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Abstract 

 
In recent years, the advance of the Internet technology and e-commence applications 

becomes the motivation for the development of scalable server brokerage architectures for 

the purpose of load sharing.  

 

There are many on-going researches and proposed solutions in solving this problem, but 

our project focus on providing the satisfactory QoS with the brokerage architecture. 

Besides the load sharing among all the servers in the server pool the brokerage 

architecture has to guarantee the response time provided by the web server since it is an 

important factor for user satisfaction. But in the earlier server selection algorithm of the 

brokerage architecture, a threshold is used to decide whether to accept/reject users 

depending on the current response time. A problem with this approach is that oscillations 

occur. Due to the abrupt manner of accepting/rejecting user, the system experiences 

unavoidable oscillations in terms of the response time, the number of users in the system 

and even the utilization of the servers. 

 

The work of this thesis is oriented towards solving the problem of system performance 

oscillations. We first establish the relationship between the number of users in the system 

and the average response time. Then we study a theoretical model of the oscillation of the 

number of users in the system. Then we propose a probabilistic approach to admission 

control where the probability of rejecting a new user increases as the load increases. Using 

the theoretical model, we prove that with a probabilistic approach, the oscillations will 

normally be suppressed, and the number of users in the system reaches a stable point. We 



 3

also test the effect of different probability functions and the impact of different 

inter-observation time intervals on the oscillation by careful simulation experiment. 

Finally, the probabilistic approach is used to provide differentiated classes of service to 

different user groups. We show that the probabilistic approach provides better 

performance than the on-off decision approach. 
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1. Introduction 

 

With the exponential expansion of the Internet infrastructure, many Internet-based 

businesses are experiencing a fast growth, especially in the e-commerce context, and 

multimedia applications like video-on-demand. Those applications either have a large 

number of clients, or need to transmit a vast amount of data. They put heavy stress onto 

the web servers and pose a great challenge to the QoS that is promised to the clients.  

 

The capacity of one server is very limited. For a large electronic merchant, millions of 

requests per second are expected. To handle those requests, hundreds and thousand 

machines are needed. And also a complex electronic commerce application usually 

consists of cooperating pieces of software located on different machines, and they are not 

even geographically together. Those separations of software are usually functional. 

Different machine can handle different details to support an electronic shopping model, 

some for interaction with customers (web page server), some for database (like users’ 

personal profiles), some for security (like in registration and banking). To a large extent, 

they need the system to scale to a large number of users. Another issue is quality of service. 

Nowadays, lots of customers do electronic shopping. They will submit the purchase 

request of some advertised goods to web servers. The server has to make responses to 

those requests. In the user’s point of view, the response time is defined as the time the user 

spends waiting for the request to be completed. It depends on a lot of factors like the server 

speed, the network bandwidth, size of files and processing time for ciphering/deciphering 

etc. The response time has a direct impact on user satisfaction and the reputation of the 

merchant sites. So the maximum of the response time becomes a basic measure of QoS.  

 

In this context, some questions are posed here: on the one hand, how can we distribute the 

requests from the clients evenly among all the web servers; and on the other hand, how can 
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we still provide satisfactory QoS even during the time of heavy load. There have already 

been quite a few research efforts coping with these problems for optimising the system 

performance and decreasing the response time. We will examine some of them in detail 

shortly. Unfortunately, those approaches have not taken the oscillation of the system 

performance into consideration, so when the workload is high, the response time will 

sometimes become very long (a long waiting time), and sometimes very short (higher 

percentage of user rejection). That is exactly why we use a probabilistic approach in our 

project. Although such a gradual approach (also called proportional control) has long been 

used as a way of system control in industry, it is the first time to be used for admission 

control for web servers, so far as we know. In this new approach, each time a user comes 

to ask for admission, the broker will grant it with some probability based on the current 

measured response time. By doing this, we no longer admit or reject all users; the users are 

always accepted by some percentage, which depends on the workload of the system. In 

this thesis, we start with studying the nature of the performance oscillations by 

establishing its theoretical model; with some mathematical proof, we show that the 

probabilistic approach suppresses the oscillation and the performance reaches a so-called 

“stable point”. Then we study the probabilistic approach further in a more realistic setting 

by simulation studies.  

 

Since many distributed applications are expected to provide different levels of service to 

different classes of users (for example, the e-commerce system should distinguish between 

a casual user and a registered user, those registered user should receive the best service in 

terms of the priority of acceptance and reasonable response time), we use the probabilistic 

approach to provide differentiated services to different user groups. Through simulation 

studies, we show that its performance is better than the on-off approach. In the following, 

we briefly list the contributions and give an outline of the thesis. 
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1.1 Objective and contribution of this thesis 

 

1. We use a probabilistic approach for admission control to the web servers rather than 

the simple on-off algorithm in order to avoid performance oscillations and provide the 

desired quality of service to the client. 

  

2. We established the relationship between the average response time/server utilization 

and the number of users in the system by means of the simulation experiments. Based 

on these results, a reasonable cut-off point is chosen. 

 

3. A theoretical model of the oscillation of the number of users in the system with the 

on-off decision-making approach is established. By studying the theoretical model, 

the amplitude of the oscillation can be computed and the nature of the oscillation is 

well understood.  

 

4. A theoretical model of the oscillation of the number of users in the system with the 

probabilistic approach is established and studies. We prove that with the probabilistic 

approach, the oscillation will normally be suppressed and the performance reaches a 

so-called stable point. 

 

5. The effect of the probability functions with different slopes on the avoidance of 

oscillation is tested, and we find that a more gradual probability function eliminates 

the oscillation better than a less gradual probability function.  

 

6. Through simulation experiments, we show that with a given probability function, a 



 14

smaller inter-observation time period can also eliminate the oscillation. 

 

7. Since the number of users in the system is a direct indication of the system response 

time, we test the efficiency of using an upper limit of the number of users and 

conclude through the simulation result that the upper number of users in the system 

has an effect of avoiding oscillations only when the workload of the client 

reaches/exceeds that limit.  

 

8. We show that the probabilistic approach of admission control can be used for two 

differentiated classes of users: one group with higher priority and another one with 

lower priority. We show that with the probabilistic approach, the QoS provided to the 

higher priority user group is much better than when we use the traditional on-off 

threshold approach. 

 

9. We propose a combined probability function approach to provide the different QoS to 

differentiated classes of users. This approach has the advantage over the two 

probability function approach, in that with the single probability function approach, 

for a given combined user incoming rate, the resulting response time is predictable 

regardless of the composition change of the different groups. 
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1.2 Organization 

 

Following is the organization of this thesis paper: 

 

CHAPTER 2: Load sharing control for web servers: In this chapter, we review related 

work on providing scalable architecture for web servers. The basic brokerage architecture, 

its dynamic behaviour are also introduced here.  

 

CHAPTER 3: Simulation principles and tools: In this chapter, some of the very basic 

principles of simulation modelling are reviewed, and the simulation tool CSIM18 is 

introduced. We also give a simple code example of a queuing system. Finally, the 

simulation model used in our project is studied. 

 

CHAPTER 4: The relationship between the response time and the number of users 

in the system: In this chapter, The relationship between the response time and the number 

of users in the system is established here. How the threshold is chosen is also discussed. 

 

CHAPTER 5: The problem of performance oscillation: The problem of the 

performance oscillation (to be more specific, the oscillation of the number of users in the 

system) is studied. Specifically, we study the theoretical model of the oscillation of the 

number of users in the system in the cut-off threshold case. Some basic principles of the 

system control are also introduced in this chapter, which give us the hint of solving the 

problem of oscillation using the system control method. 

 

CHAPTER 6: Probabilistic approach to admission control: The detailed design of the 

probabilistic algorithm for gradual user rejection is given. A careful mathematical study of 
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the oscillation in the probabilistic approach is also provided. The performance of this 

probabilistic approach is evaluated by simulation studies. All the results are collected and 

presented. 

 

CHAPTER 7: Probabilistic approach used for differentiated classes of users: The 

probabilistic approach is used on two groups of users, by either using two probability 

functions on each of them or using a single probability function but treating users 

differently according to the class to which they belong. The difference of these two 

approaches is also studied. 

 

CHAPTER 8: Conclusions and future works: Finally, a conclusion for our project is 

drawn, and some possible future works are mentioned. 
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2 Load sharing for web servers 

In this chapter, we review the approaches to the load sharing of web servers. We first start 

with the overview of related work in providing load-sharing function to the web servers 

and how they cope with performance oscillations. And after a brief introduction of the 

brokerage architecture of [4], we introduce its load sharing and dynamic properties. This is 

important for us, since in this project, we base our study on the brokerage architecture. By 

dealing with the problem of oscillations in the brokerage system, we hope to provide a 

satisfactory QoS to the users without sacrificing its nice properties of load sharing and 

scalability. 

 

2.1 Overview of related work  
 

The research of how to distribute the large number of clients among a group of replicated 

servers in order to provide satisfactory quality of service has be around for over a decade. 

The goal is to allocate servers to the clients in such a way that the response time 

experienced by the clients is minimized. Quite a lot of efforts have been made according to 

specific optimization criteria, and lots of different approaches have been published, some 

of which will be discussed in the following. 

 

2.1.1 Servers are picked up by clients 

 

Some of the load sharing approaches are very rudimental. One of them broadcasts a list of 

servers, from which the clients has to pick the best one. The difficulty of this approach is 

how the client can know which server is the “best”. A server geographically closer does 

not necessarily guarantee a shorter response time. Also, whenever the configuration of the 

servers is changed (server down, or a new server added), some site has to be aware of this, 
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and a new server list has to be broadcast. Although not impossible, this method is not very 

scalable.  

 

2.1.2 Distribute the workload by the DNS 

 

Another approach uses the DNS (Domain Name System) to return the IP address of one 

server among the server pool when it is queried about the IP address of the website. But 

the DNS does not usually keep performance information about servers. Usually, it can 

only distribute the servers to each client in a round robin manner. It is really a bad 

approach if the computing capacity of the servers varies, in which case a slower server get 

the same workload as a faster one. Also most DNS control only a very small portion of the 

server requests (actually only the initial name to IP address resolution requests), as show 

in the Figure 1. The local name servers (LNS), the intermediate name servers (INS) and 

even the clients (C) themselves can usually cache the result of the previous address 

resolution and the same requests will never go back to the DNS that controls the 

multi-server (WS) domain. Address caching bypasses the remote DNS, and therefore 

limits the control of the DNS, and makes the server performance independent of the DNS 

decisions [12]. This is exactly where the difficulty lies.  
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C: Client, LNS: Local Name Server, LG: Local Gateway, INS: Intermediate Name Server, DNS: 

Domain Name Server, WSn: Web Server number n 

Figure 1. Approach using DNS to distribute client requests 

 

According to the work accomplished by Michele Colajanni et al [12], this problem can be 

solved by providing a TTL (time to live) to every name server (from INS to LNS) along 

the path from the DNS to the client when the DNS returns the IP address of the chosen 

web server to the client. The name to address mapping is kept in the database at the 

intermediate name server and the local name server only for a time period specified by 

TTL. After the period TTL, this mapping entry is simply deleted, and the next request 

should again be forwarded to the remote DNS. By doing this, the DNS gets more control 

over the flow on the network. Based on this idea, several possible server-scheduling 
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algorithms that are extended on the DNS as in the following. 

 

Based on the source of information used by the DNS, the DNS scheduling algorithms can 

be classified into three categories; namely (1) the algorithms using domain information, (2) 

the algorithms using load information from the web servers, and (3) the algorithms 

combining both domain and server information. We briefly describe these algorithms as 

follows. 

 

(1) Algorithms using domain information 

 

Two-tier-Round-Robin (RR2)  

Based on the fact that the hidden load weight (average number of web requests from the 

domain per name-to-address mapping) of the clients under each LG (Local Gateway) can 

be very different, this algorithm partitions the domain under different LGs roughly into 

two classes, i.e. hot (with higher hidden load weight), and normal (with moderate hidden 

load weight). The round robin scheduling is used on the LGs under each class. RR2 

algorithm avoids assigning too many requests from hot class domains to the same server, 

and therefore it tends to average the load to every server in the pool. 

 

Dynamically Accumulated Load (DAL) 

In every measurement period, DNS accumulates the hidden load weight of every 

assignment for each web server in a variable bin. And the web server with the lowest bin 

value is chosen when the address resolution is requested. The bin value is increased by the 

hidden load weight of that LG afterwards to represent the increased load that will arrive. 

 

(2) Algorithms using load information on web servers 
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Lowest Utilization (LU)  

The web server utilization (in the most recent measured interval) is used for the server 

selection purpose, the server with the lowest utilization is chosen during address 

resolution. 

 

Lowest among Past and Present Utilizations (LPPU)  

Like the LU algorithm, only several recent measures are used, and each one is weighed 

with different weight value (with the most recent measure being the highest). 

 

 

(3) Algorithms combining domain and server information 

 

Single threshold (Thr1)  

Basically, this approach use the RR2 or DAL algorithm, but it also keeps track of the alarm 

message coming from any of the web servers which announces that its utilization has 

exceeded a certain threshold, and excludes them from the candidate list. These overloaded 

web servers will not be assigned to any domain until their workload drops back below the 

threshold at which moment another message will be sent to the DNS to notify this. 

 

Double threshold (Thr2) 

Similar to the Thr1 algorithm, but to avoid the performance thrashing, this algorithm uses 

a second threshold (lower than the upper one) to tell when the excluded server should be 

“re-activated”. In this way, the newly included server will not be excluded again too soon 

during the time of heavy load. 

 

Temporal threshold (ThrT) 

Same as the Thr1 algorithm, except that the re-activation of the server is triggered by a 
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timer, which specifies a period of time long enough for the excluded server to finish its 

currently assigned load. 

 

These algorithms are quite simple to implement, and the expiration of the name-to-address 

mapping enables the DNS to get back more control over the network flow, thus realize the 

load balance. 

 

2.1.3 Using an anycast resolver to distribute the workload  

 

The most recent technique is to make use of the anycast domain names (ADNs) [13]. Such 

a name identifies a group of IP addresses of the replicated servers. It is assumed that an 

anycast resolver stands between the clients and the servers, and maps the ADN into the IP 

address of one of the servers. The web service request is started with the anycast query, 

and the resolver responds with a server IP address. Then the client talks to this assigned 

server until he finishes. To guarantee the quality of service, the performance information 

associated with each server has to be maintained in a performance database. This 

information is used for the purpose of server selection. Upon this basic anycast 

architecture, some extensions have been proposed. Among them, one study [9] worth 

noticing is done by Z. Fei, S. Bhattacharjee et al from Georgia Institute of Technology. 

Their approach deals not only with the problem of providing reasonable response time to 

the client, but also with the problem of performance oscillation. 

 

In their anycasting system architecture, they use a hybrid of Push/Probe techniques to keep 

the performance information of the servers updated. They use the concept of a so-called 

“set of equivalent servers (ES)” to pick up a good quality server from the server pool. For 

the push algorithm on the server side, the server pushes the performance information to the 

resolver whenever the change of the measured performance exceeds some predefined 
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threshold. The probing mechanism is realized by a probing agent, which is co-located with 

the resolver. This agent periodically queries a well-known file on the server to measure the 

real performance of the server. The reason to separate the functions of probing and 

resolving and put them on two different sites is that they want the resolver to be 

server-protocol independent. But the probing agent still has to be aware of the protocol on 

the server side.  

 

To insure a reasonable response time for the clients and to prevent the clients from 

oscillating among different servers (some servers may be favored at one time and 

over-loaded at another time), they use the idea of a set of equivalent servers (ES) to define 

a set of servers in the server pool, which can still provide good quality of service. And 

when queried by the client, the resolver randomly picks up one server in the ES, and sends 

back its IP address. The ES group is re-calculated each time some server pushes 

performance data to the resolver. Their ES computing algorithm [9] keeps two thresholds 

τj and τι for response time to control when a server can be included into the ES and when it 

should be kicked out owing to its poor service. τj and τι  are called joining threshold and 

leaving threshold, respectively. 

 

2.1.4 Weaknesses of the above approaches 

The approaches described above can distribute the workload to different servers, thus 

realizing load-sharing control. But they each have some weakness as described below. 

 

(a) Servers are picked up by the clients 

Despite the difficulty of broadcasting the new server list, and the poor scalability, this 

approach defines the “best” server by some threshold of the response time. Servers whose 

response time is below that threshold are all “best”. But this inevitably incurs the problem 

of performance oscillation. At one point in time, a server may be considered to be the best, 



 24

and all the clients will choose that server since it is believed to provide best service at that 

time. Soon after, it is very heavily loaded and excluded from the “best” choices. As the 

server switches back and forth between the “best” and “not best”, the workload of the 

server varies periodically between heavy and low. 

 

 

(b) Distribute the workload by the DNS 

The weakness of this algorithms is that the classification into the hot and normal domains 

is still too rough a measure, the actual requests/mapping of individuals under each domain 

can be very different. Also they use the utilization of the server as a measure of the 

threshold rather than the response time of the client’s perspective. The quality of service 

provided to the clients is surely not a very serious issue under consideration. And most 

importantly, the abrupt switch at the threshold to re-activate or deactivate a server will 

cause workload oscillations on the server side similar to the previous approach.  

 

(c) Using an anycast resolver to distribute the workload 

Complicated as it is, there are still some disadvantages in this approach. First of all, the 

server protocol must be modified to add the push function, this affects its scalability. 

Secondly, the server push mechanism only measures the server performance, and probing 

checks the performance of the network links as well. However, it is not clear how this 

information can be combined to make it useful. Finally, the equivalent server set is 

maintained by joining and leaving thresholds, which dumps out, and pulls in servers 

abruptly, therefore, the workload oscillation is unavoidable. Even though the authors 

claimed that by choosing larger thresholds τj and τι (make ⏐τj - τι⏐ larger), the oscillation 

could be minimized. But in our perspective, a larger threshold τj and τι means keeping 

larger number of servers in the ES set, which implies that we sometimes have to keep 

servers with less good service quality in the ES set and thus degrade the quality we 
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provide. This is actually an approach, which trades the stable performance at the server 

side with bad quality of service on the client side. This approach works well with low to 

moderate server loads, but uncontrolled oscillations are unavoidable when the load 

becomes high. 

 

To conclude, all the above approaches fail to take the stability of system performance 

under consideration. They all use the threshold to dump out the clients. Due to the abrupt 

nature of the threshold, the workload oscillation among the servers is very hard to avoid. 

The effect of this kind of on-off decision depending on a threshold can be so bad that in 

one time interval too many users may rush into the system and the response time soon 

becomes intolerable, and in the next interval not a single user can be admitted, resulting in 

very low server utilization. So in our project, we will focus on how to avoid the 

performance oscillations, yet without impairing the system scalability. In particular, we 

will use the brokerage architecture, which is introduced below as our basic system 

architecture; by improving its server selection algorithm, we can eliminate the oscillations, 

and provide satisfactory QoS to the clients. 

 

 

2.2 Brokerage architecture  

 

The brokerage architecture was first introduced in Mohamed-Vall M. Salem’s paper “A 

Scalable Load-Sharing Architecture for Distributed Applications” [4]. In this proposed 

architecture, a delegate server, so-called broker, is used to distribute the client requests 

among different servers in its server pool. By implementing some load-sharing algorithms 

that assign the servers to different clients depending on some rules, no server will be 

overwhelmed by too heavy load while others have few requests. Several server selection 

algorithms will be briefly discussed in section 2.2.2. In section 2.2.3, we introduce the 
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dynamic property that makes the brokerage architecture scale. 

 

 

2.2.1 Introduction to the brokerage architecture 

 

In this section, we make a brief introduction to the brokerage architecture, which is shown 

in the figure below [4]. 

 

In the following Figure 2, the broker is dedicated to assign the client the IP address of the 

server (from the server pool) that is granted to this client for the duration of a session. It 

has the responsibility to control the admission of the clients depending on some criteria 

that is implemented in the server selection algorithm. Since the response time is one of the 

major factors to customer satisfaction, we use it as a criteria for the admission decision. 

The main function of the broker is load balancing among the servers in its pool and 

monitoring the response time of these servers. The load balancing is well studied in 

Salem’s work [4], so in this project, we focus on the impact of performance monitoring, 

and in particular the impact of the observation time period. We notice that the broker 

considers the server pool as a single working unit, and within this unit all servers are 

equally treated in the case of homogeneous servers. In our simulation study, since the 

performance monitoring aspect and the observation time period are independent of the 

number of servers in the pool, we consider in the following, for simplicity, that the server 

pool contains a single server.  
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Figure 2. Basic architecture (from [4]) 

 

The brokerage architecture works as follows. After the client gets the IP address of the 

broker from the DNS server, he uses this IP address to ask the broker for the server’s 

address. The broker will either accept this user or turn his request down, depending on the 

current load of the web servers. If the admission is granted, the IP address of the server 

will be sent to the client. And then the client is allowed to send any number of HTTP 

requests to the assigned server. In Salem’s work [4], he uses the idea of quantum, which 

defines the time period this server assignment is valid. But later we realized that in the 

quantum-based approach, we dump out users already in the system when the load is high 

without letting them finish their session. Imagine how unreasonable it is to dump out a 

client who has already been browsing on this web site for half an hour, and is just waiting 

for the last web page to finish. So in this project, we try to improve our brokerage model 

by removing the quantum control and to reject only new users that are not yet in the 

system. Once admitted, clients will be allowed to stay until they finish. So in the following 

discussion, we do not use the quantum time, no user who is already in the system will be 

dumped out due to the long response time. Every user admitted will successfully finish all 
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his requests no matter how bad the current response time is.  

 

On the server side, every server keeps track of the average response time it is experiencing, 

and pushes this data periodically to the broker (in practice, these data can also be collected 

by the broker by probing the servers). These data help the broker to make server selection 

decision. The time period between the collections of these response time data is called 

inter-observation time. It has a pre-defined value, and indicates how closely the broker 

keeps watching the performance of the servers. The determination of the inter-observation 

time is up to the administrative management; it should be chosen properly. If it is too long, 

the admission control over the system will be too loose; and if it is too short, the workload 

of data collection can be too heavy for both broker and servers. An improper length of the 

inter-observation time and the on-off decision making server selection algorithm are two 

major factors that contribute to the instability of the system performance, as we will see 

later. In Section 6.3.2 we are trying to find out an appropriate inter-observation time by 

simulation experiment. 

 

2.2.2 Load sharing in the brokerage architecture 

 

The goal of load sharing control is to balance the workload of each server in the 

multi-server pool so that no server will be overloaded or under-utilized. In terms of load 

sharing control, the brokerage architecture performs exceptionally well. In Mohamed-Vall 

M. Salem’s work, the load sharing function of the broker has been very well studied. Two 

kinds of algorithms, namely static algorithms and dynamic algorithms (depending on 

whether the run-time performance measurements are used or not), are discussed and 

compared. We briefly list these algorithms and shortly describe their operations here. 

 

Static Algorithms (run-time performance measurements are not used in the server 
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selection decision) 

(A) Round Robin (RR) – Servers are selected in a cyclic order. 

 

(B) Weighted Round Robin (WRR) – Cyclic order is used, but the faster servers are more 

frequently selected than the slower ones. 

 

 

Dynamic Algorithms (run-time performance measurements are used in the server 

selection decision) 

(C) Least Active Session (LAS): The number of sessions assigned to each server can be 

estimated and recorded by the broker, and the server with least active sessions is selected.  

 

(D) Least Utilization (LU): The utilization of the server is recorded by each server and 

periodically transferred to the broker and the server with least utilization is selected. 

 

The experiment shows that RR is faster and easier to implement, but it only works well 

where all servers have the same capacity. WRR has the advantage of simplicity, and is 

very effective in balancing the load among the servers if the available capacities at various 

servers do not change very frequently. In cases where the available capacities at various 

servers change frequently, an adaptive mechanism like LAS or LU will be a good 

alternative. Better than RR and WRR algorithms, LAS and LU do not have to know the 

speed of each server, which can also change from time to time and might be very difficult 

to measure. What is more, these algorithms do not care how many servers there are in the 

domain; the scheduling is based on the current status of the server instead of the specific 

server configuration.  
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With these algorithms, the load-sharing problem among servers can be solved pretty well. 

Every server gets a compatible workload, and no one will be extremely heavily loaded. 

 

 

 

 

2.2.3 Dynamic properties of the brokerage architecture 

 

Compared with other methods of load balancing, the great strength of the brokerage 

system lies in its dynamic nature of configuration. We deem this an important asset that 

makes our system truly distinguishable and outwits the other approaches we discussed in 

Section 2.1. 

 

Concerning its dynamic properties, first of all, the configuration of the broker is very 

flexible; the broker can be co-located on the server side, and under the same management 

as the replicated servers. But this is not absolutely necessary, it could be placed anywhere 

on the global scale. Several different web sites can even share the same broker. Usually, 

we suggest that the web site that has very heavy workload manages the broker of his own, 

only those web sites with comparatively low workload justify the sharing of a broker. 

 

Secondly, the brokerage system could scale up to a system of replicated brokers when the 

web requests from the clients exceed the number where a single broker can no longer 

support them. This multi-broker architecture is also studied in Mohamed Salem’s work 

[21]. In the multi-broker system, besides the normal function of distributing requests 

under its own domain (a domain is usually geographically based in order to minimize the 

delay on the network), the brokers also need to communicate and cooperate with each 

other so as to balance the load globally. In the Figure 3, we show two independent clusters 
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of servers in the multiple broker architecture. 

 
Figure 3. Two brokers communicate to balance the load between two clusters [21] 

 

To allow the exchange of the load status between the brokers, they are managed in a group. 

A special protocol is needed for a broker to join or leave the group. A simple protocol is to 

broadcast a join/leave message when a broker joins/leaves the group, so that every 

member knows who is the newcomer/leaver. And every member in the group exchanges 

its status information periodically. Each of them will ask other broker for help when its 

load exceeds some predefined threshold. The broker that receives a request for help can 

either return the address of a server under its domain, or simply send back a rejection 

message. It is also possible that the broker forwards the request to other brokers, but in that 

case a more complicated protocol is needed to prevent endless loops.  

 

Depending on how the threshold is set, the server selection method can be classified as 

“static global least utilized algorithm” (using a predefined threshold) and “dynamic global 

least utilized algorithm” (using the overall average of the utilization of all the clusters as 

the threshold). Simulation experiments show that the multi-broker system significantly 

improves the load balance of all the clusters. And the dynamic algorithm has better 

performance than the static one. 
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The multi-broker architecture makes the system scale very well. A single broker can 

balance the load under its domain, and several brokers can cooperate and share the load 

among several domains. In this way, the geographic barrier to the resource allocation is 

broken and all the sites work as a whole. 

 
2.2.4 Something to be improved 

 

In the brokerage approach, the broker can guarantee the QoS provided to the client by 

putting an upper limit to the response time [1]. Whenever the current response time 

exceeds some pre-defined upper limit, no user can be admitted to the system. In this way, 

we can control the maximum response time the server will provide. And also if we set 

different upper limits to different user groups, we can provide a differentiated QoS to 

different classes of users. But there is still a weakness in this approach: because the server 

can only report its current response time to the broker periodically (say every minute), for 

each time interval the broker will either admit all the users (if the threshold is not reached) 

or reject all the requests (if the threshold is exceeded), thus introducing an oscillation of 

the number of users and response time in the system. We will discuss such oscillation in 

detail in Chapter 5.  

 

Despite of the disadvantage of the performance oscillation, the brokerage system is still 

very flexible, since it does not need support from the DNS. It is more like, yet simpler than, 

the anycasting approaches. But in the brokerage system, we only need one delegate server 

to act as a broker; there is no need of the anycast resolver and probing agent. And it is 

worth noticing that the brokerage architecture can be used not only on web servers, but 

also in any distributed application, any service provided on the web. So in our project, we 

decided to use the brokerage system as the basic architecture to inherit all these 
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advantages and improve its scheduling algorithm to avoid oscillations.  



 34

3. Simulation principles and tools 

 

In our project, the simulation is the basic tool we use to study the performance of the 

server selection algorithm. So we feel obliged to make some introduction to the basic 

simulation principles and simulation tools we used in the project in this chapter, which 

may help the readers to understand our work much better. 

 

3.1 Simulation principles 

The study of simulation is to build a (simulation) model, which is executed to imitate the 

operation of a real-world process or system over time in order to solve the real-world 

problems [7]. It has long been considered as an important methodology in the field of 

industrial, management, and research. 

 

Simulation helps us to solve the “what if” question in an efficient and economical manner, 

allowing us to speed up or slow down the process for a thorough checkup and diagnosis. It 

also makes it easy to make changes or corrections to explore all the different possibilities, 

which would be extremely expensive to realize in the real system. There are quite a few 

application areas of the simulation, including simulation of manufacturing and material 

handling systems, simulation of automobile industry and transportation systems, 

simulation of healthcare and service systems, and even the simulation in the military field. 

In all these fields, simulation is an indispensable tool to find all kinds of answers for the 

real world.  

 

Simulation generally consists of three phases, namely the design of a model, model 

execution, and the analysis of the data obtained from the execution. In the phase of model 

design, we have to define a concept model according to the knowledge of the real system. 
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Then we should consider the model execution where some mathematic languages are 

chosen to express the concept model. Also in this phase we should consider a proper 

simulation toolkits. There are many simulation toolkits, and we should decide the one 

most suitable for our purpose. After the model execution, some results may come up, and 

then we should start the final phase - the analysis. During the analysis phase, the data of 

simulation results are put together, maybe in some visualized way; and statistical analysis 

are made, which allows us to better understand the nature of the system and make further 

inferences. At this stage, the verification (process to make sure that the 

concept/mathematic model corresponds precisely to the real system) and validation (the 

process to check whether the output of our concept model is exactly what we have 

expected in the real system) can also be made. The results are taken as feedback to further 

improve or correct the concept model. In this chapter, we will introduce some basic 

notions of the simulation principles and the simulation tools we used in our brokerage 

service project. 

 

3.1.1 Modeling principles 

 

In the simulation world, one of the most important concepts is the modeling. A model is 

actually a representation of the real-world system. Designing a model is more like an art 

than a technology because there can be many ways we can abstract the conceptual model 

from a real system. There is simply no best model, therefore any model complex enough 

to represent all the details of the system that are necessary for the problem under 

investigation is a good model. Models showing too many details, or not including factors 

that will alter the simulation results are not good ones. 

 

Depending on the nature of the occurrence of the simulation event, the simulation models 

can be classified into three categories: namely discrete model, continuous model, and the 
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combined model [7]. A discrete model is a model with dependent variables that change 

only at distinct points in simulated time (so called event times). A continuous simulation 

model has dependent variables that change continuously over time (usually they can be 

represented by some forms of differential equations). A combined model simply consists 

of dependent variables that may change discretely or continuously. The discrete model is 

good at modeling the system where the state of the system changes at discrete point of 

time, like the problem of resource management, queuing, and any problems that can be 

modeled by a finite state automata (FSA). The continuous model is usually used in 

modeling the problems, having variables that can be defined by some mathematic equation 

and changes continuously over time, like physical experiment, laws of nature etc. 

 

According to the nature of the problem to be modeled, and from the real life experience, 

we can roughly conclude some of the most often used typical models as follows: 

conceptual models, discrete event models, functional models, constraint models, spatial 

models, and multimodels etc. [8] We introduce them briefly here: 

 

Conceptual models: models containing components that cannot be clearly identified in 

terms of system-theoretic categories such as states, events, and functions are called 

conceptual models. A conceptual model is very abstract and vague and considered to be a 

very high-level system model; it will normally progress to some more detailed 

system-theoretic models. 

 

Discrete event models: a declarative model contains two primary components: states and 

events. It is especially suitable for mimicking the behavior of the real system whose action 

is considered to be the transition from one state to another. 

 

Functional models: a functional model contains two primary components: functions and 
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variables. The function works on some input variables and produces some output, which 

may be used as an input for another function. It can be used in the situation where the 

problem can be defined as a series of functions, like the law of physics. 

 

Constraint models: a constraint model is similar to the functional model, but it focuses 

more on the balance and causality of the variables in the system. They are usually defined 

in terms of some equations and are very powerful to represent laws of nature. 

 

Spatial models: a spatial model deals with the decomposition of space, with clear 

boundaries, and is useful to fragment the whole system into small pieces, and model each 

of them in the divide-and-conquer way. 

 

Multimodels: multimodels are composed of several models listed above. Real-world 

systems are usually too complex to be portrayed as a single simple model. 

 

To design the simulation model, we start with analyzing the concept model of the real 

system, and break the whole system into a number of smaller abstract modules depending 

on its functionality. Finally, we choose a proper model to represent each of these modules. 

Since no rules can be followed to choose a model, sometimes we have to use some 

heuristic approaches to make decisions.  

 

 

3.1.2 Procedure of simulation 

 

Generally speaking, there are some commonly followed steps in the simulation study (as 

stated in [7]). The flow of these steps is shown in the following figures and the brief 

explanation of each step is listed as below.  
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Problem formulation: the very first step in the simulation study, which provides a precise 

statement of the real problem.  

 

Setting of objectives and overall project plan: the preparation of the proposal, which 

states the goal, schedule, cost etc. of the simulation work. 

 

Model conceptualization: defines an abstracts conceptual model and mathematical 

relationship of the components of the real system.  

 

Data collection: the real system data that is required by the simulation model is collected 

in this step. 

 

Model translation: to translate from the conceptual model to the operational model 

simulated on the computer. 

 

Verified?: to determine whether the operational model built in the previous step performs 

properly. 

 

Validated?: the comparison of the conceptual model and the real system is made to see if 

the conceptual model is the accurate representation of the real system. 

 

Experimental design: to design for each scenario the number of runs, the run length, the 

initial parameters of the run etc. 

 

Production runs and analysis: to estimate the performance of the scenarios 
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More runs?: analysis from the previous production runs, to see if more runs are needed. 

 

Documentation and reporting: adequate documentation and reporting is clearly 

necessary for the simulation model reuse, and modification. 

 

Implementation: the documentation produced in the previous step help people to make 

implementation decisions for the real system. 

 

These steps are usually followed in every simulation project. Sometimes some steps might 

not seem very necessary in a specific project, but following these procedures is definitely 

helpful and makes your simulation model less error prone, especially in a large project. 
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Figure 4. Procedure in simulation study (from [7]) 
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3.2 Simulation tools 

 

There are too many simulation tools available, we should choose the one that is most 

appropriate to serve our purpose. In our project, we used the CSIM18 simulation package 

to do the job because of its convenience to use (written in C++) and fast execution speed. 

Here we present some basic knowledge needed to understand this simulation tool. 

 

3.2.1 Introduction to CSIM18 

 

In our project, we used the simulation engine CSIM18 to do all the experimental tests. The 

CSIM18 simulation engine is developed by Mesquite Software, Inc. Austin, Texas. And it 

is a kind of general-purpose model-building simulation toolkit, which enables developers 

to build up process-oriented, discrete-event simulation models. The model can be any real 

life model from a simple queuing system to an atomic bombing experiment. All kinds of 

details like the interrelationships of components, scheduling rules and message exchanges 

can be represented in the model. After we create a computer simulation program, which 

accurately realizes the simulation system model, the CSIM18 engine can easily collect all 

the statistical data that is necessary for the analysis.  

 

The CSIM18 simulation engine is very compact and efficient, and can be embedded into 

any code written in C/C++, so the users do not have to learn a particular programming 

language for CSIM18. Like C++, the simulation engine itself is object oriented, thus it 

provides a convenient and easy-to-use interfaces. It provides a library of classes, methods, 

and functions, which enable us to implement general simulation models. By inheriting the 

base class of the simulation engine, the user can easily modify and extend the behavior of 

the basic models to simplify the realization of more complicated systems. 



 42

 

Furthermore, the CSIM18 simulation engine is a multi-platform library. According to what 

is claimed by Mesquite [6], this simulation package has versions that are compatible with 

operating systems such as Windows 3.1, Windows 95, Windows NT, OS/2 Warp and 

Linux. It also has versions on almost all UNIX workstations, including Sun SPARC 

(SunOS and Solaris), DEC Alpha (with OSF/1), HP PA (with HP/UX), IBM RS/6000 

(with AIX), SGI workstations and Power Mac (with the Metroworks C++ compiler). It is 

really convenient to transfer the simulation system from one platform to another. We do 

not have to do any change in the code, recompiling the original code is enough. 

 

3.2.2 Simulation components (classes) in CSIM18 

 

There are a number of simulation components (classes) provided by CSIM18. We now 

briefly introduce the most important ones: 

 

Processes: A CSIM process is an independent thread (lightweight process), which can 

mimic certain activities of an entity; several processes can appear to be executing 

simultaneously, although they are actually executing sequentially on the processor. Just 

like a real process, a CSIM process can be in the states of ready, active, holding (allowing 

simulation time to pass), and waiting (for some event to happen). Their transitions are 

controlled by certain methods provided by the process class. Process has a priority for 

execution; different processes may have different priorities. 

 

Facilities: A CSIM facility is a resource that is typically "used" by processes in the model; 

Usually a facility consists of a server and a queue used for the processes waiting to be 

served by the server. A multi-server facility has a single queue for several servers. During 

the time of heavy load, the processes are queued up for access to a server. Processes with 
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higher priorities are queued ahead of the process with lower priority. 

 

Storages: A storage is a resource that can be allocated to the processes. It consists of a 

counter (amount of storage) and a queue used for queuing the processes waiting for 

storages. Storages can be set to be synchronous, which means several of them can be 

allocated in the same clock cycle. When the storage unit is insufficient to allocate to any 

process, the process will simply wait in line until other processes release the storage unit 

that is previously allocated.  

 

Events: An event is used to synchronize the behavior of different processes, and it has two 

states: occurred or not occurred. A process can be suspended when waiting for a 

not-occurred event and it also can be resumed when that event occurs. The state of an 

event can be and usually is set by some other processes. 

 

Mailboxes: A mailbox is used to exchange information between processes. Any process 

can send a message to or receive a message from a mailbox. A mailbox maintains two 

FIFO queue, one for incoming messages, and the other for waiting processes. When a 

message arrives and there is no process waiting for it, the message will go to the message 

queue waiting to be picked up. On the other hand, if a process execute a receive action 

while there is no message in the message queue or the mailbox is empty, the process will 

wait until there is some message coming in. 

 

Tables: A table is an object that is used to collect individual data values and to report its 

statistical properties generated from that table. The properties of the report include mean, 

variance (and standard deviation), standard deviation, coefficient of variation, minimum, 

maximum, and the number of observations, etc. The report also support features like 

histogram, which reports the relative frequency of specified ranges of values, confidence 
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intervals with which we can estimate the accuracy of some values collected, and moving 

window (which determine the sample size) etc. 

 

Qtables: A Qtable is pretty much the same as a table described above, except that it is used 

solely to collect integer values (e.g. number of clients, queue lengths) and to report their 

statistical properties. 

 

Meters: A Meter is used to measure the flow rate of entities passing a certain point in the 

system module and to keep track of the times between successive passages. 

 

Boxes: A Box is used to collect data of time spent in a specified entity, and the number of 

processes inside the box.  

 

With these basic classes, the simulation modeling and the result data collection become an 

easy job. Users only need to focus their attention on the model itself rather than many 

tedious details. 

 

3.2.3 The accuracy of the simulation in CSIM18 

 

The CSIM18 simulation engine has the facilities to reach a pre-defined accuracy of some 

estimation. No one can run a simulation model for a indefinitely long period of time. 

Sometimes the expected accuracy of some value can never be reached. In other words, the 

“true value” of some estimation will never be known in a given period of time. That is why 

we need a way in our simulation engine to tell us whether a given accuracy of the 

simulation result can be achieved. If yes, how long will it take before such accuracy can be 

achieved? Fortunately, CSIM18 provides such techniques as confidence intervals and 

run-length control, which allow us to cope with these difficulties. 
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In short, a confidence interval is a range of values in which an estimated value is believed 

to fall with a high probability. That range is usually considered to be the “best guess” of 

true value. Here we show a typical report for confidence interval. 

 
      results of run length control using confidence intervals 
 
      cpu time limit     606.0          accuracy requested      5.000000 
      cpu time used     606.6          accuracy achieved       5.000000 
 
      95.0% confidence interval: 642.699255 +/- 4.404560 = [638.294695, 647.103815] 

 

The above report shows that we have 95% confidence that the collected data values fall 

into the range of [638.294695, 647.103815]. It is worthwhile to mention that the method 

of batch is used to compute confidence intervals. And by default, CSIM18 simulation 

engine provides us confidence levels of 90%, 95% or 98% respectively. 

 

Next, we need to determine how long our simulation model should run. CSIM18 provides 

run-length control, which can determine when the level of confidence has been reached. 

With run-length control, the simulation program will keep running until a specified 

accuracy is achieved, or until a predefined simulation time limit has elapsed. That is to say, 

in some circumstances, the execution can be ceased, but the confidence level is not yet 

achieved. The final report will show whether the termination of the execution is due to the 

simulation model being converged to some level of accuracy or simply the maximum CPU 

time is exceeded. This function enables us to execute our simulation program in an 

efficient way, and within a reasonable amount of time and computational cost. 

 

 

3.2.4 Random number generation 
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In any simulation program, random number generation is an important part. A random 

number generator should produce random number series (called stream in CSIM18) 

without any recognizable pattern. Unfortunately, there is no true random number generator 

up to now. Most generators today only provide pseudo-random number because they 

produce a series of random numbers in which the number values are calculated from the 

previous numbers. The very first random number depends on a so-called seed. Different 

seeds can produce different series of random numbers.  

 

In our simulation model, we use the random number generator to produces values such as 

inter-arrival time of customers, the number of files each customer hopes to download, the 

number of objects in each file, and the size of the object. They are all random numbers 

following some kinds of distributions. We will describe them shortly. These distributions 

describing the user behavior are carefully studied and explained by Paul Barford [5]. Here 

we simply use his research results to build up the model of our own. The CSIM18 

simulation library provides both continuous (real) and discrete (integer) random numbers 

series from up to 18 distributions, including uniform, beta, exponential, gamma, erlang, 

weibull, normal, cauchy, poisson, geometric, and binomial etc. These functions make the 

simulation tool really handy in designing random aspect of the simulation models. The 

change of seeds can be realized by the “reseed” function, which gives us a different series 

of random number still following the same distribution. Reseed enables us to find more 

stable and accurate result independent of any particular sequence of random numbers, 

which makes our simulation results more convincing. 

 

We show a piece of code of random number generation in the following. It generates two 

random numbers 10000 (NUM_SAMPLES) times; one follows an exponential 

distribution with the mean of 1.0 (MEAN), while the other follows a uniform distribution 
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within the range [0.1, 10000.0] ([UNIF_LOW, UNIF_HIGH]). It also records them in the 

tables exp_distribution and unif_distribution respectively. 

 

#define NUM_SAMPLES 10000 

#define MEAN 1.0 

#define UNIF_LOW 0.1 

#define UNIF_HIGH 10000.0 

… 

table *exp_distribution; 

table *unif_distribution; 

 i = 0; 

 while(++i < NUM_SAMPLES)  { 

  exp_distribution->record(exponential(MEAN)); 

  unif_distribution->record(uniform(UNIF_LOW, UNIF_HIGH)); 

 } 

 

3.2.5 A simple example of using the simulation engine CSIM18 

 

To see how this tool works, we show in the following an example of CSIM18 simulation 

engine used in a queuing system.  

 

This program simulates a queuing system with only one server (facility). There will be 

5000 customers coming in and waiting to be served. The inter-arrival time of the customer 

follows an exponential distribution with the mean of 2 (IAR_TM) seconds, and the length 

of service time also follows an exponential distribution with the mean of 1 (SRV_TM) 

second. The function customer() mimics the behavior of a customer, coming in, being 

served and leaving. At the same time, the variable tbl (of type table) records how long this 

customer stays in the system or the customer’s response time (the time from when he 

enters the system to when he leaves), the variable f (of type facility) records how much 

time it takes for the server to serve the customers, and qtbl (of type qhistogram, almost the 

same as a qtable) counts the number of the customers in the system. 
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// C++/CSIM Model of M/M/1 queue 

#include "cpp.h"   // class definitions 

 

#define NARS 5000 

#define IAR_TM 2.0 

#define SRV_TM 1.0 

 

event done("done");   // the event named done 

facility f("facility");   // the facility named f 

table tbl("response time");   // table of response time 

qhistogram qtbl("number in system", 10l); // qhistogram of number in system 

int cnt;    // count of remaining processes 

 

void customer(); 

 

extern "C" void sim(int, char **); 

 

void sim(int argc, char *argv[]) 

{ 

 set_model_name("M/M/1 Queue"); 

 create("sim"); 

 cnt = NARS; 

 for(int i = 1; i <= NARS; i++) { 

  hold(expntl(IAR_TM)); // interarrival interval 

  customer();  // generate next customer 

  } 

 done.wait();   // wait for last customer to depart 

 report();   // model report 

 mdlstat();   // model statistics 

} 

 

void customer()    // arriving customer 

{ 

 double t1; 

 

 create("cust"); 

 t1 = clock;   // record start time 

 qtbl.note_entry();  // note arrival 
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 f.reserve();   // reserve facility 

  hold(expntl(SRV_TM)); // service interval 

 f.release();   // release facility 

 tbl.record(clock - t1);  // record response time 

 qtbl.note_exit();  // note departure 

 if(--cnt == 0) 

  done.set();  // if last customer, set done 

} 

 

After we run the simulation program, we can get the following output. It shows statistics 

of the facility summary of the server (like utilizations, response time etc), a table of 

response time, and a table of the customer number in the system (or the queue length 

because the customers are served in the FCFS order) in the form of a histogram. 

 
FACILITY SUMMARY  

 

facility     service    service          through-    queue     response    compl 

name       disc      time    util.     put       length      time       count 

-------------------------------------------------------------------------------- 

facility     fcfs       0.99206  0.494    0.49793    0.99059    1.98943     5000 

 

TABLE 1:  response time 

 

      minimum         0.000145          mean                1.989433 

      maximum        14.273079          variance             3.813342 

      range            14.272934         standard deviation      1.952778 

      observations        5000            coefficient of var       0.981575 

 

QTABLE 1:  number in system 

 

      initial        0      minimum       0      mean                    0.990590 

      final         0      maximum      13      variance                1.937727 

      entries    5000      range          13      standard deviation      1.392022 

      exits      5000                            coeff of variation      1.405246 

 

                                             cumulative 

        number    total time    proportion       proportion 
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             0    5081.38161     0.506030     0.506030   ******************** 

             1    2426.95194     0.241688     0.747718   **********           

             2    1238.22169     0.123308     0.871027   *****                

             3     667.95025     0.066518     0.937545   ***                  

             4     350.00001     0.034855     0.972399   *                    

             5     152.62571     0.015199     0.987599   *                    

             6      69.33696     0.006905     0.994504   . 

             7      25.09331     0.002499     0.997003   . 

             8       9.84005     0.000980     0.997982   . 

             9      10.69388     0.001065     0.999047   . 

 >=         10       9.56521     0.000953     1.000000   .       

 

 

3.3 Simulation model for the brokerage architecture 

 

As part of our simulation model, a realistic web workload needs to be created ( for 

example, a stream of HTTP requests that the real web server users generate), and it is used 

to evaluate the performance of our brokerage system. Web workload simulation became a 

topic under research years ago. Basically, there are two ways of generating a typical web 

workload, namely the trace-based approach and the analytic approach [5]. The trace-based 

approach takes the workload as a black box. It simply mimics the workload by replaying 

the recorded past workload. Although it is very easy to be realized by simulation tools, it 

hardly reveals any insight into the system behavior. The analytic approach uses the 

mathematical models to simulate different characteristics of the workload. But the 

challenge of this approach lies in the difficulty of combining a large number of 

mathematical characteristics into a single stream of HTTP request. Paul Barford and Mark 

Crovella from Boston University have done a lot of work in this field, and they even built 

up a simulation tool SURGE (Scalable URL Reference Generator) for workload 

generation [5], which has both of the following two major characteristics, user equivalents 

and certain model distribution, as explained in the following. 
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User Equivalents: The workload generated by the generator should roughly correspond to 

the workload of some known number of users. SURGE realizes this by creating a set of 

processes; each mimics one user by endlessly alternating between web page requests and 

user think time. Each web page request consists of the transmission of multiple file 

requests (web objects), as shown in the following chart. OFF stands for the idle time when 

there is no message transmitted on line. Active OFF is the time between the transmissions 

of two objects, while the inactive OFF is the duration between two web page requests 

(called “think time” in our model). The web page requests, the length of idle time and 

object size must follow certain distributions and exhibit properties of the real web users. 

[5] 

 

 

Figure 5. ON/OFF model used in SURGE (from [5]) 

 

Distribution Models: In the study of the workload distribution model, they mainly 

focused on the discussion of the distribution of several major workload characteristics: file 

sizes, request sizes, popularity, embedded references, temporal locality, and OFF times. 

These properties have been proved to be ubiquitous and comply with empirical 

measurements. More and more researches on network traffic nowadays are based on these 

models, and they are surely becoming more and more popular. The mathematical rationale 

behind these distributions is discussed in several papers [15-20], and is beyond the scope 

of this thesis, but we do use these results to build our simulation models.  
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As explained before, to make the matter simpler, our simulation is done on just one server, 

and one broker, which controls the admission of new users. We keep generating new 

clients with certain time interval (called inter-arrival time). To be more precise, the 

inter-arrival time follows an exponential distribution with a certain mean. So the arrival of 

the incoming user is a Poisson process. Each client will launch on average a certain 

number web page requests. However, before they start the first web page request, they ask 

the broker for admission permission, and the server id. After it is accepted, the client goes 

fetching the web pages he wants just as required by HTTP 1.0 (the result can be easily 

extended to pipelining model of HTTP 1.1 according to [5]). Within each web page, there 

are a certain number of embedded objects (such as images, wave files, text file etc), which 

also follows some distribution as illustrated in the following table. After the client gets the 

web page and processes them, he starts the think time before he fetches the next one. The 

response time is calculated based on each fetched object, and the mean of the response 

time during the whole inter-observation time is sent periodically to the broker for the 

purpose of admission control.  

 

Notice that the way we build our model and the parameters we use are largely based on 

Paul Barford’s work [5]. Here we list some of the important parameters in the following 

table: 

 
Parameter        Description 
Server speed        10-6 second/byte 
Inter-arrival time of the client    exponential distribution with a certain mean 
Total number of pages each client requests  exponential distribution (mean = 36) 
Number of embedded objects per page  Pareto distribution (α = 2.43, k=2.3) 
Object size (in octets)  Bounded Pareto distribution (α = 1.25, k = 1800,  

p =108) 
Object processing time (in seconds)    Weibull distribution (α = 0.146, β=0.382) 
User think time (in seconds)     Pareto distribution (α = 1.5, k=3) 
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Table 1. The distribution model used in project  
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4. The relationship between the response time and the number of users 

in the system 

 

As obvious as it is, the response time of the system should be related to the number of the 

users in the system. The more users there are, the longer the response time will be. The 

relationship between the response time and the number of users in the system is a very 

basic fact that we want to reveal, and use in our later chapters. So we discuss this before 

we start the study of the oscillation.  

 

To fully study this relationship, we made a little modification in our simulation model, 

which keeps the number of users in the system at a constant value, and measures the mean 

response time of the server. We use one process to watch the number of users. It creates a 

new customer whenever the current number of users is smaller than a predefined value. 

And we measure the mean response time when the system becomes stable. Notice that we 

do not reject any of the customers and there is no constant customer-incoming rate either; 

we add one user whenever one user leaves the server. By doing this, we only want to 

reveal the relationship between the number of users and the mean response time on the one 

hand, and the server utilization on the other hand. Our measurements are plotted in Figure 

6 and figure 7: 
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Figure 6.  The response time as a function of the number of users in the system 
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Figure 7. The server utilization as a function of the number of users admitted  

 

From the above figure, we see that in the range between 500 and 1000 users, the response 

time is a linear function of the number of users in the system. And the slope of the 

response time in the Figure 6 indicates the ratio between the response time and the number 

of users in the system (response time / number of users), which corresponds to the average 

time the server spends on every user, or average service time. In the above figure, it is 
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around (3.7-0.5)/(1000-500) = 0.006 second/user.  

 

We can also combine the above two measurements to get the relationship between the 

response time and the server utilization. It is shown in the following figure. 
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Figure 8.  The utilization as a function of response time 

 

The above discussion shows that as the number of users increases in the system, the 

response time will grow forever without any upper limit, while the server utilization would 

be 1. If the number of users could grow without any admission control, there is no way we 

can provide a guaranteed response time to the client. So at some point we have to choose 

the so-called cut-off point; below that point the server can accept more users while above 

that, no one would be admitted.  

 

Now comes the question: to provide the satisfactory QoS, where should we choose the 

cut-off point? We can make our decision from the given knowledge of the response time 

and server utilizations. It is really very hard to decide solely on the response time; different 

customers may have different sense of what is a tolerable response time, different kinds of 

web services have different requirements for a reasonable response time (IP phone and 
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video-on-demand definitely need fast response time, while web banking service maybe 

can tolerate slower response time etc). From some literature and surveys, we find that 1.5 

seconds response time seems to be a reasonable upper bound most people agree on for 

recent web services.  

 

Taking the server utilization into consideration, it is not difficult to see that if the 

utilization approaches 100%, there is not much improvement the server can make anymore. 

So in our project, we decide to choose the cut-off point before the server utilization 

becomes saturated. To be more specific, in the above simulation setting, we choose the 

cut-off point to be 620 users, which corresponding to the response time of 1.3 seconds and 

the utilization of 95%. In our probabilistic approach of admission control, we also take this 

cut-off point into consideration when we choose a probability function. In practical 

applications, people can choose their own cut-off point depending on the server speed, 

type of service etc. 
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5. The problem of performance oscillations 

 

5.1 Introduction to the oscillation problem 

 

As we have mentioned in the previous chapter, the abrupt user rejection at the upper 

threshold, and the manner of periodical data collection by the broker contribute to the 

oscillation of the server performance.  

 

At one point of time, there are very few users in the system, and the average response time 

of the server is low (below the threshold), so the server accept all the new users; in the next 

inter-observation time period, many users will enter the system; if the user incoming rate 

is high enough, soon the server will be overloaded in the next inter-observation time 

interval, making the average response time exceed the threshold, and the system stop 

accepting new users; the number of users in the system keeps dropping; sooner or later, the 

average response time will drop below the threshold again and a new round of oscillation 

starts again. Accompanied with the oscillation of the number of users and the response 

time is the oscillation of server utilization. As we will see in the next section, the 

utilization of the server oscillates as time goes by. 

 

On the server side, the broker can observe and control the response time, the number of 

users, and the utilization, etc. To the broker, the fluctuation of these performance data is 

surely an undesirable situation. Fluctuation of the utilization signals a waste of CPU time 

(especially for the one with longer inter-observation time), while fluctuation of response 

time implies the suffering of end users. In one way or the other, the broker has to rule out 

such oscillations so as to provide a stable quality of service. 
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In the next two sections, we will present the simulation result of the oscillations. And then, 

the theoretical model of the oscillation is studied. With this theoretical model, people can 

better understand this oscillation problem, thus can avoid it. 

 

5.2 Simulation result of the oscillation 

 

Here we show two groups of results from our simulation experiment to illustrate the 

problem of oscillation. They present not only the oscillation of the number of users in the 

system but also the response time and utilization of the server as a function of time. In this 

experiment, our simulation model keeps the average customer inter-arrival time at 0.1 

second (actually it follows an exponential distribution with the mean of 0.1 second). We 

use only one server with the speed 10-6 Bytes/second, and with other settings being the 

same as shown in the Chapter 3.3. Here we chose threshold to be 1.3s, which means when 

the server response time is below 1.3 second, we accept all user requests; otherwise we 

reject all of them. The Figure 9 shows the oscillation when the inter-observation time 

equals 100 seconds, while the Figure 10 shows the similar results for the case that the 

inter-observation time equals 40 seconds 

 

 
(a) 
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(b) 

Figure 9. The oscillation of the number of users and response time when inter-observation time equals 

100 seconds 

 
(a) 
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(b) 

Figure 10. The oscillation of the number of users and response time when inter-observation time 

equals 40 seconds 

From the results of these figures, we can clearly observe the oscillation of the number of 

users, the response time, and the server utilization of both cases. Notice the difference in 

the amplitude of the oscillation: for 100s inter-observation time, the oscillation is 

exacerbated (with large amplitude and long period). We will discuss the effect of the 

inter-observation time on the oscillation in the following section.  

 

What worth noticing is that, for the clients, the only quality of service of the website they 

are aware of is the response time. But in our later chapters, we will focus mainly on the 

study of the oscillation of the number of users in the system. There are several reasons that 

we use the number of users rather than the response time to study the oscillation of the 

system performance. First of all, the number of users in the system has a strong indication 

to the response time the system is experiencing as illustrated in the previous Chapter 4. 

Secondly, when the value of the response time is varying between 0.1s and 3s, the value of 

the number of users is changing between 100 and 800. Any variation in the response time 

looks just like the statistical noise due to their small value, but the oscillation of the 

number of users is very clear and easy to identify. What is more, it is more convenient to 
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model the number of user in the system rather than model the response time. So in the later 

chapters, we will study mainly the nature of the oscillation of the number of users and the 

ways to avoid it. The oscillation of response time and utilization are very similar. 

 

 

 

5.3 System control  

 

In this section, we will give a brief introduction to system control (see for instance [22]), 

because admission control is, in general, a system control. In fact, the probabilistic control 

proposed in this thesis is very similar to ideas that have been used for system control in 

other fields of applications. But so far as we know, this is the first time for it to be used on 

web service admission control. 

 

System control is not something new; it is an extremely important and integral part of 

modern manufacturing and industrial processes. It is widely used for various automatic 

controllers. For example, system control is essential in the operations of controlling 

pressure, temperature, humidity, viscosity, and flow of process industries, and it also plays 

a vital role in missile-guidance systems, space-vehicle systems etc. Nowadays, the theory 

of system control is well understood by many engineers and scientists. In practice they use 

it to attain optimal performance of dynamic systems and improve productivity.  

 

In Figure 11, we show a block diagram of a standard industrial control system. The part in 

the dashed-line box is the automatic controller. It detects the actuating error signal e at 

very low power level and amplifies it using amplifier. The amplified signal u is fed to the 

actuator (could be a valve or electric motor etc.), which produces the input to the plant. 

The output of the plant is measured by the sensor, which changes the output into a suitable 
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variable comparable to the reference input signal. These components form a closed-loop 

system that is widely used in industry. 

 

 
Figure 11. Industrial control system (inspired by [22]) 

 

As an example, we consider a liquid level control system, as shown in the Figure 12. In 

this system, the flow of liquid is controlled by a valve. The input signal to the valve is an 

electronic current u(t) (determined by the controller), which is converted into a pressure 

applied on the valve and changes its stem position. The stem position of the valve controls 

the amount of flow qi(t) that goes into the tank. The height of the liquid in the tank h(t) is 

measured in some way (we could use pressure of the liquid instead of measuring the 

height directly, because height = pressure / liquid density / g ) and is fed back to the 

controller. The outflow of the tank is qo(t). qo(t) is a function that depends on the liquid 

height. To be more exact qo(t) = h(t)/R, where R represents the pipe restrictance. The goal 

of this control system is to maintain the height/level of the liquid at a constant value. The 

actuating error e(t) is the difference between the actually liquid level and this expected 

level. 
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Figure 12. Liquid level control system (inspired by [22] and [23]) 

Roughly speaking, we can classify the industrial controllers into six categories according 

to their control actions, namely three basic types of controllers: two-position (or on-off) 

controllers, proportional controllers, integral controllers; and three controllers with 

combined actions: proportional-plus-integral controllers, proportional-plus-derivative 

controllers and proportional-plus-integral-plus-derivative controllers ([22]). Here we will 

make a brief introduction to the basic controllers. 

 

Two-position or on-off controllers 

In this type of controller system, the actuator has only two fixed positions. The output of 

the controller u(t) is either a maximum or a minimum value, depending on the reference 

input e(t). Such a controller is simple and inexpensive. Take the liquid level control system 

as an example: since the output of the controller u(t) is either a maximum or a minimum 

value, the qi(t) will also switch between its maximum or a minimum value, depending on 

whether e(t) is positive (meaning the level is below the threshold), or negative (meaning 

the level is above the threshold). 

 

Proportional controllers 

For a controller with proportional control action, the output of the controller u(t) is 

proportional to the actuating error e(t). That is u(t) = Kp * e(t), while Kp is termed the 

proportional gain. In this case, the difference of the actual liquid level and the expected 
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level is amplified and directly fed to the valve. 

 

Integral controllers 

In this controller system, the output of the controller u(t) is changed at a rate proportional 

to the actuating error e(t). That is du(t)/dt = Ki * e(t), where Ki is an adjustable constant. In 

this case, when the value of e(t) is double, the value of u(t) will change twice as fast. 

 

To study control systems we must model the dynamic system and analyze its dynamic 

characteristics. Generally speaking, a mathematical model of a dynamic system is defined 

as a set of differential equations that represents the dynamics of the system. Those 

equations can be obtained by using physical laws governing the system, like Newton’s law 

for mechanical system or Kirchhoff’s law for electrical systems. Because, people may 

have different perspective on the system, the mathematical model they use may not be 

unique. Sometimes we may not find the absolutely correct mathematical model, but we 

want it to be as accurate as possible. After analyzing these equations, we can get a better 

understanding of the system behavior and thus optimize the control.  

 

Take the liquid level control system as an example again. The interesting question is how 

we can keep the liquid height at some constant level hm. The simple on-off approach is to 

set up two thresholds hl and hh (hm = hl + ε = hh - ε for some small value ε) and check the 

height regularly according to some inter-observation period. If the height is below the 

level hl, then the controller changes qi(t) to its maximum possible value and fill the tank to 

the level hh and then stops the inflow (qi(t) = 0). In that case, with the control signal 

oscillating between on and off, qi(t) is forever oscillating between its maximum value and 

0. Therefore the liquid height in the tank is also oscillating in a differential gap between hl 

and hh. Actually the curve of the height follows one of two exponential curves, one 

corresponding to the filling curve and the other to the emptying curve as show in the 
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Figure 13. This approach is referred as two-position or on-off control mentioned above. 

And it is the exact correspondence to the on-off approach used for admission control of the 

web servers.  

 
Figure 13. Liquid level oscillating with on-off control (inspired by [22] and [23]) 

 

Is there any way we could stop this oscillation? Let us model the system using physical 

principles. The equation governing the change in the liquid volume is  

rate of change of volume of liquid = inflow -outflow  

That is  

d(h(t)*A)/dt = qi(t) - qo(t)  ⇒  A * dh(t)/dt  = qi(t) - h(t)/R 

A is a constant cross-sectional area of the tank. The above equation has one first-order 

derivative, dh/dt; so this system is modeled by a first-order differential equation.  

Solving this equation, with the initial condition that if t = 0, h(t) = hm, and taking qi(t) as 

some constant value, we can get h(t) as a function of t and qi(t).  

h(t) = qi(t)*R + (hm - qi(t)*R ) * e-t/RA 

If we want to keep the liquid height at constant value hm, when the whole system is in a 

stable state, which implies t→∞, we need to balance the following contrain. 

hm = qi(t)*R + (hm - qi(t)*R ) * 0          (t→∞, e-t/RA→0) 

That leads to qi(t) = hm/R. So with the initial state that the liquid level is at hm, if we keep 

the inflow at hm/R, the liquid level will remain constant. This is a so-called stable state that 

optimizes the system control, and avoids the oscillation of the liquid level between hl and 
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hh which occurs when we use the threshold approach. This approach is referred to as 

proportional control action ([22]), because the controlled inflow is proportional to the 

height hm of the liquid in the tank. It also corresponds to the probabilistic approach that 

can be used in our server admission control algorithm, as we will see later. 

 

The example given above is a way of analysis used extensively in many fields of industrial 

control. Relating the theory of system control with our project, we want to know whether 

it is possible that we could control the admission of the users visiting the web server in 

such a way that on one hand, there is no oscillation in the performance, and on the other, 

the server is still providing a satisfactory response time to the users that are admitted. To 

realize this, it is not appropriate to accept all users or reject all users suddenly, but we 

should be able to accept some percentage of users, so that the number of users accepted 

would always be exactly what the system can handle. This is exactly the idea of the 

proportional liquid level control.  

 

We would like to note that we came up with the probabilistic approach used for web server 

admission control before reviewing the theory of system control, such as described in [22]. 

Only later, did we realize that similar ideas have been around in system control. And it is 

true (as far as we know) that this is the first time that such ideas have been used for web 

server admission control. In that sense, our work is still independent and original.  

 

In the next chapter, we will introduce the probabilistic admission control approach used 

for the web servers. 
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5.4 The theoretical model of the oscillation of the number of users in the system 

 

To better understand the situation of the oscillation in the system, let us consider an ideal 

theoretical model of the number of users in the system. Since the arrivals of the new users 

are considered to be independent, so they are the Poisson process. It is well know that, for 

Poisson process arrival events, the inter-arrival time should follow an exponential 

distribution. After being accepted, the users will stay in the system and is served for some 

period of time (the session time also follows an exponential distribution), and then leave 

the system. For simplification, we can consider that, in every time instant there is a certain 

percentage of users leaving the system. The more the users are in the system, the more the 

users are about to leave. This is quite intuitive, and complied with the simulation outcome. 

 

To start studying the model, we will use the following notations for convenience: 

 

y: the number of users in the system  

ra: the arrival rate of the incoming users 

pl: the rate of users that will leave the system 

t: the time 

 

Since the change of number of users dy in some small time interval dt equals the number 

of incoming users minus the number of leaving users, we can easily come up with the 

following differential equation:   

dy = ra * dt – y *pl dt    or    dy / dt = – y *pl + ra    

 

By solving the above differential equation, we get 

 

Here c is some constant value, which can be computed from the initial conditions. In the 
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initial state, for t = 0, if there are y0 users in the system, that is y = y0, we get c = y0 -ra/pl. 

Replacing c by y0 -ra/pl in the above equation, we get the following: 

 

 

 

In the case that ra = 10 users/second, and pl = 0.01, and y0 = 0, y = 1000*(1 – e-0.01t). This 

curve is shown in Figure 14: 

 
Figure 14. Theoretical model of the number of users when it increases, fup(t) 

 

As we can see from the above figure, when the system gets stable, or as t→∞, y reaches 

the value of 1000.  

 

To compute the number of users leaving the system during the time interval of dt when 

there are no users coming into the system, we can set ra = 0 in the above differential 

equation and get 

dy = – y *pl dt 

 

By solving the above equation, we get 
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y = fdown(t) =  y0*e-Pl t   (with some initial value y0 for the number of users) 

 

Taking y0 = 1000, and pl = 0.01 (the same value as above), the number of users in the 

system is given by 1000*e-0.01t, as shown in Figure 15. 

 
Figure 15. Theoretical model of the number of users when it decreases, fdown(t) 

 

Equipped with the above theoretical model, we now address the problem of the oscillation 

of the number of users in the system using the abrupt cut-off algorithms. Suppose the 

cut-off point is 450 in the number of users in the system, which means we reject all new 

users when the number of users in the system exceeds 450; and we further assume that the 

inter-observation period T is very long, like 100 second; the other parameters are kept the 

same as above, ra = 10, pl = 0.01 etc. We start the admission control somewhere after the 

system is getting stable (the number of users is approaching 1000). See the example in 

Figure 16. 

 

After the broker sees 1000 users in the system, it immediately cuts off all the incoming 

new users. So in the next inter-observation period T, no user will come in and the system 

follows the function fdown(t) (the solid line in the following figure). From the figure of the 
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of function fdown(t), we can see within 100 second the number of users in the system can 

drop from 1000 to around 360. That is 640 users will leave the system in 100 second. But 

360 is below the cut-off point of 450, which again turns on the admission of new users 

during the next inter-observation period, and the system follows the function of fup(t) (the 

dashed line in the following figure)… This kind of oscillation will go on forever with 

these two functions switching back and forth. 

 

 
Figure 16. Theoretical model of oscillation 

 

To compute the amplitude of the oscillation, we need to know the change of the number of 

users in every inter-observation period. In our ideal theoretical model, when the oscillation 

is getting stable, the upper bound and the lower bound of the oscillation are expected to 

reach their asymptotic limit. To get the value of the amplitude at this asymptotic limit, we 

denote the amplitude of the oscillation as A, and suppose that the oscillation is varying 

from L to A+L, where L is considered to be the lowest bound of the oscillation below the 

given threshold. 

 

In one time interval of T, the number of users will increase by the amplitude of A; that is 
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fup(T) – fup(0) = A for y0 = L ; that is 

 

 

And then the number of users will decrease from L+A to L in the next time interval T.  

fdown(T) = L, so  ( here y0 in function fdown(t) equals to the upper bound 

L+A) 

 

 

By solving the above two equations fup(T) – fup(0) = A and fdown (T) = L, we can compute 

A; it is given in the following expression. 

  
and  

 

Taking the previous values for pl (0.01), ra (10), and T (100), we can compute A as 464, 

which coincides with what is shown in the above figure! But this formula depends on one 

assumption, that is, the decreasing and increasing of number of users should alternate 

between adjacent observation intervals. However, this depends on the threshold chosen 

and is not true for very high and low thresholds, as discussed below. 

 

Notice that when T→∞ ,   → 1, so A → ra/pl  and  L = 0; on the 

other hand, when T→0+,  → 0, so A → 0 and L = 0.5*ra/pl. Notice 

A only depends on T, ra, pl and does not depend on the starting point of the observation. In 

the following, we show an example of starting observation at the time point of 50s. As we 

can see, the amplitude does not change too much. 
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Figure 17. Theoretical model of oscillation (start at 50s) 

 

Now we start to check how the choice of threshold may effect the oscillations. In the 

following figures, we show the oscillations when the threshold is 200 and 800, 

respectively.  

 
Figure 18.  The effect of the threshold to the oscillation (low threshold) 
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Figure 19.  The effect of the threshold to the oscillation (high threshold) 

 

The above figures show that when the threshold is chosen to be quite low, like 200, the 

system needs more time (twice as long as the inter-observation time) to serve users before 

the number of users drops below the threshold. On the opposite, when it is chosen to be 

quite high, like 800, then the system needs more time to let new users coming into the 

system before the threshold is exceeded. In both case, the period of the oscillation 

becomes 3T. Notice that the period of the oscillation can be even longer (4T, 5T…) if we 

choose even higher/lower thresholds. The amplitude also becomes larger as the period 

increases.  
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6. Probabilistic approach of admission control 

 

In this chapter, we introduce a probabilistic admission control for the web servers. We start 

with the study of the theoretical model of the probabilistic admission control and prove 

that it has the advantage over the on-off approach used before. And then the simulation 

results are presented and discussed. 

 

6.1 Probabilistic admission control 

 

Before we introduce the probabilistic approach, we would like to clarify one thing. That is 

when to use the number of users and when to use the response time as a criterion for 

admission. From the previous chapter, we know that there is a relationship between the 

number of users and the response time. This relationship also depends on the speed of the 

server. The faster the server is, the less time is needed to serve each user and vice versa. So 

there is no point of using the number of users in the system to control the admission in 

reality. The number of users suitable for a faster server would be far too much for a slower 

one. Using the number of users in the system for the admission control will apparently 

impair the scalability and undermine all the effect we made. But on the other hand, due to 

the convenience of making a theoretical model of system oscillations using the number of 

users, we sometimes have to use it in order to get a good understanding of the subject 

under investigation. So in this thesis, although we use the number of users in our 

theoretical model to determine whether or not to accept a new user, in reality, we use the 

average response time as an important index to control the admission. In this way, the 

algorithm does not have to care about the speed of the server, thus it can be implemented 

in a general environment without the knowledge of the capacity of each specific server.  
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In our probabilistic approach, to avoid system oscillation, each user no longer gets a 

yes/no answer; instead they are admitted by some probability. And this probability P is a 

function of the current response time r of the server. In this thesis, we assume that the 

function P is a piecewise linear one, like:  

 
where a and b are two constants which indicate at which response time to start partial 

rejection and at which response time all users will be rejected, respectively. 

 

The following figure shows this function, for a = 1.2s and b = 3.6s. 

 

 
Figure 20. Probability function 

 

With this function, we start to reject user requests when the response time exceeds 1.2 

seconds. The longer the response time is, the less likely the user requests will be accepted. 

When it exceeds 3.6 seconds no requests can be admitted anymore. Notice that the 

probability function is not limited to a linear function, it could also be exponential or of 

any other forms. The administrator could adjust it depending on the special needs. 

 

The broker checks the current average response time of the servers in its domain. When a 

client request comes, the broker picks up one server according to some criterion (like LAS, 
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LU in [4]), and then it calculates an acceptance probability from the current response time. 

Using this probability, the broker randomly grants or rejects the request.  

   

The advantage of this approach over the previous on-off decision approach is that we can 

reject or accept user gradually rather than abruptly. By using this probabilistic admission 

control algorithm and choosing proper inter-observation time, we hope to avoid the 

oscillation in the system, as we will discuss later. 

 

 

 

6.2 The study of the theoretical model of the probabilistic approach 

 

Now we further on discuss the theoretical model of Section 5.4 where we now use the 

probabilistic approach to determine whether to accept users or not. Here, we again use the 

number of users (rather than the response time) to make admission decisions, since by 

using the number of users we can easily derive the mathematic formula of the workload. 

Besides, we already know the relationship between the response time and the number of 

users; it is not very difficult to translate the number of users into the response time of the 

system.  

 

We use the same notations in Chapter 5. The only difference is that here we use a linear 

probability function P = (b-y)/(b-a) to control the admission. Here y is the number of users 

in the system, a and b are the integers indicating when to start rejection and when P is 0, 

respectively; also notice that when y > b, P = 0, and when y < a, P = 1. To make sense, a 

and b should be smaller than the number of users the system can reach without admission 

control, namely ra/pl , so we have 0 < a < b < ra/pl . 
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Again we start with the following differential equation:   

dy = ra * P*dt – y *pl dt  for  y ∈ [a, b]   

dy = – y *pl dt    for  y > b    

dy = ra *dt – y *pl dt   for  a > y     

 

It is clear that the solutions for  and  are fdown(t) and fup(t) respectively, as mentioned in 

the Chapter 5. By solving the differential equations , we get 

 

 

Here c is some constant value, which can be determined from the initial value of the 

equation. The initial state is at the time point where y = a; because y ∈ [a, b] in . From 

this initial state, we can get .  

 

Since P ≤ 1 when y is in the range [a, b], we conclude that with the number of users within 

the range [a, b], the speed of the increase of the number of user with the probabilistic 

approach is slower than with the on-off approach. 

 

From the solution of the differential equation , when t → ∞ , the second term in y will 

vanish, thus ystable = b*ra/(ra + pl * (b-a)). We call this a stable point, it can also be 

computed based on the fact that when a stable situation is reached, the number of 

incoming users equals the number of users leaving (ra* P = y*pl, where P = (b-y)/(b-a)). In 

the ideal model, the oscillation of the number of users will not go on forever, it will finally 

become stable at this point. It is not difficult to proof that if pl < ra, then a < ystable <b. That 

is the stable point is somewhere between a and b, not necessary in the middle, (a+b)/2. The 

stable point is drifting between a and b depending on the workload. If the workload is 

really high, or ra/pl → ∞ , then ystable = b; the stable point will be at point b. 
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The above equation is based on the very ideal condition, where we assume that we can 

check the system performance at any point in time. But in the real system, it is not possible 

to do so; the broker checks performance data only periodically. If at a given point, the 

broker computes the probability as P, then in the next time interval, P has to be used 

without change. Here, we take P as a variable dependent on the number of users y at the 

last observation time point. 

 

Again by solving the differential equation:   

dy = ra * P*dt – y *pl dt   

we get the number of users 

 

Although observations are made only at the observation time points, the probabilistic 

approach will be able to suppress the oscillation, and stabilize it at the stable point. In the 

following figure, we show an example generated with Matlab, which shows that the 

oscillation is dampening out within several inter-observation time periods, and finally 

stays at the stable point ystable. 

 

In this example, we choose the same setting as in Section 5.4 (ra = 10, pl = 0.01), a = 200, b 

= 800. We apply the probabilistic admission control after 200 seconds. As it is show in the 

figure, within 10 inter-observation time periods, the oscillation is totally wiped out and the 

system reaches the stable point ystable = b*ra/(ra + pl * (b-a)) = 500. 
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Figure 21.  The oscillation gets stable at the stable point 

 

We note that the length of the inter-observation time has to be chosen short enough such 

that the oscillation of the number of users will not go beyond the limits a and b. With a 

long inter-observation time period, the oscillation may go beyond the range of a and b, and 

the oscillation is unavoidable in this case. This happens if the observed number of users 

alternates between a value above b and a value below a, thus leading to alternate 

probabilities equal to 0 and 1. 

 

Let us study the effect of oscillation on the following figure. This is a figure showing the 

relationship between the response time and the number of users in the system, which has 

been discussed in Chapter 4. 
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Figure 22.  The stable point on the response time curve 

 

If we choose the a and b as 300 and 550, respectively, the number of users in the system 

will oscillate from 300 to 550, and finally it will become stable at the stable point ystable = 

440 (taking pl=0.01,ra=10 without loss of generality). From the curve of the response time, 

440 users correspond to the response time of around 0.25 seconds. We represent this stable 

point on the curve as an asterisk in the above figure. Consider if we use the on-off 

approach, then the number of users will forever oscillate between 300 and 550, and the 

average number of users will be around 425, which corresponds to the response time 

around 0.5 second (represented by a period in the figure). This is exactly where the 

improvement of our probabilistic approach is. It reduced the response time from 0.5s 

(on-off approach) to 0.25s (with probabilistic approach).  

 

Take a look at another example where we have (a, b) = (600, 800). In this case, ystable = 667; 

we would expect that the stable point corresponds to the response time of 1.6s (represented 

by a asterisk in the figure). And there is not too much improvement compared with the 

on-off approach, because in this range the curve is strait. We note that in this case (with the 
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larger values of a and b), the response time already exceeds 1.3s limit, the server is already 

fully loaded (server utilization equal 1), and there is no point in choosing such a large 

value for a and b. We conclude that, by avoiding oscillations, the probabilistic approach 

provides better average response time within the critical operating point when the load is 

close to 100%. 

 

Needless to say, since we have proved that the stable point exists in the ideal theoretical 

model. In the realistic world, we would like to use the probabilistic approach, so that the 

stable condition can be reached, and thus oscillations can be avoided. 

 

 

 

6.3 Simulation Result 

 

In this section, we present the simulation experiments we have done, and their results. 

 

6.3.1 The evaluation of different probability functions 

 

To study the gradual probability approach for controlling the admission of new users, thus 

controlling the response time and server utilization of the system, we first study the 

behavior of different probability functions over a single group of users, and for a variety of 

user arrival rates, which is expressed by the mean inter-arrival time between users. The 

probability to accept users is a function P a, b (r) of the response time r, as defined in 

Section 6.1. 

 

The values a and b indicate the measured response time where the broker starts to reject 

users, and where no user can be accepted (or P = 0), respectively.  In the following 
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simulation test, we use 3 different probability functions P0.1, 2.5(r), P0.7, 1.9(r) and P1.3, 1.3(r), 

shown in the following figure. For the purpose of comparison, we also give one extreme 

case, where there is no admission control at all, which means P is always equals to 1. 

Notice that function P1.3, 1.3(r) is exactly the on-off decision approach, which was used in 

Salem’s paper [1]. By doing a simulation, we can get the average server response time, the 

server utilization, and acceptance percentage for different probability functions, and we 

hope to find out which probability function has advantages over the others.  

 

 

Figure 23.  Probability functions 

 

The following chart shows the simulation result for the mean response time with different 

admission control functions. The results are plotted against the inter-arrival time, for an 

inter-observation time that equals 10 seconds. 
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Figure 24.  Average response time using different probability functions 

 

Notice that somewhere for an inter-arrival time near 0.2s, the three lines with access 

control meet at a point where the response time equals 1.3s. It is no surprise to us, since 

this corresponds to the intersection of 3 lines in the figure of the probability functions. In 

other words, this intersection is caused by the fact that when the average response time 

equals 1.3s, all three probabilistic functions produce the same probability value - 50%. We 

can see that for inter-arrival times larger than 0.2s, the average response time is less than 

1.3s (for all 3 probability functions), while the probability functions P0.7, 1.9(r) and P1.3, 1.3(r) 

reject less users than the function P0.1, 2.5(r), thus resulting in a higher average response 

time. Following the same reasoning, we can explain why for inter-arrival times less than 

0.2s, the response time for the first two functions is less than the function P0.1, 2.5(r).  

 

Near the point of 0.8s, there is a sudden increase of response time for the probability 

functions P0.7, 1.9(r) and P1.3, 1.3(r), while the response time for probability function P0.1, 2.5(r) 

grows smoothly. This is because the first two probability functions are less gradual, and 

they start to reject users only when the response time approaches 1 second; so in the point 
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around 0.8s they do not effectively reject users, resulting in a sharp increase in the 

response time, which actually corresponding to the situation without admission control. 

We can also see that the performance without admission control is really bad; the response 

time will grow very large, providing intolerable QoS. 

 

In the above test, we use the inter-observation time of 10 seconds. To understand the effect 

of different inter-observation times on the average response time, we have done the same 

simulations with different inter-observation times, namely for 10, 60, and 100 seconds. We 

show the resulting response times in the following figures: 
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(c) 

Figure 25. The average response time for different probability functions when the inter-observation 

time equals 10, 60, 100 seconds, respectively 

 

We go on checking the number of users in the system with different inter-observation time. 
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(c) 

Figure 26. The average number of users for different probability functions when inter-observation 

time equals 10, 60, 100 seconds respectively 

 

By doing the same simulation for various inter-observation time intervals, we find that for 

different inter-observation time periods, with more gradual probability functions, P 0.1, 2.5(r) 

and P 0.7, 1.9(r), there is not much change in both their response time and the average 

number of the users in the system. But for the abrupt probability functions, P 1.3, 1.3(r), with 

the increase of the inter-observation time, although the response time does not 

substantially changed, the average number of users is dropping. This means that the 

average service time for each user is increased. Therefore here we can conclude that the 

length of the inter-observation time does not have a significant effect on the performance 
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of a more gradual probability function; but it does deteriorate the performance for the 

abrupt probability functions.  

 

In the following chart, we show the utilization of the server with and without the gradual 

probabilistic control, plotted against the inter-arrival time, for an inter-observation time 

equals 10s. 
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Figure 27.  Server Utilization 

 

Here we notice that in the range of inter-arrival times between 1.1 and 0.4, the server 

utilization with the probability function P 0.1, 2.5(r), is a little bit lower than the utilization 

with the other two probability functions. This can be explained as follows: from the above 

Figure 24, for the inter-arrival times 1.1s~0.4s, the response time of the server is below 

1.3s for all the probability functions; and within that range ([0s, 1.3s]), the probability 

function P 0.1, 2.5(r) rejects more users than the other two probability functions. This results 

in its a lower utilization. 

 

We can also plot the server utilization against the response time and get the following 

figure; these lines are very much similar. 
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Figure 28.  The utilization as a function of response time for different probabilistic functions 

 

The following figure shows the average acceptance probability of the server with gradual 

probabilistic control, plotted against the inter-arrival time, for an inter-observation time 

equals 10s. 
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Figure 29.  Acceptance percentage 
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We see that the curves representing the acceptance percentage using the probability 

function P0.7, 1.9(r) and P1.3, 1.3(r) are a little bit higher than the percentage of the acceptance 

for the probability function P0.1, 2.5(r). The reason for this is that for the large range of 

inter-arrival times, all the functions can give an average response time lower than 1.3s, in 

which range the probability function P0.1, 2.5(r) will produce a smaller probability value 

than the other two probability functions. 

 

 

6.3.2 The effect of different probability functions on the oscillations 

 

To reveal the effect of different probability functions on the oscillation of the number of 

users in the system, we further check the amplitude and period of the oscillation for 

various inter-observation times. In this simulation we set the user inter-arrival time to 0.1s 

and the inter-observation time equals 100s, the probability functions are P0.1, 2.5(r), P0.7, 1.9(r) 

and P1.3, 1.3(r) respectively. And we show the simulation result as follows: 

 

 

(a) 
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(b) 

 

(c) 

Figure 30. The effect of different probability functions on the oscillation of the number of users  

 

The figures above show that, as the curve of the probability function gets steeper, the 

oscillation of the number of users in the system increases. The amplitude of the oscillation 

is increased from 240 (for P 0.1, 2.5(r)) to 800 (for P 1.3, 1.3(r)).  

 

To measure the period of the oscillation, we used the technical computing tool MATLAB 

(see appendix) to analyze frequency of the oscillations. After applying the FFT (Fast 
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Fourier transform) algorithm on a large number of sample points, we get the frequency 

power spectrum of the signal, and the frequency of the curve is the frequency where the 

power spectrum gets its highest value. Other spikes in the chart can be considered as 

harmonics and noise, and the noise part can be smoothed out as we include more and more 

sample data into the calculation. After applying the FFT (fast Fourier transform) to the 

above sample points for the probability function P 1.3, 1.3(r), we can get the frequency 

power spectra, as shown in the following figure.  

 

 
Figure 31. The power spectrums of oscillation of the number of users 

The frequency where the power spectrum gets its highest value is 0.003497 in this 

example, so the period equals 285.98 (the inverse of the frequency). 

 

In the following simulations, we measured the amplitude, standard deviation, mean, 

frequency and the period of the number of users in the system for different probability 

functions with different inter-observation times (60s, 40s, 20s, 10s, and 5s), when the 

inter-arrival time equals 0.1s, and list the simulation result in the following table: 
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Table 2. Oscillations of the number of users in the system  

We can see from the above table, for a given inter-observation time period, the more 

gradual the probability functions are (like P 0.1, 2.5(r)), the lower the frequency and the 

longer the period the oscillation will have. A more gradual probability function also leads 

to a smaller standard deviation, that is, a less severe oscillation. This means the oscillation 

is somewhat dampened out by using a gradual probability function.  

 

Besides, for a given probability function, the period and the amplitude of the oscillation 
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depend on the inter-observation time. The longer the inter-observation time, the larger is 

the amplitude and the longer the period. As the inter-observation time decreases, the 

standard deviation also decreases. This is quite consistent with the decreasing of the 

amplitude in the second column in the above table. But the mean increases, which implies 

increased server utilization.  

 

When the inter-observation time decreased to a certain value (like 20 seconds for P 0.1, 2.5(r), 

10 seconds for P 0.7, 1.9(r), and 5 seconds for P 1.3, 1.3(r)) there is no perceivable period 

anymore; the whole curve looks just like statistical noise. We call this value a “stable 

value” for inter-observation time. If the inter-observation time is chosen to be this “stable 

value”, the oscillation would not show any regular period anymore and we can only 

observe statistical fluctuations of the number of users, thus the oscillation is considered to 

be avoided. This “stable value” depends on the specific probability function, the more 

gradual the probability function is, and the larger the stable value will be. An 

inter-observation time smaller than the “stable value” will surely also rule out the 

oscillation, but the server has to notify its current response time to the broker so frequently 

that the broker may become the bottleneck if there are many servers involved. There is 

always the trade-off between how well the oscillation can be coped with and how much 

time the broker has to spend in correcting the performance data from the servers. It hardly 

seems worthwhile using very small inter-observation times in reality.  

 

The figure below shows the oscillation of the number of users (left side) and its power 

spectrum after the application of the fast Fourier transform (right side) for the probability 

function P 0.7, 1.9(r) when user inter-arrival time is 0.1 second. As we can see, when the 

inter-observation time decreased to 10s there is no perceived period anymore; the whole 

curve looks just like statistical noise. 

 



 95

  
(a)          (b) 

  

(c)          (d) 

  
(e)          (f) 
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(g)          (h) 

  
(i)          (j) 

Figure 32. The oscillation of the number of users and its power spectrum  

 

To conclude, as the above results show, the less steep probability function works better 

than a steeper one, in terms of its smooth control over the number of user in the system. 

With a gradual probability function, the oscillation will have smaller amplitude at the price 

of starting to reject users earlier. For the same inter-observation time, the on-off decision 

approach is really the worst, since it contributes more to the unstable performance, and the 

response time can sometimes go very high (e.g. when inter-observation time equal 100 

second, for P1.3,1.3(r), as the user number varies between 200 to 1000, the response time 

varies from 0.1s to 3.5s, while under the same conditions, but for the gradual probability 

function P0.1,2.5(r), the number of users varies from 550 to 800, which corresponds to a 
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response time between 0.8s to 2.4s).  

 

 

 

6.3.3 Putting an upper limit to the server selection algorithm 

 

From the previous sections, since we already know that there is some kind of relationship 

between the number of users admitted to the system and the response time, we wish to 

know whether putting an upper limit to the number of users that can be admitted would do 

any good for the system response time.  

 

In the following simulation experiment, we still use the probability function P 0.7, 1.9(r), the 

inter-observation time set to be 20 seconds and we also set up an upper limit of the number 

of users as 620. That means whenever the number of users in the system exceeds 620, we 

will reject all the newcomers. We know that when 620 users are in the system, the 

response time should reach around 1.3s (R(620) = 1.3s). In the first test, we set the user 

inter-arrival time as 0.1s; we get the test result in Figure 33. As expected, the average 

response time of the system is exactly around 1.3s; the number of users in the system is 

strictly below 620. Compare it with the simulation result without an upper user limit 

(Figure 34), other settings being the same; the oscillation of the system with the upper 

limit is much better than that without any upper limit check.  
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(a)          (b) 

Figure 33. The controlled oscillation with the user limit of 620 

 

  
(a)          (b) 

Figure 34. The oscillation without user limit 

 

When we set the user inter-arrival time as 0.4s, which is a lower incoming rate than 0.1s, 

we get the following simulation result (Figure 35). The oscillation of the number of users 

and the response time become more severe than that when inter-arrival time equals 0.1s. 

Obviously, this is because, with 0.4s inter-arrival time, the load is not high enough so that 

the upper limit of 620 can hardly be reached, therefore, this upper limit has almost no 

effect on oscillation avoidance. But in this case, the oscillation is really not a big issue as 

long as the response time is still low. 
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(a)          (b) 

Figure 35. The controlled oscillation when the user incoming rate is low 

 

The conclusion here is that the upper limitation of the number of users in the system has 

the effect of preventing oscillation only when the working load approaches or exceeds the 

upper limit. Below that level, although the oscillation is inevitable, the mean response time 

is still tolerable.  
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7. Probabilistic approach used on differentiated classes of users 

 

In the previous chapter, we studied the effect of probabilistic admission control on a single 

group of users. In this chapter, we will study the probabilistic approach used on two 

groups of users, where one group has a priority over the other. In this situation, we reject 

the users from the lower priority group while still providing satisfactory QoS to the users 

from higher priority group when the load is high. By doing this, we realize differentiated 

services for different user groups. 

 

7.1 Using different probability functions for each of the user groups 

 

To study the performance of our probabilistic approach for two differentiated user groups, 

user group A with higher priority and user group B with lower priority, we decide to use 

two different probability functions for each of these user groups, as defined in Section 6.1. 

User A: P 1.05, 1.55(r)  

User B: P 0.55, 1.05(r) 

 

We compare this probabilistic approach with the abrupt on-off approach using two 

different thresholds for the two user groups (0.8s for group B and 1.3s for group A). We 

show these probability functions in the Figure 36 
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Figure 36. The probability function used for two groups of users 

 

Since group A are the users with higher priority, also called “elite group”, they should have 

access priority over group B users. Therefore we start to reject users in group A only after 

the response time exceeds 1.05s, at which moment all requests from users in group B have 

already been turned down (that is P = 0 for user group B). Group B is the lower priority 

user group; it is the first one to be deprived of the right to access the servers. We start to 

reject group B users when the response time exceeds 0.55s. By the time the response time 

exceeds 1.05s, no user from group B will be accepted anymore. 

 

The abrupt threshold algorithm is simpler. User in group B will be rejected if the response 

time exceeds 0.8s; users from all user groups will be rejected when the response time 

exceeds 1.3s. 

 

We test the user acceptance probability over a variety of customer arrival rates (for the 

customer inter-arrival time ranging from 0.7s to 0.05s, and among them, half come from 

group A and half comes from group B). In this setting we use the inter-observation time 
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10s to reduce the oscillations and the result is shown in Figure 37. (We use the notation P a 

b c d to represent two probability function approach with probability functions Pa,b and 

Pb,c ) 
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Figure 37.  Percentage of users accepted 

 

This probabilistic approach exhibits a clear the privilege for A-users over B-users in terms 

of the acceptance percentage. While both group enjoy the same response time provided by 

the system, the probability of accepting A-users is substantially higher than for B-users, 

especially for higher user arrival rates. For the abrupt on-off switch algorithm, the priority 

of A-users over B-users is not so clearly identifiable compared with the probabilistic 

approach. This is surely because the on-off switch algorithm does not suppress the 

oscillation of the response time very well, which undermines the differentiation between 

the two groups of users.  

 

We have done the same simulation for various inter-observation times (10s, 60s, 100s) for 
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both approaches as shown in Figure 38 and 39; we find that with shorter inter-observation 

period, the priority of the A-users is more distinguishable. This is expected, since shorter 

inter-observation period means smaller oscillations. 

Probabilistic P 0.55 1.05 1.05 1.55

0

0.2

0.4

0.6

0.8

1

1.2

0.7 0.6 0.5 0.4 0.3 0.2 0.1

inter-arrival time

Pe
rc

en
ta

ge
 o

f a
cc

ep
ta

n

A inter-observation time
10s

B inter-observation time
10s

A inter-observation time
60s

B inter-observation time
60s

A inter-observation time
100s

B inter-observation time
100s

 

Figure 38.  Percentage of users accepted of probabilistic approach for different inter-observation 

time 
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Figure 39.  Percentage of users accepted of on-off approach for different inter-observation time 
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7.2 Using one combined probability function for several user groups 

 

In the previous section, we used different probability function for each user group. With 

that approach, the system administrator should deliberately choose one probability 

function for each user group, and we do not have an idea of the overall performance of the 

system. Take the example of the previous section, even with the given probability function, 

and known combined rate of incoming users, it is still impossible to tell what the response 

time the system will be, because the response time also depends on the incoming rates of 

each of the user groups. In this section we introduce another approach to gradually reject 

users from different groups using only one probability function, while still keeping the 

priority of the “elite” user group. With a single probability function, one can get easily the 

idea about the overall admission control of the system. 

 

The principle of using a single combined probability function is as follows. First, we 

compute the probability value P of accepting incoming users (for all classes) from the 

current response time according to some given probability function (the so-called 

combined probability function). In this step we do not distinguish between different user 

classes. Then with the knowledge of the relative incoming rates for the different user 

classes, we compute the probability of accepting a user from each of the groups. Because 

there is no way to know in advance the incoming rate of each of the classes in the next 

inter-observation period, we use the incoming rate measured during the previous 

inter-observation period as an approximation for the next one. This means that we make an 

assumption that the user’s incoming rates for different groups do not change frequently, 

which is a normal situation for most web services.  

 

Just like in the previous section, we consider here the problem of provide differentiated 



 105

service to two groups of users, namely group A with higher priority and group B with 

lower priority. To formally describe the algorithm, we use some notations as follows: 

 

NA = the number of users from group A in the next observation time interval, (an 

estimation over the previous record) 

 

NB = the number of users from group B in the next observation time interval, (an 

estimation over the previous record) 

 

Pall = the total probability of accepting users, computed from the probability function P a, 

b(r), that is Pall = P a, b(r) 

 

PA = probability to accept users in class A 

 

PB = probability to accept users in class B 

 

Since the total number of users accepted in the next observation time interval equals Pall * 

(NA + NB), and it is contributed by two parts, namely the users accepted in group A 

(estimated number = PA *NA) and the users accepted in group B (estimated number = PB * 

NB). Therefore the following equation should hold: 

PA *NA + PB * NB = Pall * (NA + NB) 

 

Because of higher priority for class A users, PA should always be bigger than PB. To be 

more specific, when Pall equals 1, PA and PB should both be equal to 1.To keep the balance 

of the above equation, if Pall is decreasing, PB should decrease before PA decreases, we 

assume that PA can not decrease until PB gets to 0. More formally, we have the following 

constraints: 
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if PB > 0, then PA = 1 

if PA < 1, then PB = 0 

 

From the above equation PA *NA + PB * NB = Pall * (NA + NB), and these constraints we 

can compute PA and PB. We have the following two cases to consider:  

  

Case 1: if NA <= Pall * (NA + NB) 

PA = 1 ; 

  PB = (Pall * (NA + NB) – NA)/NB; 

 

Case 2: if NA > Pall * (NA + NB) 

PA = Pall * (NA + NB)/NA; 

PB = 0; 

 

We see that the values of PA and PB depend on the relative ratio of NA and NB. 

 

Let us suppose that NA = α*NB, then the computation of the above two cases can be 

rewritten as: 

if α/(α+1) <= Pall  

PA = 1 ; 

  PB = Pall * (α+1) – α; 

else 

PA = Pall * (α+1)/ α; 

PB = 0; 

 

If the incoming rates of the two user groups are the same, that is α = 1, and the probability 

function is chosen to be P 0.55, 1.55(r), then we will get for PA and PB exactly the functions 
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shown in Figure 36 (PA = P 1.05, 1.55(r), PB = P 0.55, 1.55(r)); in that case, we would not 

perceive any difference in the performance between this approach and the approach with 

the two probability functions in Section 7.1. 

 

But the situations are changed when the incoming rates of the two user groups are not the 

same. In the following figures, the combined probability function is still chosen to be P 0.55, 

1.55(r); we show the calculated PA and PB when α equals 3 (when NA = 3*NB) and 1/3 

(when NA = NB/3), respectively. Clearly they are quite different from Figure 36. When α 

equals 3, that is, the number of A-users is three times the B-users, the combined 

probabilistic approach tends to reject group B users very quickly, while group A users are 

rejected very slowly (compared with the two probability functions approach). This is quite 

reasonable since we have far more A-users than B-users. Not very surprisingly, when α 

equals 1/3, there are more B-users than A-users; it tends to reject group B users very 

slowly, while group A users are rejected very quickly.  

 

 

Figure 40.  The calculated probability for both groups of users when α = 3 
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Figure 41.  The calculated probability for both groups of users when α = 1/3 

 

 

 

In the following simulation, we test the percentage of user acceptance over a variety of 

customer incoming rates (for the customer inter-arrival time ranging from 0.7s to 0.05s), 

using a single probability function P 0.55, 1.55 (r); the combined probability function 

approach calculates the total probability Pall by P 0.55, 1.55 (r) first, and then computes the PA 

and PB. After running the same simulation for different α (α = 1, 3 and 1/3, ), we get the 

results in the Figures 42 and 43. For comparison, we also plot the results obtained using 

two probability functions as defined in Section 7.1, and to avoid oscillations we set the 

inter-observation time as 10 seconds. 
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Percentage of A-users accepted for different alpha 
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Figure 42.  Percentage of A-users accepted (compared with two probability function approach) 

 

Percentage of B-users accepted for different alpha
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Figure 43.  Percentage of B-users accepted (compared with two probability function approach) 
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As is shown in the above figures, when α equals 1, the percentage of acceptance using one 

probability function is pretty similar to the result when we use two probability functions 

for each of the user groups. This is because with α =1, the incoming rates of users in both 

group are the same, and the calculated acceptance percentages of A-users and B-users are 

exactly the same as given in the two probability function approach, therefore resulting in a 

similar performance. When α equals 3, with combined probability function, both 

percentages of accepting A-user and B-users become smaller due to the calculated 

acceptance percentages (see Figure 40). Similarly, when α equals 1/3, both percentages of 

accepting A-user and B-users become larger. Notice that when α equals 3 (or 1/3), with 

two probability functions, the percentages of accepting A-user and B-users also gets 

smaller (larger), but not as small (large) as using the combined probability function 

approach. This means that the two probability functions approach can not adjust to the 

workload change of different user groups as quickly as the combined probability function 

approach, which further effects its performance as we will see below. 

 

To see the difference in performance between these two approaches, we compare the 

resulting response time between two function and combined function approaches, for 

various values of α. The results are shown in Figure 44. 
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For different probabilistic approaches and different alpha
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Figure 44.  Mean response time of the users using different approaches 

 

As we can see, as the user arrival rate increases, for both approaches, the response time 

grows very smoothly. For the combined function approach, no matter what the value of α 

is, the average response time measured is almost the same. But with the two function 

approach, the average response time also depends on the value of α: the larger is α, the 

higher will be the response time of the system. 

 

Regarding these simulation results, we can clearly see the advantage of the combined 

function approach: even if the arrival rates of A-users and B-users are different (α ≠ 1), the 

combined function approach will still result in the same response time as long as the 

arrival rate of users in total is the same. But for the function approach, the response time 

also depends on the value of α. If α > 1, we will get a slightly higher average response 

time, and if α < 1, we will get a slightly lower average response time 

 

The disadvantage of the combined function approach is: the estimation of the incoming 

rate of the users in the next observation period is difficult. Here we use the number of 
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incoming users in the previous observation period as an approximation. If the incoming 

rate of the users changes frequently from one time interval to another, this estimation is no 

longer accurate; thus the efficiency of this approach may be questionable.  
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8. Conclusions and future work 

 

8.1 Conclusions 

 

Quality of service of web servers has long been a hot research area in recent years. The 

problem that we consider here is how can we provide satisfactory response time to the 

clients during the time of heavy workload. We started with the discussion of several 

related approaches for dealing with the problem and show that although to some extent a 

reasonable response time can be realized, those approaches cannot deal with the problem 

of performance oscillations. To solve this problem, we have improved the original server 

brokerage model described in Salem’s paper, and invited a new probabilistic approach to 

reject user requests, and avoided the oscillations of the server performance.  

 

The major results of our work are the following: 

 

1) Based on simulations, we show the existence of oscillations of the performance of the 

server, the response time, the number of users in the system and the server utilization etc. 

We established a theoretical model for the number of users in the system, and using this 

model we explained that the oscillation is caused by abrupt behavior of the on-off 

decision-making server selection algorithm that accepts or refuses the incoming user 

according to some threshold.  

 

2) Based on the theoretical model of the oscillations, we showed that a probabilistic 

approach that accepts users gradually, will suppress the oscillations, and eventually leads 

the system to a so-called “stable point”.  

 

3) We tested the effect of different probability functions on admission control. Our 
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simulation experiments reveal that a more gradual probability function has the advantage 

over a probability function with a sudden change in terms of performance stability. With a 

more gradual probability function, the amplitude of the oscillation is smaller, and the 

frequency of the oscillation is also lower.  

 

4) We showed that for a given user incoming rate of users, and a given probability function, 

decreasing the inter-observation time will improve the oscillation. A smaller 

inter-observation time period decreases the amplitude of the oscillation. In fact, if the 

inter-observation time is decreased to some “stable value”, there is no perceivable regular 

oscillation anymore, the whole curve looks just like statistic noise. 

 

5) We explored the behavior when an upper limit to the number of users that can be 

accepted by the system is given. Simulations show that this approach will eliminate the 

oscillation only when the user-incoming rate is approaching or exceeding this limit. It has 

no effect on the oscillations when the workload does not reach that limit.  

 

6) Finally, some considerations are given for this probabilistic approach for a system with 

several categories of users with different priorities for accessing the system. In that case, 

we consider two groups of users, namely group A (with higher priority) and group B (with 

lower priority). The goal is to provide satisfactory response time to the A-user and reject 

B-user when the workload is high. Our simulation results clearly show that our 

probabilistic approach has the advantage over the on-off decision approach in providing 

differentiated service to different user groups. 
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8.2 Future work  

 

Despite the achievement mentioned above, we realize that there is still much work in this 

area waiting to be done. Some possible areas that can be improved are listed in the 

following. 

 

1) We realize that when the workload is not heavy, the system does not need to check the 

performance of the servers very frequently. This issue is important because frequent 

transmission of performance data will increase the workload of the broker and the data 

throughput between the servers and the broker. One could therefore consider whether it is 

better, if we constantly change the inter-observation time depending on the current 

user-incoming rate. The higher the rate, the shorter the inter-observation time should be set. 

In this way, the frequency of the observations by the broker is adjusted to the need rather 

than being fixed in advance.  

 

2) We also can change the way that the performance data is collected. The broker may 

collect the performance data by probing the servers instead of the performance data being 

pushed by the server. We still do not know which way is better. By probing, the broker has 

the solely control of when to collect the performance data, the servers do not have to care 

about this, but the workload on the broker will be increased. 
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10. Appendix  

(A) Fundamentals for MATLAB 

 

1. Some brief introduction to MATLAB 

 

In our project, we used MATLAB to measure frequency of a given signal (the number of 

users in the system), so we feel it necessary to give some introduction of the MATLAB 

tool and give an example code used to calculate the frequency. 

 

The MATLAB is a language of technical computing developed by the MathWorks Inc. 

MATLAB provides the function of mathematical computing, visualization, and a powerful 

language, a flexible environment for technical computing. The scientific personnel use 

MATLAB to explore data, design algorithms, and develop applications. It presents the 

data in a visualized way, and helps to identify subtle problems and give insight into the 

subject under study. What is more, MATLAB’s internal interfaces enable us to access and 

import data from instruments, files, external databases and programs. We can even 

integrate external routines written in C, C++, Fortran, and Java into the MATLAB 

applications. It is used in nearly all areas of research, industries and government. 

Following are the basic components of the MATLAB, and its key features (from 

www.mathworks.com). 

 

MATLAB includes tools for:  

• Data acquisition  

• Data analysis and exploration  

• Visualization and image processing  
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• Algorithm prototyping and development  

• Modeling and simulation  

• Programming and application development  

Key Features 

• Numeric computing for quick and accurate results  

• Graphics to visualize and analyze your data  

• Interactive language and programming environment  

• Tools for building custom GUIs  

• Integrate with external applications comprised of C, C++, Fortran, Java, COM 

components and Excel  

• Support for importing data from files and external devices and for using low-level 

file I/O (plus access to databases and additional hardware via add-on products)  

• Conversion of MATLAB applications to C and C++ with the Compiler  

 

 

MATLAB presents data result in a specialized high-quality graphic form, which facilitates 

a better observation and understanding. Here we list some of the basic graphic features 

provided (from www.mathworks.com).  

 

• 2-D and 3-D plot types such as line, log, histogram, function, mesh, surface, sphere, 

and patch objects  

• Support for triangulated and girded data  

• Volume visualization for viewing scalar and vector data  

• Image display and file I/O  

• Interactive plot annotation and editing  
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• OpenGL rendering supported with hardware and software  

• Quiver, ribbon, scatter, bar, pie, and stem plots  

• Animation (movies) and sound  

• Multiple light sources for colored surfaces  

• Camera-based viewing and perspective control  

• Interactive and programmatic control of individual plot attributes, such as line, 

axes, figure, legend, and paper  

• Flat, Gouraud, and Phong lighting  

• Point-and-click GUI-building tools and programming API  

• Importing common graphical file formats such as EPS, TIFF, JPEG, PNG, BMP, 

HDF, AVI, and PCX  

• Printing and exporting graphics to other applications, such as Word and 

PowerPoint, in a variety of popular formats to share your results with colleagues  

• Extended support for image processing and geographic mapping applications 

through add-on toolboxes  

 

For the mathematic computations, MATLAB provides many functions. Below are some of 

the examples (from www.mathworks.com).  

• Matrices and linear algebra -matrix arithmetic, linear equations, eigenvalues, 

singular values, and matrix factorizations  

• Polynomials and interpolation -- standard polynomial operations such as 

polynomial roots, evaluation, differentiation, curve fitting and partial fraction 

expansion  

• Signal processing - digital filters, fast Fourier transforms (FFTs), and convolution  

• Data analysis and statistics - descriptive statistics, data pre-processing, regression, 

curve fitting, data filtering  
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• Function functions -- MATLAB functions that work with mathematical functions 

instead of numeric arrays, including plotting, optimization, zero finding, and 

numerical integration (quadrature)  

• Differential equations - solving differential equation problems including: initial 

value problems for ordinary differential equations (ODEs) and differential-algebraic 

equations (DAEs), delay differential equations, boundary value problems for ODEs, 

and initial-boundary value problems for systems of parabolic and elliptic partial 

differential equations (PDEs)  

• Sparse matrices - covering both specialized and general mathematical operations, 

including iterative methods for sparse linear equations  

 

These functions enhance the computational power and make it much easier to solve many 

technical problems. 

 

To conclude, MATLAB is a powerful tool that accelerates the research, reduces the project 

cost, and saves the time of analysis.  

 

2. Fast Fourier transform 

 

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm, which reduces 

the number of computations needed for N points from 2N2 to 2Nlog2N. 

 

The functions of fast Fourier transform (X = fft(x) and x = ifft(X) in MATLAB) 

implement the transform and inverse transform pair given for vectors X or x of length N 

by doing the following calculation: 
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•  

where 

•  

is an N’th root of unity. (from www.mathworks.com) 

Now we give an example of making up a noise signal by combining two sine signal with 

different frequency (50 Hz and 120 Hz) and later identify these frequencies components 

by taking a fast Fourier transform (FFT). This is exactly what we need to extract the 

frequency from a given signal in our project. 

 

The following piece of code generates data sampled at 1000 Hz and forms a signal 

containing 50 Hz and 120 Hz frequency components: 

t = 0:0.001:0.6; 

x = sin(2*pi*50*t)+sin(2*pi*120*t); 

y = x + 2*randn(size(t)); 

plot(1000*t(1:50),y(1:50)) 

title('Signal Corrupted with Zero-Mean Random Noise') 

xlabel('time (milliseconds)') 

 

The generated noise-like signal appears as follows. 
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•  

It is pretty difficult to tell the original frequency components by simply looking at the 

above signal. But after taking the 512-point fast Fourier transform (FFT): 

Y = fft(y,512); 

 

The power spectrum, which shows the power at various frequencies, is computed as 

follows:  

Pyy = Y.* conj(Y) / 512; 

f = 1000*(0:256)/512; 

plot(f,Pyy(1:257)) 

title('Frequency content of y') 

xlabel('frequency (Hz)') 
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From the power spectrum result, we can clearly see the strong peaks at 50Hz and 120 Hz, 

which are the original components of the signal. 

 

 

 

 

 

 

 

 


