

251, June 1990.

[31] Le Hgaret P. et al. Document object model (dom). http://www.w3.org/DOM/,

January 2005.

[32] Cristian F. A rigorous approach to fault-tolerant programming. In IEEE Transac-

tions on Software Engineering, volume 11, pages 23–31, January 1985.

[33] Dabek F., Brunskill E., Kaashoek M. F., Karger D., Morris R., Stoica I., and Bal-

akrishnan H. Building peer-to-peer systems with chord, a distributed lookup service.

In Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, IEEE

HOTOS 01, Washington, DC, USA, pages 81–86, May 2001.

[34] Coffman E. G., Liu Z., and Weber R. R. Optimal robot scheduling for web search

engines. In Journal of Scheduling., volume 1, pages 15–29, 1998.

[35] Plaxton C. G., Rajaraman R., and Richa A. W. Accessing nearby copies of replicated

objects in a distributed environment. In Proceedings of the ninth Annual Symposium

on Parallel Algorithms and Architectures, ACM SPAA 97, New York, NY, USA,

pages 311–320, June 1997.

[36] Abawajy J. H. Fault-tolerant scheduling policy for grid computing systems. In

Proceedings of the 18th International Parallel and Distributed Processing Symposium,

IEEE IPDPS 04, April 2004.

124

[37] Rasti Amir H., Stutzbach D., and Rejaie R. On the long-term evolution of the two-

tier gnutella overlay. In Proceedings of the 25th IEEE International Conference on

Computer Communications, IEEE INFOCOM, Barcelona, Spain, pages 1–6, May

2006.

[38] Koren I. and Krishna C. Fault Tolerant Systems, 1st Edition. Elsevier Science Inc,

March 2007.

[39] Stoica I., Morris R., Karger D., Frans Kaashoek M., and Balakrishnan H. Chord:

A scalable peer-to-peer lookup service for internet applications. In Proceedings of

the International Conference on Applications, technologies, architectures, and pro-

tocols for computer communications, ACM SIGCOMM 01, New York, NY, USA,

volume 31, pages 149–160, October 2001.

[40] Cho J. and Garcia-Molina H. Parallel crawlers. In Proceedings of the 11th Inter-

national Conference on World Wide Web, ACM WWW 02, New York, NY, USA,

volume 2, pages 124–135, 2002.

[41] Cho J. and Garcia-Molina H. Effective page refresh policies for web crawlers. In

ACM Transactions on Database Systems, ACM TODS 03, New York, NY, USA,

volume 28, pages 390–426, December 2003.

[42] Cho J., Garcia-Molina H., and Page L. Efficient crawling through url ordering. In

Proceedings of the 7th International Conference on World Wide Web, ACM WWW

98, Brisbane, Australia, volume 30, pages 161–172, April 1998.

[43] Cho J. and Schonfeld U. Rankmass crawler: A crawler with high personalized pager-

ank coverage guarante. In Proceedings of the 33rd International Conference on Very

Large Data Bases, ACM VLDB 07, pages 375–386, 2007.

125

[44] Chu J., Labonte K. S., and Levine B. N. Availability and locality measurements of

peer-to-peer file systems. In Proceedings of ITCom, Scalability and Traffic Control

in IP Networks, 2002.

[45] Edwards J., McCurley K., and Tomlin J. An adaptive model for optimizing per-

formance of an incremental web crawler. In Proceedings of the 10th International

Conference on World Wide Web, ACM WWW 01, New York, NY, USA, pages 106–

113, 2001.

[46] Frey J., Tannenbaum T., Livny M., Foster I., and Tuecke S. Condor-g: A computa-

tion management agent for multi-institutional grids. In Cluster Computing, Hingham,

MA, USA, volume 5, pages 237–246, July 2002.

[47] Garrett J. J. Ajax: A new approach to web applications.

http://www.adaptivepath.com/publications/essays/archives/000385.php, February

2005.

[48] Gray J. Why do computers stop and what can be done about it. In Proceedings

of the 5th Symposium on Reliability in Distributed Software and Database Systems,

1986.

[49] Gray J. A census of tandem system availability between 1985 and 1990. In IEEE

Transactions on Reliability, volume 39, pages 409–418, October 1990.

[50] Madhavan J., Ko D., Kot L., Ganapathy V., Rasmussen A., and Halevy A. Google’s

deep-web crawl. In Proceedings of the 34th International Conference on Very Large

Data Bases, ACM VLDB Endowment, New York, NY, USA, volume 1, pages 1241–

1252, August 2008.

[51] Misra J. Detecting termination of distributed computations using markers. In Pro-

ceedings of the second Annual Symposium On Principles of Distributed Computing,

ACM PODC 83, New York, NY, USA, volume 22, pages 290–294, 1983.

126

[52] Padliya V. J. and Liu L. Peercrawl: A decentralized peer-to-peer architecture for

crawling the world wide web. In Georgia Institute of Technology Technical Report,

2006.

[53] Wu J. and Watts D. J. Small worlds: The dynamics of networks between order and

randomness. In ACM SIGMOD 02 Record, New York, NY, USA, volume 31, pages

74–75, December 2002.

[54] Xu J., Kalbarczyk Z., and Iyer R. K. Networked windows nt system field failure data

analysis. In Proceedings of the Pacific Rim International Symposium on Dependable

Computing, pages 178–185, December 1999.

[55] Aguilera M. K., Chen W., and Toueg S. Failure detection and consensus in the crash

recovery model. In Distributed Computing, volume 13, pages 99–125, April 2000.

[56] Ben Hafaiedh K., Von Bochmann G., Jourdan G. V., and Onut I. V. A scalable

peer-to-peer ria crawling system with partial knowledge. In Proceedings of the 2nd

International Conference on Networked Systems, NETYS 14, Marrakesh, Morocco,

pages 185–199, May 2014.

[57] Benjamin K., Von Bochmann G., Dincturk M. E., Jourdan G. V., and Onut I. V.

Some modeling challenges when testing rich internet applications for security. In

Proceedings of the 1st International workshop on modeling and detection of vulnera-

bilities, MDV 10, Paris, France, April 2010.

[58] Benjamin K., Von Bochmann G., Dincturk M. E., Jourdan G. V., and Onut I. V.

A strategy for efficient crawling of rich internet applications. In Proceedings of the

11th International Conference on Web engineering, ICWE 11, Paphos, Cyprus, July

2011.

127

[59] Bharat K. and Broder A. Mirror, mirror on the web: A study of host pairs with

replicated content. In Proceedings of the 8th International Conference on World Wide

Web, ACM WWW 99, New York, NY, USA, volume 31, pages 1579–1590, May 1999.

[60] Gummadi P. K., Saroiu S., and Gribble S. D. A measurement study of napster

and gnutella as examples of peer-to-peer file sharing systems. In Proceesings of

the Computer Communication Review, ACM SIGCOMM 02, New York, NY, USA,

volume 32, pages 82–82, January 2002.

[61] Iyer R. K., Rossetti D. J., and Hsueh M. C. Measurement and modeling of computer

reliability as affected by system activity. In ACM Transactions on Computer Systems,

ACM TOCS 86, New York, NY, USA, volume 4, pages 214–237, August 1986.

[62] Sahoo R. K., Sivasubramaniam A., Squillante M. S., and Zhang Y. Failure data

analysis of a large-scale heterogeneous server environment. In Proceedings of the

International Conference on Dependable Systems and Networks, IEEE DSN 04, pages

772–781, July 2004.

[63] Zhu K., Xu Z., Wang X., and Zhao Y. A full distributed web crawler based on

structured network. In Lecture Notes in Computer Science, volume 4993, pages 478–

483, 2008.

[64] Barbosa L. and Freire J. An adaptive crawler for locating hidden-web entry points. In

Proceedings of the 16th International Conference on World Wide Web, ACM WWW

07, New York, NY, USA, pages 441–450, 2007.

[65] Devroye L. Non-uniform random variate generation. In Springer-Verlag, New York,

NY, USA, pages 392–401, 1986.

[66] Gravano L., Garcia-Molina H., and Tomasic A. The effectiveness of gloss for the

text database discovery problem. In Proceedings of the International Conference on

128

Management of Data, ACM SIGMOD 94, New York, NY, USA, volume 23, pages

126–137, June 1994.

[67] Lamport L., Shostak R., and Pease M. The byzantine generals problem. In ACM

Transactions on Programming Languages and Systems, ACM TOPLAS 82, New

York, NY, USA, volume 4, pages 382–401, July 1982.

[68] Page L., Brin S., Motwani R., and Winograd T. The pagerank citation ranking:

Bringing order to the web. Standford University Technical Report, Stanford, United

States, December 1997.

[69] Affaan M. and Ansari M. A. Distributed fault management for computational grids.

In Proceedings of the Fifth International Conference on Grid and Cooperative Com-

puting, IEEE GCC 06, Hunan, China, pages 363–368, October 2006.

[70] Castro M. and Liskov B. Practical byzantine fault tolerance and proactive recovery.

In ACM Transactions on Computer Systems, ACM TOCS 02, New York, NY, USA,

volume 20, pages 398–461, November 2002.

[71] Hersovici M., Jacovi M., Maarek Y. S., Pelleg D., Shtalhaim M., and Ur S. The shark-

search algorithm - an application: Tailored web site mapping. In Proceedings of the

7th International Conference on World Wide Web, ACM WWW 98, Amsterdam,

The Netherlands, volume 30, pages 317–326, April 1998.

[72] Kalyanakrishnam M., Kalbarczyk Z., and Iyer R. Failure data analysis of a lan of

windows nt based computers. In Proceedings of the IEEE 18th IEEE Symposium on

Reliable Distributed Systems, Lausanne, Switzerland, pages 178–187, October 1999.

[73] Koster M. A standard for robot exclusion. http://www.robotstxt.org/orig.html.,

1994.

129

[74] Mirtaheri S. M., Zou D., Von Bochmann G., Jourdan G. V., and Onut I. V. Dist-ria

crawler: A distributed crawler for rich internet applications. In Proceedings of the

8TH International Conference on P2P, Parallel, Grid, Cloud and Internet Comput-

ing, 3PGCIC 13, Compiegne, France, October 2013.

[75] Mirtaheri S. M., Von Bochmann G., Jourdan G. V., and Onut I. V. A greedy dis-

tributed crawler for rich internet applications. In Proceedings of the 2nd International

Conference on Networked Systems, NETYS 2014, Marrakesh, Morocco, May 2014.

[76] Mirtaheri S. M., Von Bochmann G., Jourdan G. V., and Onut I. V. Pdist-ria crawler:

A peer-to-peer distributed crawler for rich internet applications. In Proceedings of

the 15th International Conference of WISE, Lecture Notes in Computer Science,

Thessaloniki, Greece, volume 8787, pages 365–380, October 2014.

[77] Najork M. and Wiener J. L. Breadth-first crawling yields high-quality pages. In

Proceedings of the 10th International Conference on World Wide Web, ACM WWW

01, New York, NY, USA, pages 114–118, 2001.

[78] Waldman M., Rubin A. D., and Cranor L. F. Publius: A robust, tamper-evident,

censorship-resistant web publishing system. In Proceedings of the 9th International

Conference on USENIX Security Symposium, ACM SSYM 00, Berkeley, CA, USA,

volume 9, pages 5–5, 2000.

[79] Babar N. and Taimoor K. Fault tolerant job scheduling in computational grid. In

Proceedings of the 2nd International Conference on Emerging Technologies, IEEE

ICET 06, Peshawar, Pakistan, pages 708–713, November 2006.

[80] Budhiraja N., Marzullo K., Schneider F. B., and Toueg S. The primary-backup

approach. Distributed systems, 2nd Edition, ACM Press, Addison-Wesley Publishing

Co. New York, NY, USA, 1993.

130

[81] Hussain N., Ansari M. A., Yasin M. M., Rauf A., and Haider S. Fault tolerance

using parallel shadow image servers (psis) in grid based computing environment. In

Proceedings of the International Conference on Emerging Technologies, IEEE ICET

06, Peshawar, Pakistan, pages 703–707, November 2006.

[82] Boldi P., Codenotti B., Santini M., and Vigna S. Ubicrawler: a scalable fully dis-

tributed web crawler. In Journal Software, Practice and Experience, John Wiley and

Sons, Inc. New York, NY, USA, volume 34, pages 711–726, July 2004.

[83] Callan J. P., Lu Z., and Croft W. B. Searching distributed collections with inference

networks. In Proceedings of the 18th Annual International Conference on Research

and Development in Information Retrieval, ACM SIGIR 95, New York, NY, USA,

pages 21–28, 1995.

[84] Druschel P. and Rowstron A. Persistent and anonymous storage in a peer-to-peer

networking environment. In Proceedings of the 8th Workshop on Hot Topics in Op-

erating Systems, IEEE HOTOS 01, pages 65–70, 2001.

[85] Egwutuoha I. P., Levy D., Selic B., and Chen S. A survey of fault tolerance mecha-

nisms and checkpoint-restart implementations for high performance computing sys-

tems. In Journal of Supercomputing, Hingham, MA, USA, volume 65, pages 1302–

1326, September 2013.

[86] Gummadi K. P., Dunn R. J., Saroiu S., Gribble S. D., Levy H. M., and J. Zahor-

jan. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload.

In Proceedings of the nineteenth ACM symposium on Operating systems principles,

ACM SOSP 03, New York, NY, USA, volume 37, pages 314–329, December 2003.

[87] Jalote P. Fault Tolerance in Distributed Systems. Prentice Hall, 1st edition, 1994.

131

[88] Kihlstrom K. P., Moser L. E., and Melliar-Smith P. M. Solving consensus in a

byzantine environment using an unreliable fault detector. In Proceedings of the In-

ternational Conference on Principles of Distributed Systems, OPODIS 97, 1997.

[89] Latchoumy P. and Sheik Abdul Khader P. Survey on fault tolerance in grid comput-

ing. In International Journal of Computer Science and Engineering Survey, IJCSES

11, volume 2, November 2011.

[90] Stelling P., Foster I., Kesselman C., and Lee C. A fault detection service for wide area

distributed computations. In Proceedings of the seventh International Symposium on

High Performance Distributed Computing, IEEE HPDC 98, Chicago, IL, USA, pages

268–278, July 1998.

[91] Lv Q., Cao P., Cohen E., Li K., and Shenker S. Search and replication in unstruc-

tured peer-to-peer networks. In Proceedings of 16th International Conference on

Supercomputing, ACM ICS 02, New York, NY, USA, pages 84–95, June 2002.

[92] Bhagwan R., Savage S., and Voelker G. M. Understanding availability. In Proceedings

of the 2nd International Workshop on Peer-to-Peer Systems, IPTPS 03, February

2003.

[93] Matter R. Ajax crawl: Making ajax applications searchable. Master’s thesis,

Swiss Federal Institute of Technology in Zurich, ETH Zurich, 2008. http://e-

collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf.

[94] Schollmeier R. A definition of peer-to-peer networking for the classification of peer-

to-peer architectures and applications. In Proceedings of the IEEE first International

Conference on Peer-to-Peer Computing, Linkoping, Sweden, pages 101–102, August

2001.

132

[95] Abiteboul S., Preda M., and Cobena G. Adaptive on-line page importance compu-

tation. In Proceedings of the 12th International Conference on World Wide Web,

ACM WWW 03, New York, NY, USA, pages 280–290, 2003.

[96] Brin S. and Page L. The anatomy of a large-scale hypertextual web search engine. In

Proceedings of the 7th International Conference on World Wide Web, ACM WWW

07, Amsterdam, The Netherlands, volume 30, pages 107–117, April 1998.

[97] Chien S., Dwork C., Kumar R., Simon D. R., and Sivakumar D. Link evolution: Anal-

ysis and algorithms. In Proceedings of the International Conference on Distributed

Systems Platforms (Middleware), ACM FIP 03, Heidelberg, Germany, volume 1,

pages 277–304, November 2003.

[98] Choudhary S. M-crawler: Crawling rich internet applications using menu meta-

model. Master’s thesis, School of Information Technology and Engineering, Faculty

of Engineering, University of Ottawa, Ottawa, Ontario, Canada, 2012.

[99] Choudhary S., Dincturk M. E., Mirtaheri S. M., Moosavi A., Von Bochmann G.,

Jourdan G. V., and Onut I. V. Crawling rich internet applications: The state of the

art. In Conference of the Center for Advanced Studies on Collaborative Research,

pages 146–160, 2012.

[100] Hwang S. and Kesselman C. A flexible framework for fault tolerance in the grid. In

Journal of Grid Computing, volume 1, pages 251–272, September 2003.

[101] Raghavan S. and Garcia-Molina H. Crawling the hidden web. In Proceedings of

the 27th International Conference on Very Large Data Bases, ACM VLDB 01, San

Francisco, CA, USA, pages 129–138, 2001.

[102] Ratnasamy S., Francis P., Handley M., and Karp R. Shenker S. A scalable content-

addressable network. In Proceedings of the International Conference on Applications,

133

technologies, architectures, and protocols for computer communications, ACM SIG-

COMM 01, New York, NY, USA, volume 31, pages 161–172, October 2001.

[103] Rhea S., Geels D., Roscoe T., and Kubiatowicz J. Handling churn in a dht. In Pro-

ceedings of the International Conference on USENIX Annual Technical Conference,

ACM ATEC 04, Berkeley, CA, USA, pages 10–10, 2004.

[104] Saroiu S., Gummadi P. K., and Gribble S. D. A measurement study of peer-to-peer

file sharing systems. In Proceedings of the International Conference on Multimedia

Computing and Networking, MMCN 02, San Jose, CA, USA, January 2002.

[105] Sen S. and Wang J. Analyzing peer-to-peer traffic across large networks. In Pro-

ceedings of the IEEE-ACM Transactions on Networking, volume 12, pages 219–232,

April 2004.

[106] Heath T., Martin R. P., and Nguyen T. D. Improving cluster availability using work-

station validation. In Proceedings of the International Conference on Measurement

and Modeling of Computer Systems, ACM SIGMETRICS 02, New York, NY, USA,

volume 30, pages 217–227, June 2002.

[107] Loo B. T., Cooper O., and Krishnamurthy S. Distributed web crawling over DHTs.

UC Berkeley Technical Report, 2004.

[108] Rowstron A. I. T. and Druschel P. Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems. In FIP-ACM International

Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany,

volume 22, pages 329–350, January 2001.

[109] Saridakis T. A system of patterns for fault tolerance. In Proceedings of the Euro-

pean Conference on Pattern Languages of Programs, EuroPLoP 02, Kloster Irsee,

Germany, pages 535–582, July 2002.

134

[110] De Florio V. and Blondia C. A survey of linguistic structures for application-level

fault tolerance. In ACM Computing Surveys, ACM CSUR 08, New York, NY, USA,

volume 40, April 2008.

[111] Shkapenyuk V. and Suel T. Design and implementation of a high performance dis-

tributed web crawler. In Proceedings of the 18th IEEE International Conference on

Data Engineering, San Jose, CA, USA, pages 357–368, March 2002.

[112] Aiello W., Chung F., and Lu L. Random evolution in massive graphs. In Handbook

of Massive Data Sets, volume 4, pages 97–122, 2002.

[113] Dijkstra E. W. A note on two problems in connexion with graphs. Numerische

Mathematik 1, 1959.

[114] Hoeffding W. Probability inequalities for sums of bounded random variables. In

Journal of the American Statistical Association, volume 58, pages 13–30, March

1963.

[115] Li X., Misra J., and Plaxton C. G. Concurrent maintenance of rings. In Proceedings

of the ACM Symposium on Principles of Distributed Computing, volume 19, pages

126–148, October 2006.

[116] Lin T. T. Y. and Siewiorek D. P. Error log analysis: Statistical modeling and

heuristic trend analysis. In IEEE Transactions on Reliability, volume 39, pages 419–

432, October 1990.

[117] Zhao B. Y., Huang L., Stribling J., Rhea S. C., Joseph A. D., and Kubiatowicz J. D.

Tapestry: A resilient global-scale overlay for service deployment. In IEEE Journal on

Selected Areas in Communications, Piscataway, NJ, USA, volume 22, pages 41–53,

September 2006.

135

[118] Baeza yates R. and Castillo C. Balancing volume, quality and freshness in web crawl-

ing. In Soft Computing Systems - Design, Management and Applications, Santiago,

Chile, pages 565–572, 2002.

[119] Bar-Yossef Z., Keidar I., and Schonfeld U. Do not crawl in the dust: Different urls

with similar text. In Proceedings of the 16th International Conference on World Wide

Web, ACM WWW 07, New York, NY, USA, pages 111–120, 2007.

[120] Broder A. Z., Glassman S. C., Manasse M. S., and Zweig G. Syntactic cluster-

ing of the web. In Proceedings of the 6th International Conference on World Wide

Web, ACM WWW 97, Amsterdam, The Netherlands, volume 29, pages 1157–1166,

September 1997.

[121] Peng Z., He N., Jiang C., Li Z., Xu L., Li Y., and Ren Y. Graph-based ajax crawl:

Mining data from rich internet applications. In Proceedings of the International

Conference on Computer Science and Electronic Engineering, IEEE ICCSEE 12,

Hangzhou, China, volume 3, pages 590–594, March 2012.

136

	List of Tables
	List of Figures
	Nomenclature
	List of Abbreviations
	Mathematical Symbols

	Introduction
	Web Crawling
	Traditional Web Crawling
	Distributed Traditional Web Crawling
	RIA Crawling
	Distributed RIA Crawling
	Motivation and Research Question
	Overview and Organization

	Literature Review
	Web Crawling
	Introduction to Web Graphs
	Traditional Web Crawling
	Crawl Ordering
	Page Freshness
	Politeness
	Eliminating Undesirable Content
	Distributed Traditional Crawling

	Deep Crawling
	RIA Crawling
	RIA Crawling Strategies with One Single Crawler
	Distributed RIA Crawling

	Distributed Processing
	Client-Server Systems
	Peer-to-Peer Systems
	Centralized
	Decentralized and Unstructured
	Decentralized and Structured

	Fault Tolerance
	Types of Failure
	Link Failure
	Software Failure
	Node Failure

	Fault Tolerance Strategies
	Fault Tolerance Mechanisms
	Failure Detection Techniques
	Task Recovery and Data Recovery Strategies

	Maintenance of Chord
	Active Approach
	Joining Node
	Leaving Node
	Failing Node

	Passive Approach
	Joining Node
	Leaving and Failing Node
	Idealization

	Scalable Distributed P2P RIA Crawling with Partial Knowledge
	Overview of the Distributed P2P RIA Crawling System
	Assumptions
	The Greedy Strategy
	Protocol Description
	Data-Structures
	Exchanged Messages
	Message Types

	The P2P RIA Crawling Protocol
	Handling Traditional and RIA Crawling Simultaneously
	Termination Detection

	Choosing the Next Event to Explore from a Different State
	Global-Knowledge
	Reset-Only
	Local-Knowledge
	Shared-Knowledge
	Original Forward Exploration
	Locally Optimized Forward Exploration
	Globally Optimized Forward Exploration

	Message Complexities
	Conclusion

	Experimental Results of the Scalable Distributed P2P RIA Crawling with Partial Knowledge
	Implementation
	Test-Applications
	Comparing the crawling time of the different sharing schemes
	Comparing the different variants of the Forward Exploration scheme to the Shared-Knowledge scheme
	In-depth analysis of the exchanged messages
	In-depth analysis of the Forward-Exploration approach: Non-executed events found in different depths during the Forward Exploration operation
	Conclusion

	Fault-Tolerant RIA Crawling System
	Assumptions
	Solutions
	Chord Maintenance
	Fault-Tolerant Crawling Protocol

	Crawling Data Recovery Mechanisms
	Retry Strategy
	Redundancy Strategy
	Combined Strategy

	Analytical Evaluation of the Fault-Tolerant RIA Crawling System
	Crawling Time with Normal Operation
	Processing Time per Message Type
	Failure Rate
	P2P Node Failures
	Failures of Dedicated Servers

	Failing Crawlers
	Failing Controllers with Low Load
	Retry Strategy
	Redundancy Strategy
	Comparison of Retry and Redundancy Strategies when Controllers are Underloaded

	Combined Strategy at relatively High Load
	Redundancy Management Delay
	Retry Processing Delay
	Total Overhead introduced by the Combined Strategy
	The value of Tp to minimize the Combined Strategy Overhead

	Impact of Extreme High Load on the Performance of the Combined Strategy
	Comparison of the Data Recovery Mechanisms

	Conclusion and Future Directions
	Conclusion
	Contributions
	Future Directions

	References

