
The Calulus of Construtions as a Framework for Proof Searhwith Set Variable Instantiation�Amy FeltyBell LaboratoriesLuent Tehnologies, 600 Mountain Ave., Murray Hill, NJ 07974, USAfelty�researh.bell-labs.omAbstratWe show how a proedure developed by Bledsoe for automatially �nding substitutioninstanes for set variables in higher-order logi an be adapted to provide inreased automa-tion in proof searh in the Calulus of Construtions (CC). Bledsoe's proedure operateson an extension of �rst-order logi that allows existential quanti�ation over set variables.This lass of variables an also be identi�ed in CC. The existene of a orrespondene be-tween higher-order logi and higher-order type theories suh as CC is well-known. CC anbe viewed as an extension of higher-order logi where the basi terms of the language, thesimply-typed �-terms, are replaed with terms ontaining dependent types. We show howBledsoe's tehniques an be inorporated into a reformulation of a searh proedure for CCgiven by Dowek and extended to handle terms with dependent types. We introdue a notionof searh ontext for CC whih allow us to separate the operations of assumption introdutionand bakhaining. Searh ontexts allow a smooth integration of the step whih �nds solu-tions to set variables. We disuss how the proedure an be restrited to obtain proeduresfor set variable instantiation in sublanguages of CC suh as the Logial Framework (LF) andhigher-order hereditary Harrop formulas (hohh). The latter serves as the logial foundationof the �Prolog logi programming language.1 IntrodutionBoth higher-order logi and higher-order type theories serve as the logial foundation of a va-riety of interative tati-style theorem provers. For example, both HOL [15℄ and Isabelle [23℄implement higher-order logi, while Coq [8℄ implements the Calulus of Construtions (CC) typetheory [7℄ and Nuprl [6℄ implements Martin-L�of type theory [20℄. Muh work has been arriedout in both kinds of systems on building tatis and automating proof searh. However, littlework has been done on providing the means for exploiting proof searh methods designed for onekind of system within the other. In this paper, we show how a partiular proof searh proeduredesigned for higher-order logi an be used to help automate the searh for proofs in CC.In some ases, suh as the seond-order polymorphi �-alulus and seond-order proposi-tional logi, the orrespondene between higher-order logi and higher-order type theories isexat and known as the Curry-Howard isomorphism [17℄. Although it is less diret for CC, oneway to view the orrespondene was shown in Felty [12℄. Intuitively, a funtional type P ! Q�In Theoretial Computer Siene, 232(1-2):187{229, February 2000. Copyright 2000, Elsevier Siene.1



orresponds to an impliation, while a dependent type 8x :P:Q orresponds to universal quanti�-ation. An important di�erene is that while in CC the type P an be an arbitrary CC type, inhigher-order logi (e:g:, Churh's simple theory of types [5℄) P must be a simple type. AlthoughCC types inlude the types of the simply-typed �-alulus, they also inlude muh more.Formally establishing suh orrespondenes provides a framework in whih to study howtheorem proving tehniques designed for one kind of system an be applied to proof searhin the other. In this paper we adapt tehniques desribed in Bledsoe [3℄ for the automatidisovery of substitutions for set variables to a modi�ed version of the searh proedure for CCgiven by Dowek in [9, 10℄. (Below, we refer exlusively to [10℄ exept for the ase where we usean auxiliary result that ours only in [9℄.) Dowek's proedure atually operates on all typesystems in Barendregt's ube [2℄. We use only the restrition to CC. In our formulation, weboth adapt these tehniques to the type theoreti setting as well as extend them to handle theextra expressivity of dependent types. To inorporate dependent types, we onsider not onlysingle element membership suh as t 2 A, but also sets of tuples ht1; : : : ; tni 2 A where for1 � i < j � n, the type of tj may depend on the type of ti.In Bledsoe [3℄, the proedure for �nding substitution instanes is implemented within anautomati theorem prover for natural dedution in �rst-order logi, thus extending it to handleexistential quanti�ation over a restrited set of seond-order variables. The proedure has beensuessfully applied to obtain results in intermediate analysis, topology, logi, and programveri�ation. To prove a theorem with set variables, the theorem prover makes two passes.The �rst �nds maximal solutions for these variables. One instantiated with the solutions, theformula beomes �rst-order, and the built-in strategy for proving �rst-order formulas is used.If the formula is provable, maximal solutions for set variables will lead to a proof. However,maximal solutions may be given during the �rst pass even though the formula is not provable.Thus the seond pass is required. We take an example from Bledsoe [3℄ to illustrate maximalsolutions. Consider the theoremP (a) � 9A(8x(x 2 A � P (x)) ^ 9y(y 2 A)):A maximal solution for A is a term B that when substituted for A results in a provable formula,and suh that for any other solution C, whenever B � C it must be the ase that C is the same asB. In this example, if we onsider the two onjunts separately, the set fx j P (x)g is a maximalsolution for A in the �rst, and the universal set is a solution for the seond. Their intersetion,fx j P (x)g, is a maximal solution for A in the formula as a whole. Note that there are oftennon-maximal solutions that result in provable formulas. In this ase, for example, ; is a solutionto the �rst onjunt. However, it is not a solution to the whole formula. Maximal solutions aremore generally useful beause solutions to subformulas are easily ombined to obtain solutionsto the whole formula.Dowek's proedure for automati proof searh in CC is a omplete proedure. It beginswith the type representing the formula to be proved and attempts to �nd a term of that typerepresenting a proof. However, although the proedure is omplete, it is not eÆient in pratiebeause of the omplexity of CC. In partiular, the number of searh paths quikly beomesprohibitive for most theorems. In the presene of assumptions with polymorphi types, forexample, there may be in�nite branhing at many points during searh. The main ause of suhin�nite branhing is the need to enumerate types. There are many ways to diret the searh bytuning it to a partiular lass of theorems. Our work an be viewed as the tuning of Dowek'sproedure to �nd proofs more diretly for theorems in the lass onsidered by Bledsoe, i:e:,theorems in an extension of �rst-order logi with existential quanti�ation over a ertain lassof higher-order variables. 2



This work has two parts. The �rst part is the introdution of the notion of searh ontext forCC. In Dowek [10℄, the operations of assumption introdution and bakhaining are ombined;searh ontexts allow us to separate them. This separation was inspired by our implementationin �Prolog (see below). By making this separation, we are able to present the proedure in more�ne-grain steps. We believe this re�nement enhanes understanding as well as allows a smootherintegration of the step whih �nds maximal solutions to set variables. The integration of thisstep is the seond part of the work. The result is a proedure whih inorporates Bledsoe'smethod into Dowek's algorithm.We present two proedures. The �rst, alled SetVar, is not omplete for CC, but is ompletefor the lass onsidered by Bledsoe as well as for proof searh in interesting sublanguages ofCC suh as higher-order hereditary Harrop formulas (hohh) [21℄ and the Logial Framework(LF) [16℄. In LF, proof searh overs the searh for a term of a partiular type, but not for atype of a partiular kind. We present the SetVar proedure as a set of three searh operations,one whose sole purpose is to instantiate set variables. If we leave out this operation, the SetVarproedure restrited to the other two searh operations is a omplete searh proedure for bothhohh and LF. However, simply adding in this operation does not present an interesting searhproedure for either language. In the ase of LF, there are no set variables beause quanti�ationover prediates is not allowed, so the extra searh operation does not add anything. In the aseof hohh, quanti�ation over prediates that orrespond to set variables is severely restrited, sothe extra searh operation adds little. We will disuss how, in both ases, the languages an bediretly extended to allow set variables in a manner that is analogous to the way that �rst-orderlogi is extended in Bledsoe's system. Furthermore, set variables with dependent types are easilyinorporated into LF.The seond proedure, SetVar+, extends SetVar to a omplete proedure for CC by addinga few more searh operations. As a whole, it an be viewed as a reformulation of Dowek'sproedure with the addition of an operation speialized for �nding maximal solutions to setvariables. The lass of variables orresponding to set variables are already ontained within CC,and so no extension of the language needs to be made to inorporate them. However, adding theoperation whih instantiates them provides a proedure whih expands branhes of the searhthat lead to maximal solutions more diretly. On the other hand, removing this speializedoperation does not a�et ompleteness.This paper extends Felty [14℄ in several ways. First, we separate the proedures SetVar andSetVar+. SetVar should be more useful in pratie beause it eliminates the non-determinismthat orresponds to enumerating types, while still handling most examples and remaining om-plete for various sublanguages of CC extended with set variables. Seond, the introdution ofsearh ontexts is new. Third, we inlude proofs of soundness of SetVar and soundness andompleteness of SetVar+. We prove ompleteness by showing that every operation in Dowek'sproedure has a orresponding set of operations in SetVar+. We ould prove soundness byproving the onverse, i:e:, that every exeution of SetVar+ an be divided into sequenes of op-erations suh that eah sequene orresponds to an operation in Dowek's proedure. Instead, weprove it diretly to illustrate how it an be proved using searh ontexts. The proof follows thebasi outline of Dowek's proof and in addition veri�es that the additional operation for �ndingmaximal solutions preserves soundness.We have implemented a prototype of the SetVar proedure in �Prolog [21℄. We use agoal-direted tati style framework where eah of the searh operations of the proedure isimplemented as a tati [13℄. The SetVar proedure as desribed here does not resolve all non-determinism in searh. In the prototype, the non-determinism is resolved by having the user3



speify whih operation to apply at eah step. Using this prototype, we have proved the exam-ples in this paper as well as some of the examples lassi�ed as \major examples" in Bledsoe [3℄.Although we have not yet done so, the set of tatis we have implemented an be ombined toobtain a proedure that orresponds fairly diretly to a one-pass version of Bledsoe's proedure.Suh a proedure would be able to prove most of the examples in Bledsoe [3℄ fully automati-ally. This proedure ould also be inorporated into Coq as a tati, and used to automatiallygenerate substitution instanes when applied to goals of the appropriate form.In the next setion, we present CC and an extension of it due to Dowek [10℄ whih is usedas the foundation for the searh proedures. We also show how to map set theory into CC.We use the usual notion that a set is a prediate over elements of a partiular type, or overother sets. In addition, we de�ne maximal solutions in our setting, whih diretly extend thosein Bledsoe [3℄. In Set. 3, we present searh ontexts and use them in presenting the SetVarsearh proedure. We also show that it is sound. In addition, we prove theorems that justify themaximal solutions used in the searh proedure. These theorems are extensions of the theoremsin Bledsoe [3℄. In Set. 4, we present the SetVar+ proedure and prove its orretness. Finally,we onlude in Set. 5.2 The Calulus of Construtions and Set VariablesThe syntax of terms of the Calulus of Construtions (CC) is given by the following grammar.Type j Prop j x j PQ j �x :P:Q j 8x :P:QHere Type and Prop are onstants alled sorts, x ranges over variables, and P and Q rangeover terms. We also use other upper ase letters to denote terms, and both upper and lowerase letters to denote variables. We assume a denumerable set of CC variables. The variablex is bound in the expressions �x :P:Q and 8x :P:Q. The former binding operator orrespondsto the usual notion of �-abstration, while the latter orresponds to abstration in dependenttypes. We write P ! Q for 8x :P:Q when x does not our in Q. In both kinds of bindings, wesometimes leave o� the type P of x when it an be easily inferred. A ontext is an ordered listof pairs of the form x :P , alled a delaration, where x is a variable and P a term. We use �,�, and � to denote ontexts.The rules of CC are given in Fig. 1. In these rules, s, s1, and s2 are either Type or Prop. In(INTRO), (PROD), and (ABS), we assume that the variable x does not already our as the lefthand side of a delaration in �. A tree built using the rules of Fig. 1 is alled a proof. We saythat � is a valid ontext if there is a proof suh that (` � ontext) ours at the root. We saythat � ` P : Q holds or is derivable in CC if � is a valid ontext and this judgment ours atthe root of a proof. In this ase, we also say that P has type Q or is of type Q in �, that Q isthe type of P in �, and that P is well-typed in �. When Q is a sort, we say that P is a type in �.In addition, sometimes we simply write � ` P : Q to indiate that this judgment is derivable.It will be lear from ontext when this is the ase.Terms that di�er only in the names of bound variables are identi�ed. If x is a variableand P is a term then [P=x℄ denotes the operation of substituting P for all free ourrenes ofx, systematially hanging bound variables in order to avoid variable apture. The expression[P1=x1; : : : ; Pn=xn℄ denotes the simultaneous substitution of the terms P1; : : : ; Pn for distintvariables x1; : : : ; xn, respetively. The relation of onvertibility up to �; �; and � is written as=��. Given valid ontext �, all terms that are well-typed in � have a unique ��-normal form anda unique ��-long form (whih we all the normal form in �), as well as a unique type modulo4



` hi ontext (EMPTY-CTX) ` � ontext � ` P : s (INTRO)` �; x :P ontext` � ontext (PROP-TYPE)� ` Prop : Type x :P 2 � ` � ontext (INIT)� ` x : P� ` P : s1 �; x :P ` Q : s2 (PROD)� ` 8x :P:Q : s2� ` 8x :R:Q : s �; x :R ` P : Q (ABS)� ` �x :R:P : 8x :R:Q� ` P1 : 8x :Q1:Q2 � ` P2 : Q1 (APP)� ` P1P2 : [P2=x℄Q2� ` Q : s � ` Q0 : s � ` P : Q Q =�� Q0 (CONV)� ` P : Q0Figure 1: CC Typing Rules` � ontext � ` P : s (Q-INTRO)` �;9x :P ontext ` � ontext � ` P : Q � ` P 0 : Q (EQ-INTRO)` �; P = P 0 ontext9x :P 2 � ` � ontext (Q-INIT)� ` x : PFigure 2: Additional Typing Rules for CC+��-equivalene. We will often say \if term P has the form Q" to mean that P is ��-onvertibleto a term of the form Q.Several other properties of CC are used later. For example if (` �; x :P ontext) is derivable,we know that � ` P : s is derivable for some sort s. If � ` �x : R:P : 8x : R:Q is derivable,we know that �; x :R ` P : Q is derivable. Also if �;� and �;�0 are valid ontexts, then theontext �;�;�0 is also valid as long as the variables on the left in delarations in � and �0 aredistint. This property is alled thinning. Finally, we note that for terms P;Q;R, if P =�� Q,then [R=x℄P =�� [R=x℄Q.As in Dowek [10℄, the desription of the searh proedure and the proof of its orretnessrelies on extending CC to allows existential quanti�ation of the form 9x : P and equationsbetween terms, written P = Q, to appear in ontexts. We all the new inferene system CC+.Given a ontext �, a variable x is universal (existential) in � if there is a P suh that x :P 2 �(9x :P 2 �). The delaration x :P 2 � is also alled a universal delaration and 9x :P 2 � isalled an existential delaration. The equation P = Q is alled a onstraint. A ontext element iseither a delaration or onstraint, sometimes denoted e. A term P is losed in � if every variablex ourring free in P is universal in �, and the type of x is losed in �. The CC+ typing rulesinlude all those for CC plus the additional rules in Fig. 2. In addition, =�� in (CONV) in Fig. 1is replaed by =��� whih denotes equality modulo ��-onversion plus the onstraints in �. Asubontext of a ontext � is any ontext obtained by removing some elements of �. Given termsP and Q and ontext �, P is said to be of type Q in � without using the onstraints if there is5



^ := �A;B :Prop:8C :Prop:((A! B ! C)! C)_ := �A;B :Prop:8C :Prop:((A! C)! (B ! C)! C)9Q := �P :Q! Prop:8C :Prop:((8x :Q:Px! C)! C)? := 8C :Prop:C> := 8C :Prop:C ! C: := �A :Prop:A! ?=Q := �M;N :Q:8P :Q! Prop:PM ! PNFigure 3: CC Enoding of the Connetives of Higher-Order Logia subontext � ontaining no onstraints suh that � ` P : Q. All terms that are well-typedin a ontext without using the onstraints have a unique normal form [10℄. The normal form ofa ontext is obtained by replaing all types of variables and all members of onstraints that arewell-typed without using the onstraints by their normal forms.We say that a term P is atomi in ontext � (in CC or CC+) if there is a Q suh that� ` P : Q is derivable and there is a variable x and terms M1; : : : ;Mn, n � 0 suh thatP =�� xM1 : : :Mn. If x is universal in �, we say that P is rigid. Otherwise, x is existential in� and we say that P is exible. We say that K is a base type in � if K is a type in � and K isatomi in �.Generally, proof searh in CC+ starts with a ontext of the form �;9x :P where � is a ontextof universal delarations, P is a property to be proved from the delarations in �, and x is a\plaeholder" for a proof of P . The goal of the searh proess is to instantiate x with a term oftype P (or equivalently, a proof of formula P ). The searh proess will generate the instantiationinrementally, and along the way new existential variables and onstraints between terms willbe generated. Proof searh terminates suessfully when the term instantiating x ontains noexistential variables and all onstraints generated along the way are satis�ed.It is shown in Huet [18℄ that higher-order logi is ontained within CC. Terms are introduedthat enode the onnetives and it is shown that the orresponding natural dedution inferenerules are provable in CC. Here, we use the abbreviations for the onnetives, whih are given inFig. 3. For example, when we write the term (9Q �x :Q:A), it represents the term 8C :Prop:((8x :Q:A! C)! C), and enodes the formula 9Qx:A where 9Q is the existential quanti�er at typeQ in higher-order logi. In CC, it must be the ase that � ` Q : Prop or � ` Q : Type where� is the ontext in whih the existentially quanti�ed expression ours. We often omit thetype subsript Q on 9Q beause it an be inferred from the type of the bound variable in theargument. For readability, we will use in�x notation for the binary onnetives. Impliationand universal quanti�ation are enoded diretly using the funtion arrow and dependent typeonstrutor of CC, respetively. Note that equality is Leibniz equality indexed over types in thesame way as existential quanti�ation.In set theory, from the fat that a 2 fx : P (x)g, it is possible to immediately dedue P (a).In our enoding, we build in this orrespondene diretly and de�ne sets to be prediates of aertain lass of types. Term A is a set type in ontext � if � ` A : Type is derivable and A hasthe form 8x1 :A1 : : : 8xn :An:Prop, where n > 0 and for i = 1; : : : ; n, Ai is a rigid base type orset type in �; x1 :A1; : : : ; xi�1 :Ai�1. Term M is a set in ontext � if � ` M : A and A is a settype in �. In our setting, a set variable is atually a term of a ertain form. In partiular, aset in ontext � of the form zz1 : : : zn where z is an existential variable in �, and z1; : : : ; zn aredistint universal variables in � is alled a set variable in �.To illustrate, let � be the ontext Nat :Type; 0 :Nat; s :Nat ! Nat. Note that Nat ! Prop,6



fhx1; : : : ; xni j Ag := �x1 :A1 : : : �xn :An:AhM1; : : : ;Mni 2 B := (BM1 : : :Mn); := �x1 :A1 : : : �xn :An:?B � C := 8x1 :A1 : : : 8xn :An:(hx1; : : : ; xni 2 B)! (hx1; : : : ; xni 2 C)B [ C := �x1 :A1 : : : �xn :An:((hx1; : : : ; xni 2 B) _ (hx1; : : : ; xni 2 C))B \ C := �x1 :A1 : : : �xn :An:((hx1; : : : ; xni 2 B) ^ (hx1; : : : ; xni 2 C))B =S C := (B � C) ^ (C � B)Provisos: �x1 :A1 : : : �xn :An:A, B, and C are sets in some ontext �� ` �x1 :A1 : : : �xn :An:A : 8x1 :A1 : : : 8xn :An:Prop� ` B : 8x1 :A1 : : : 8xn :An:Prop� ` C : 8x1 :A1 : : : 8xn :An:Prop� `Mi : [M1=x1; : : : ;Mi�1=xi�1℄Ai for i = 1; : : : ; nFigure 4: CC Enoding of Sets(Nat! Prop)! Prop, ((Nat! Prop)! Prop)! Prop, et: are all set types. Thus prediatesover type Nat, prediates over sets of type Nat, prediates over sets of sets of type Nat, et:are all sets. We use abbreviations for sets and set operations to keep the orrespondene withset membership in Bledsoe's work. Fig. 4 ontains these abbreviations. We write =S for setequality.Returning to the example given in Set. 1, we illustrate its proof within the framework of CC.Let � be the CC ontext Nat :Type; P :Nat ! Prop; a :Nat. Proving the theorem from Set. 1in higher-order logi orresponds to �nding a CC term M suh that the following judgment isderivable.� `M : Pa! (9 �A :Nat ! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A)))Expanding the �rst 9 and applying ABS three times in the bakward diretion, we get thefollowing judgment as the rightmost premise. (We ignore the left premise of eah appliation.These are easily proved.)�; h1 :Pa;C :Prop;h2 :8A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A))! C`M 0 : CHere, M 0 is a new term suh that M is equal to �h1:�C:�h2:M 0. Let �0 be the ontext in theabove judgment ontaining �; h1; C; and h2. The proof an be ompleted using two appliationsof (APP) from h2, setting M 0 to h2AM 00, where A and M 00 are terms that must be �lled in byproving the following two judgments.�0 ` A : Nat! Prop�0 `M 00 : (8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A)As in Set. 1, we take A to be fx j Pxg, and so we must prove �0 ` fx j Pxg : Nat! Prop and�nd a term M 00 suh that�0 `M 00 : (8x :Nat:hxi 2 fx j Pxg ! Px) ^ (9 �y :Nat:hyi 2 fx j Pxg)7



holds. The �rst judgment is diretly provable beause by de�nition fx j Pxg is just �x :Nat:Px whih is �-equivalent to P . After expanding de�nitions in the seond judgment, it isstraightforward to �ll in M 00 and omplete the proof.Fig. 5 shows maximal solutions for variables A and B in various subformulas. A is assumedto our in ontext � only in the form hM1; : : : ;Mni 2 A, and similarly for B. These are thesolutions onsidered by Bledsoe in the form handled by our version of Dowek's proedure. Asstated, our solutions are generalizations of Bledsoe's solutions in that they allow tuples insteadof singleton members of sets and dependenies may our in the types of the tuples.We will use these rules diretly in the proedure in the next setion. The �rst rule isthe one that was used to determine the solution of the �rst onjunt of the example above.Although the seond rule looks ompliated, it is just the dependent-type version of solving forfx 2 B ! P 0(x) obtaining maximal solution fz j 8x(z = fx ! P 0(x))g: In the CC version,the types of the last r arguments of the tuple an depend on the types of the �rst j argumentsbut not on the types of eah other. The remaining rules are fairly straightforward. Sine ourrules are extensions of Bledsoe's rules, we extend the theorems in [3℄ whih justify the role ofthese rules in determining maximal solutions. The proofs of the extended theorems appear inSet. 3.3.3 Proof Searh with Set Variable InstantiationThe SetVar proedure is de�ned using our modi�ed notion of ontexts alled searh ontexts.To distinguish them from the notion of ontext de�ned in the previous setion, we say standardontext to denote the latter. In Dowek [10℄ and Felty [14℄, the searh proedure was desribedas diret operations on standard ontexts. We �rst de�ne the notions of existential triple andonstraint triple whih replae existential delarations and onstraints. An existential triple is atuple of the form (�; z; B) where � is a standard ontext ontaining only universal delarations,z is a variable, and B is a term. A onstraint triple is a tuple of the form (�; P;Q) where � is astandard ontext ontaining only universal delarations and P and Q are terms. In either ase,� is alled a loal ontext and the universal variables in � are alled loal variables. A searhontext is an ordered list of universal delarations, existential triples, and onstraint triples.We de�ne an operation atten on ontext elements of searh ontexts as follows:� atten(e) is e if e is a universal delaration.� atten((z1 :A1; : : : ; zn :An); z; B) is 9z : (8z1 :A1 : : : 8zn :An:B).� atten((z1 :A1; : : : ; zn :An); P;Q) is (8z1 :A1 : : : 8zn :An:P ) = (8z1 :A1 : : : 8zn :An:Q).We extend the atten operation to searh ontexts in the obvious way: given ontext �, atten(�)is the ontext suh that eah element e of � is mapped to atten(e). We write e as shorthandfor atten(e) and � as shorthand for atten(�). Note that atten maps a searh ontext to astandard ontext. We say that a searh ontext � is valid if � is valid. Note that variables anbe renamed so that we an assume that all universal variables and loal variables our at mostone on the left of a delaration. We do not do so, but instead assume that all loal variables ina partiular existential or onstraint triple, although not neessarily distint from loal variablesin other triples, are distint from eah other and from all other universal variables in the ontext.Note that under this assumption, given a valid searh ontext �; (�; z; B) or �; (�; P;Q), thesearh ontext �;� is also valid and equivalently the standard ontext �;� is valid.8



Subformula Solution for A or B1: hx1; : : : ; xpi 2 Az1 : : : zn ! Px1 : : : xp �! fhx1; : : : ; xpi j Px1 : : : xpg2: hx1; : : : ; xj; f1x1 : : : xp; : : : ; frx1 : : : xpi 2 Bz1 : : : zn ! P 0x1 : : : xp�! fhx1; : : : ; xj; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpg3: hx1; : : : ; xj;M1; : : : ;Mri 2 Bz1 : : : zn ! Q �! fhx1; : : : ; xj; w1; : : : ; wri jw1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qg4: :(hx1; : : : ; xj ;M1; : : : ;Mri 2 Bz1 : : : zn) �! fhx1; : : : ; xj; w1; : : : ; wri j:(w1 =Cj+1 M1 ^ � � � ^ wr =Cj+r Mr)g5: hN1; : : : ; Npi 2 Az1 : : : zn �! fhx1; : : : ; xpi j >g6: If 1-4 yield fhy1; : : : ; yqi j Q0g, and w is a free variable of type C in Q0�! fhy1; : : : ; yqi j (9 �w :C:Q0)gProvisos:� Az1 : : : zn and Bz1 : : : zn are set variables in some ontext �, i:e:, they are sets in �, A andB are existential variables in �, and z1; : : : ; zn are distint universal variables in �.� p > 0; j � 0; p > j; r > 0; n � 0.� � ` Az1 : : : zn : 8x1 :C1 : : : 8xp :Cp:Prop� � ` Bz1 : : : zn : 8x1 :C1 : : : 8xj :Cj :Cj+1 ! � � � ! Cj+r ! Prop� � ` P : 8x1 :C1 : : : 8xp :Cp:Prop� � ` P 0 : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:P rop� � ` fi : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:Cj+i for i = 1; : : : ; r� � ` Q : Prop� �; x1 :C1; : : : ; xj :Cj `Mi : Cj+i for i = 1; : : : ; r� � ` Ni : [N1=x1; : : : ; Ni�1=xi�1℄Ci for i = 1; : : : ; p� � ` C : Prop or � ` C : Type� All universal variables ourring in P; P 0; Q; f1; : : : ; fr;M1; : : : ;Mr appear before A or Bin �.� A;B; x1; : : : ; xp; w1; : : : ; wr do not our free in P; P 0; Q; f1; : : : ; fr;M1; : : : ;Mr.� A;B also do not our free in C1; : : : ; Cp or C1; : : : ; Cj+r;Dj+1; : : : ;Dp.� x1; : : : ; xp; w are distint universal variables in � that do not our free elsewhere in �.Figure 5: Maximal Solutions for Various Subformulas
9



Note that we an equate standard ontexts with searh ontexts whose loal ontexts are allempty by viewing (hi; z; B) as alternate syntax for 9z :B and (hi; P;Q) as alternate syntax forP = Q. Thus, all standard ontexts an be viewed as searh ontexts of a partiular form. Thisequivalene allows us to diretly adapt many properties of ontexts shown in [10℄.The de�nition of normal form for a ontext (see Set. 2) is extended to searh ontexts: thenormal form of a searh ontext � is obtained as follows.� For eah universal delaration in �, if the type of the universal variable is well-typed in �without using the onstraints, replae the type by its normal form in �.� For eah existential triple (�; z; B) in �, if the type of z in atten(�; z; B) is well-typed in� without using the onstraints, then replae B and the types of the universal variablesin � with their normal forms in �;�.� For eah onstraint triple (�; P;Q) in �, if the members of the onstraint atten(�; P;Q)are well-typed in � without using the onstraints, then replae P , Q, and the types of theuniversal variables in � with their normal forms in �;�.We de�ne substitution for searh ontexts. Let � be a set of tuples of the form hz;�;Miwhere z is a variable, � is a searh ontext, and M is a term. The set � is a substitution if forany variable z, there is at most one tuple in � with z as its �rst omponent. The appliation ofsuh a substitution to a term is de�ned in the usual way ignoring the middle arguments of tuples.The appliation of substitution � to a searh ontext �, denoted ��, is de�ned reursively asfollows.� If � is hi, �� is hi.� If � is �0; x :P , then �� is ��0; x :�P .� If � is �0; ((z1 :A1; : : : ; zn :An); z; B) where n � 0, then if there is a tuple hz;�;Mi in �,�� is ��0;�. Otherwise, �� is ��0; ((z1 :�A1; : : : ; zn :�An); z; �B).� If � is �0; ((z1 :A1; : : : ; zn :An); P;Q), then �� is ��0; ((z1 :�A1; : : : ; zn :�An); �P; �Q).By restriting the above de�nition so that both � and � are required to be standard ontexts,we obtain the de�nition of substitution given in Dowek [10℄. Given substitution �, we write �to denote the substitution obtained by replaing the ontext argument � of eah tuple in � by�. Note that � and � are the same substitution on terms, i:e:, for any term P , �P = �P .A valid ontext � is a suess ontext if it ontains no existential triples and for everyonstraint triple e, atten(e) relates ��-onvertible terms. A valid ontext � is a failure ontextif it ontains a onstraint triple e suh that atten(e) relates two terms that have no freeourrenes of existential variables and that are not ��-onvertible. Let � be a valid searhontext. A andidate triple of � is an existential triple((z1 :A1; : : : ; zn :An); z;8x1 :B1 : : : 8xm :Bm:xM1 : : :Mp)where n;m; p � 0 and x is universal in �; z1 :A1; : : : ; zn :An; x1 :B1; : : : ; xm :Bm: As we will seein Set. 3.2, if a valid ontext is not a suess or failure ontext, there is always at least oneandidate triple. 10



3.1 The SetVar ProedureThe SETVAR, INTRO, and BACKCHAIN operations desribed below de�ne the SetVar searhproedure. At eah step, an operation is applied to a searh ontext in normal form. Theresult is a substitution �. The substitution is applied to the input searh ontext whih isthen normalized to obtain the input to the next step of the proedure. Generally, the originalinput has the form �; (hi; z; P ) where � is a standard ontext and P is a theorem for whiha proof is sought. If a suess ontext is reahed then the series of substitutions provides asolution to z whih represents the proof. Along the way set variables may arise. Their solutionsan also be extrated from the series of substitutions. In desribing these operations, we oftenwrite 8xn :An:K to denote the term 8x1 :A1 : : : 8xn :An:K, where n � 0. Similarly, we write�xn : An:K to denote the term �x1 : A1 : : : �xn : An:K. Note that this notation is overloadedsine it also denotes atten. However, sine atten only applies to ontexts or ontext elements,there should be no onfusion.SETVAR operation. Let � be a valid searh ontext and ((z1 :A1; : : : ; zn :An); z;8x1 :C1 : : : 8xp :Cp:Prop) a andidate triple in �, where n � 0, p > 0, and 8x1 :C1 : : : 8xp :Cp:Prop is a set type.Let � be the ontext z1 : A1; : : : ; zn : An. In order for this operation to apply, there must beq ourrenes of z in terms in � where q > 0, and for i = 1; : : : ; q, the ith ourrene is insome term Pi whih is part of an existential triple of the form ((�;�i); z0i; Pi) ourring afterthe andidate triple ontaining z. Furthermore, Pi must be of one of the following forms:1. hx1; : : : ; xpi 2 zz1 : : : zn ! Px1 : : : xp2. hx1; : : : ; xj ; f1x1 : : : xp0 ; : : : ; frx1 : : : xp0i 2 zz1 : : : zn ! P 0x1 : : : xp03. hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn ! Q4. :(hx1; : : : ; xj;M1; : : : ;Mri 2 zz1 : : : zn)5. hN1; : : : ; Npi 2 zz1 : : : znsuh that the provisos of the orresponding rule in Fig. 5 hold in the ontext �; z1 :A1; : : : ; zn :An.For i = 1; : : : ; q, let Qi be the solution for zz1 : : : zn in Pi aording to rules 1-5 of Fig. 5. Ifappropriate, apply rule 6 of the �gure as many times as possible to Qi to obtain Q0i. Let Q bethe term Q01 \ � � � \Q0q. Let � be the singleton set ontaining the tuple hz; hi; �zn :An:Qi.INTRO operation. Let � be a valid searh ontext and ((z1 : A1; : : : ; zn : An); z;8x : A:B) aandidate triple in �. Let z0 be a variable that does not our in � and assume x does not ourin �. Let � be the ontext ontaining the single triple ((z1 :A1; : : : ; zn :An; x :A); z0; B), and let� be fhz;�; z0ig:BACKCHAIN operation. Let � be a valid searh ontext and ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm)a andidate triple in �, where m;n � 0, and �; z1 : A1; : : : ; zn : An ` xM1 : : :Mm : s holdswhere s is Prop or Type. If there is a universal delaration w :Q suh that either w is one ofz1; : : : ; zn or w :Q ours to the left of ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm) in �, the judgment�; z1 :A1; : : : ; zn :An ` Q : s holds, Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), andy is x or any existential variable in �, then we an \bakhain" on Q as follows. Let h1; : : : ; hqbe variables that do not our in �. Let � be the ontext z1 : A1; : : : ; zn : An. Let � be theontext (�; h1; Q1);(�; h2; [h1z1 : : : zn=y1℄Q2);...(�; hq; [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq);(�; [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Nn; xM1 : : :Mm):11



Let � be fhz;�; �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn)ig:A derivation of a searh ontext � is a list of substitutions �1; : : : ; �n suh that for i =1; : : : ; n, �i is the result of applying one of the searh operations to the normal form of �i�1 : : : �1�and the normal form of �n : : : �1� is a suess ontext.As mentioned earlier, the use of searh ontexts allows us to separate a single operation inDowek's proedure into two operations here, INTRO and BACKCHAIN, whih orrespond to fairlyintuitive steps of proof searh. The INTRO operation performs the introdution of assumptionsinto the environment. In partiular, assumptions are introdued into loal ontexts. In thesearh ontext as a whole, the third element of existential triples represent the formulas thatmust be proved, and for any given formula the assumptions that are available to use in its proofare those in its loal ontext as well as all universal delarations that our before the triple.The BACKCHAIN operation performs the usual operation of bakhaining on an assumptionwhen the formula to be proved \mathes" the atomi part of the assumption. In partiular,for the partiular andidate triple involved, it is not required that its third argument be thesame as or unify with the atomi part of the assumption used in bakhaining. Instead, aonstraint is added that must be heked as the searh proeeds. Subsequent searh operationsmay instantiate existential variables in suh a way that the onstraint may or may not relate twoterms that are ��-onvertible. In the ase when they are not ��-onvertible, the ontext beomesa failure ontext. In addition to the onstraint, BACKCHAIN generates new existential triplesfor the subgoals that must still be proven. Also, a substitution is formed whih instantiatesthe existential variable in the original andidate triple. Whenever there are subgoals, thisinstantiation is partial sine it will ontain ourrenes of the new existential variables reatedfor the subgoals.Searh ontexts provide a way to simplify the handling of soping onstraints within theframework of a proof searh proedure whih operates by �lling in substitution instanes forexistential variables inrementally. This notion of ontext does not deviate far from the standardone in the sense that at any point during searh a simple translation via the atten operation anbe applied to transform searh ontexts whih ontain loal ontexts bak to ordinary ontexts.This atten operation is essential in forming and propagating substitutions. These substitutionsan be said to use a funtional enoding of sope. In Dowek's proedure [10℄, this funtionalenoding of sope is used in both ontexts and substitutions. At the other end of the spetrumare various aluli that avoid a funtional enoding by integrating existential variables withexpliit substitutions. Examples inlude the ��-alulus [11℄, the �L�-alulus [22℄, and thesubstitution alulus for Martin-L�of type theory [19℄. In these aluli, existential variables aredistint from ordinary variables and substitutions are represented expliitly, allowing redutionof terms with existential variables to be delayed as neessary until the terms are �lled in. Thealuli involved are more omplex, but they provide simpli�ed handling of soping onstraintsand representation of substitutions.Note that the proedure as desribed is non-deterministi sine it does not speify an orderon the appliation of searh operations. As mentioned earlier, our implementation in �Prolog re-solves non-determinism by requesting input from the user. Depth-�rst searh with baktrakingis another possible strategy.To illustrate, we desribe the exeution of the proedure on two examples. We start with asimple example to illustrate the interation of INTRO and BACKCHAIN. The seond example isa modi�ed form of our earlier example. The proof of this example ontains an essential use ofthe SETVAR operation; it is not possible to prove it using only INTRO and BACKCHAIN. For the12



�rst example, let � be the ontextNat :Type; P :Nat! Prop; a :Natas in the previous setion from whih we want to prove the theorem (8n :Nat:Pn) ! Pa: Webegin with the following searh ontext.�; (hi;M; (8n :Nat:Pn)! Pa) (1)This ontext is in normal form and the existential triple is a andidate triple to whih the INTROoperation an be applied. Note that (8n :Nat:Pn) ! Pa an be written 8h : (8n :Nat:Pn):Pa.The operation results in a substitution �1 of the formfhM; ((h : (8n :Nat:Pn));M 0; Pa);M 0igwhere M 0 is a new variable. Applying this substitution to (1), we obtain the ontext�; ((h : (8n :Nat:Pn));M 0; Pa): (2)When applying INTRO, it is atually not neessary to hange the name of the existential variable.Here, all ourrenes ofM are replaed withM 0 whih is another variable of the same type (afterapplying atten). Instead, we an just keep M . We adopt this onvention in the next examplebelow. In this example, we an now apply BACKCHAIN with the existential triple as the andidatetriple. The universal delaration we will use in this appliation of BACKCHAIN is h : (8n :Nat:Pn).We know this operation an be applied beause both of the following judgments hold as required.�;9M 0 : (8n :Nat:Pn)! Pa; h : (8n :Nat:Pn) ` Pa : Prop�;9M 0 : (8n :Nat:Pn)! Pa; h : (8n :Nat:Pn) ` (8n :Nat:Pn) : PropWe form the ontext �2 of the BACKCHAIN operation((h : (8n :Nat:Pn)); N;Nat); ((h : (8n :Nat:Pn)); [Nh=n℄Pn; Pa)where the �rst element is an existential triple with new variable N , and the seond element is aonstraint triple. The term [Nh=n℄Pn is just P (Nh). The substitution �2 of this operation isfhM 0;�2; �h : (8n :Nat:Pn):h(Nh)ig:Applying �2 to (2) ompletes the appliation of BACKCHAIN and gives�; ((h : (8n :Nat:Pn)); N;Nat); ((h : (8n :Nat:Pn)); P (Nh); Pa): (3)Let �0 denote the above ontext. Note that �0 is�;9N :8h : (8n :Nat:Pn):Nat;8h : (8n :Nat:Pn):P (Nh) = 8h : (8n :Nat:Pn):Pa:One more appliation of BACKCHAIN will omplete the searh. This time, we apply it using theandidate triple ((h : (8n :Nat:Pn)); N;Nat) and the universal delaration a :Nat. In this ase,the two typing judgments required to hold in order to apply BACKCHAIN are the same:�0; h : (8n :Nat:Pn) ` Nat : Type:The ontext �3 ontains only the simple onstraint ((h : (8n : Nat:Pn));Nat;Nat) and thus,the substitution �3 is fhN;�3; �h : (8n : Nat:Pn):aig: Applying this substitution to (3) andnormalizing results in the following ontext.�; ((h : (8n :Nat:Pn));Nat;Nat); ((h : (8n :Nat:Pn)); Pa; Pa): (4)13



Note that this ontext ontains no existential triples and two onstraint triples that relate ��-equivalent terms. Thus it is a suess ontext and searh is ompleted. The proof of the formula(8n :Nat:Pn) ! Pa in the ontext we started with is obtained by applying the substitutionsobtained at eah step to the original existential variable M and normalizing. In this ase, thenormal form of �3�2�1M is the term �h : (8n :Nat:Pn):haFor the seond example, let � be the ontextNat :Type; P :Nat! Prop; Q :Nat! Prop:We want to �nd a term to instantiate M in the following searh ontext.�; (hi;M;9 �A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (8x :Nat:hxi 2 A! Qx))) (5)The formula we want to prove ontains ourrenes of 9 and ^, whih we must �rst expandbefore proeeding with searh. To simplify the presentation of this example, we �rst make someobservations about proofs of formulas ontaining these onnetives. Consider the general aseof proof searh in a ontext of the form �; (�;M;9 �x :Q:P ) where � is a ontext of the formz1 :A1; : : : ; zn :An. Expanding 9, this ontext is the same as�; (�;M;8C :Prop:(8x :Q:Px! C)! C): (6)In general, in searhing for a proof of an existential formula, a term is hosen to instantiate thebound variable and searh proeeds. Alternately, a variable or plaeholder is used whih gets�lled in as searh ontinues. In the SetVar proedure, two appliations of INTRO followed by anappliation of BACKCHAIN to the existential triple in ontext (6) has the a�et of introduingsuh a plaeholder. To see this, �rst note, that we an apply INTRO, generating the substitution�1, fhM; ((�; C :Prop);M; (8x :Q:Px! C)! C);Mig:Here, we reuse the name M as disussed above. Applying �1 to (6) results in the ontext�; ((�; C :Prop);M; (8x :Q:Px! C)! C): (7)A seond INTRO generates the substitution �2,fhM; ((�; C :Prop; h : (8x :Q:Px! C));M;C);Migand thus the ontext �; ((�; C :Prop; h : (8x :Q:Px! C));M;C) (8)Now, we an apply BACKCHAIN to the above existential triple using universal delaration h :(8x :Q:Px! C). From now on, we leave out showing that the neessary typing judgments holdin order for BACKCHAIN to be appliable. Using new variables X and M 0, we form the ontext�3 as follows ((�; C :Prop; h : (8x :Q:Px! C));X;Q);((�; C :Prop; h : (8x :Q:Px! C));M 0; P (Xz1 : : : znCh));((�; C :Prop; h : (8n :Nat:Pn)); C;C):The substitution �3 of this operation isfhM;�3;8zn :An:�C :Prop:�h : (8x :Q:Px! C):h(Xz1 : : : znCh)(M 0z1 : : : znCh)ig:Applying �3 to (8), we get �;�3. Note the roles of X and M 0. In partiular, Xz1 : : : znCh isthe plaeholder for the term bound by existential quanti�ation while M 0z1 : : : znCh must be14



�lled in with the proof of the instantiated formula. Also, note the roles of h and C in thesethree steps. They are introdued only to be used immediately in bakhaining and it is unlikelythat they will have any further role in the searh for a proof. Also, note that the onstraint in�3 relates equivalent terms and that no subsequent instantiations of existential variables willhange that. We use these fats to introdue a searh operation, whih we all EXISTS-INTRO,that abbreviates this sequene of steps and eliminates C, h, and the onstraint. In partiular,we introdue a new onstant 9I. From a ontext of the form in (6) using new variables X0 andM 00, the EXISTS-INTRO operation generates the ontext �(�;X0; Q); (�;M 00; P (X0z1 : : : zn))and the substitution �fhM;�;8zn :An:(9I (X0z1 : : : zn) (M 00z1 : : : zn))ig:In our example, we will use this operation in plae of the sequene of two appliations of INTROfollowed by an appliation of BACKCHAIN as above. It will always be the ase that any appliationof this operation an be expanded into a sequene of the three operations using new variables X,M 0, C, and h. In the abbreviated version all ourrenes of X0z1 : : : zn andM 00z1 : : : zn stand forXz1 : : : znCh and M 0z1 : : : znCh, respetively. Also, 9I (X0z1 : : : zn) (M 00z1 : : : zn) abbreviatesthe term �C :Prop:�h : (8x :Q:Px! C):h(Xz1 : : : znCh)(M 0z1 : : : znCh):Sine the variables C and h along with their types are left out of loal ontexts, these delarationsas well as the onstraint must be put bak in to get the expanded form. In the unabbreviatedsequene, note that one C and h are introdued, they stay around. Thus, the abbreviated formatually hanges the ontexts that appear in subsequent searh. However, it is straightforwardto transform a derivation that uses EXISTS-INTRO to one ontaining only SETVAR, INTRO, andBACKCHAIN, systematially adding ourrenes of C and h where neessary. Using the abbrevi-ated form has the onsequene of imposing the restrition that, beause C and h do not appearat all, they do not apper in subsequent substitution terms. This restrition is not a serious onefor the lass of theorems we are onsidering.We introdue a similar operation alled AND-INTRO to abbreviate several steps for the asewhen the ontext has the form �; (�;M;A ^B). Note that this ontext denotes�; (�;M;8C :Prop:(A! B ! C)! C):AND-INTRO generates the ontext �, whih is simply(�;M0; A); (�;M 00; B)and the substitution �fhM;�;8zn :An:(^I (M0z1 : : : zn)(M 00z1 : : : zn))ig:This operation an also be expanded to two appliations of INTRO followed by BACKCHAIN.Similar to EXISTS-INTRO, there are variables M , M 0, C, and h suh that in the abbreviatedversion, all ourrenes ofM0z1 : : : zn andM 00z1 : : : zn stand forMz1 : : : znCh andM 0z1 : : : znCh,respetively, and ^I (M0z1 : : : zn)(M 00z1 : : : zn) abbreviates the term�C :Prop:�h :A! B ! C:h(Mz1 : : : znCh)(M 0z1 : : : znCh):15



Furthermore, to get the expanded form, the delarations C :Prop and h :A ! B ! C must beadded to loal ontext � in elements of � and the onstraint ((�; C :Prop; h :A! B ! C); C;C)must also be added to �. Also, AND-INTRO imposes a restrition similar to EXISTS-INTRO sineC and h do not apper in �.The EXISTS-INTRO and AND-INTRO operations, respetively, an now be used for the �rsttwo steps of proof searh in our seond example denoted by the ontext (5). First, the result ofapplying EXISTS-INTRO is the ontext �1 and substitution �1, respetively, as follows where A0and M 00 are new variables.�1 := (hi; A0;Nat! Prop); (hi;M 00; (8x :Nat:hxi 2 A0 ! Px) ^ (8x :Nat:hxi 2 A0 ! Qx))�1 := fhM;�1; (9I X0 M 00)igApplying �1 to ontext (5), we get the following ontext:�; (hi; A0;Nat! Prop); (hi;M 00; (8x :Nat:hxi 2 A0 ! Px) ^ (8x :Nat:hxi 2 A0 ! Qx)): (9)Using the triple ontaining M 00 as the andidate triple, the result of applying AND-INTRO is thefollowing ontext and substitution:�2 := (hi;M 01;8x :Nat:hxi 2 A0 ! Px); (hi;M 02;8x :Nat:hxi 2 A0 ! Qx)�2 := fhM 00;�2; (^I M 01 M 02)ig:Applying �2 to ontext (9), we get the following ontext:�; (hi; A0;Nat! Prop);(hi;M 01;8x :Nat:hxi 2 A0 ! Px); (hi;M 02;8x :Nat:hxi 2 A0 ! Qx): (10)We an now apply SETVAR to obtain a solution for A0 using the maximal solutions for the twotypes ontaining A0. In partiular, for this appliation, the existential triple ontaining A0 isthe andidate triple and the remaining two existential triples ontain ourrenes of A0. Bothourrenes are in formulas of the �rst form listed in the de�nition of SETVAR and thus themaximal solution in eah ase is obtained using rule 1 of Fig. 5. The substitution resulting fromthis appliation is: �3 := fhA0; hi; fhxi j Pxg \ fhxi j Qxgig:After substitution and �-onversion, the ontext beomes:�;(hi;M 01;8x :Nat:(hxi 2 (fhxi j Pxg \ fhxi j Qxg))! Px);(hi;M 02;8x :Nat:(hxi 2 (fhxi j Pxg \ fhxi j Qxg))! Qx):Note that expanding all de�nitions, this ontext is equivalent to�;(hi;M 01;8x :Nat:(8C :Prop:((Px! Qx! C)! C))! Px);(hi;M 02;8x :Nat:(8C :Prop:((Px! Qx! C)! C))! Qx):From this point on, several more instanes of INTRO and BACKCHAIN are needed to transformthis ontext to a suess ontext.To see why this derivation an not be ompleted without SETVAR, onsider again the on-text (10) of this example just before SETVAR was applied. Expanding de�nitions, this ontextis equivalent to�; (hi; A0;Nat! Prop); (hi;M 01;8x :Nat:A0x! Px); (hi;M 02;8x :Nat:A0x! Qx) (11)16



After applying all possible instanes of INTRO, we get the ontext�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x);M 01; Px); ((x :Nat; h :A0x);M 02; Qx) (12)At this point BACKCHAIN an be applied to any of the existential triples, but none leads to asuess ontext. For example, onsider the �rst triple. The only universal delarations that anbe used in bakhaining are the delarations of P :Nat! Prop or Q :Nat! Prop. If the �rst isused, then the following ontext and substitution are generated.� := ((x :Nat);X;Nat); ((x :Nat);Prop;Prop)� := fhA0;�; �x :Nat:P (Xx)igAfter one more BACKCHAIN to �ll in X using loal delaration x :Nat, the instantiation for A0beomes �x : Nat:Px. Similarly, if the delaration Q : Nat ! Prop were hosen instead, twoappliations of BACKCHAIN would lead to the instane �x :Nat:Qx for A0.The same problem ours if we begin with a BACKCHAIN using the seond or third existentialtriples in ontext (12). Consider the seond triple. The only universal delaration that an beused in bakhaining is h :A0x in the loal ontext. Using this delaration, the following ontextand substitution are generated.� := ((x :Nat; h :A0x); A0x; Px)� := fhM 01;�; �x :Nat:�h :A0x:higApplying � to the ontext (12) results in the ontext�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); A0x; Px); ((x :Nat; h :A0x);M 02; Qx)The variable A0 will not get �lled in until the �rst existential triple is used in bakhaining. Theonly way to satisfy the new onstraint is to use P :Nat ! Prop as the universal delaration insuh an appliation of BACKCHAIN, whih as before, leads to �x :Nat:Px as the instantiation forA0. At this point, the only way to ontinue searh is to apply BACKCHAIN to the existential tripleontaining M 02. However, suh a BACKCHAIN leads to a onstraint ((x :Nat; h :A0x); Px;Qx)whih relates two terms that are not ��-onvertible, and thus the result is a failure ontext.In a similar manner, starting with a BACKCHAIN on the third existential triple in (12) alsoleads to a failure ontext. The problem in this example is that restriting searh to INTRO andBACKCHAIN fores instanes of A0x to be atomi and no atomi instane leads to a proof. TheSETVAR operation, on the other hand, results in a type ontaining set intersetion, whih unfoldsto onjuntion, whih further unfolds to a non-atomi type. As we will see in Setion 4, withoutSETVAR, we must use the operation whih performs enumeration of types in order to get aninstane for A0x that is not atomi. In general, type enumeration leads to a very large searhspae. One way to view the SETVAR operation is as a method for ontrolling type enumerationfor theorems in a partiular lass.As mentioned, SetVar also serves as a proof searh proedure for extensions of hohh andLF. We view either one as a sublanguage of CC+ by making appropriate restritions. Forexample, to restrit the proedure to hohh, we must restrit the types of bound variables inontext elements to be types in Churh's simple theory of types. In addition, we must plaerestritions on the syntax of types that are analogous to the restritions plaed on formulas ofhigher-order logi in hohh. To desribe one of the restritions, we de�ne the notion of positiveand negative ourrenes of terms in formulas. If a term A ours in a base type P in someontext �, A is said to our positively in P . Term A ours positively (negatively) in 8x :P:Q17



or P ! Q if A ours positively (negatively) in Q or negatively (positively) in P . In hohh, oneof the restritions on the syntax of formulas is that for every base type xM1 : : :Mn, if this termappears positively in a universal delaration, then x annot be an existential variable; it mustbe a universal variable. Similarly, if xM1 : : :Mn appears negatively in an existential delaration,then x must be a universal variable. In our extension, we relax this restrition and allow x to bean existential variable whenever its type has the form �1 ! � � � ! �j ! � 01 ! � � � ! � 0k ! Propfor some j � 0 and k > 0, the type � 01 ! � � � ! � 0k ! Prop is a set type, and x only oursin expressions of the form hx1; : : : ; xki 2 xz1 : : : zj where xz1 : : : zj is a set variable. In thissublanguage of CC+, the INTRO and BACKCHAIN operations orrespond fairly losely to searhoperations in the �Prolog interpreter, while the SETVAR operation handles instantiation of setvariables in the extended language. In addition, the SETVAR operation within the ontext ofthis extended version of hohh gives a formalization of Bledsoe's proedure in a higher-order logisetting. In ontrast, SetVar is desribed in an adho extension to �rst-order logi in Bledsoe [3℄.To use this proedure for proof searh in LF, we must extend LF to permit quanti�ationover ertain prediates. We permit suh quanti�ation in a restrited way, similar to the way itis permitted in the extension of hohh above. In partiular, we allow existential quanti�ationover prediate x whenever the following onditions hold: the type of x type has the form8xj : Aj :8zk : Bk:Prop for some j � 0 and k > 0; the types A1; : : : ; Aj are any LF types; thetypes B1; : : : ; Bk are base types in LF (whih means that the type 8zk :Bk:Prop is a set typeof a partiular form); and x only ours in expressions of the form hx1; : : : ; xki 2 xz1 : : : zjwhere xz1 : : : zj is a set variable. In Bledsoe's setting, after instantiating all set variables, theformula beomes a formula of �rst-order logi. Similarly, in LF with the extension just desribed,whenever a ontext has a derivation, it will be the ase that after instantiation of existentialquanti�ers, the result is a valid ontext in pure LF. For LF, an additional hange is needed.Beause LF does not permit general quanti�ation over prediates, we annot use the diretenoding of logial onnetives and set operations desribed in the previous setion. Instead,these de�nitions need to be axiomatized in LF.3.2 Soundness of the SetVar Searh ProedureWe begin by stating and proving some general properties about searh ontexts, substitution,and normal forms.Given term P and ontext �, we write ��(P;�) (or just ��(P ) when � obvious) to denotethe normal form of P in � if it has one. Similarly, we write ��(�) to denote the normal formof ontext �. Let � be a valid searh ontext. When applying a series of substitutions to aontext or term, it is easy to see that if a normalization is performed after all substitutionsare ompleted, then any intermediate normalization steps have no e�et. The following lemmastates this fat.Lemma1. Let P be a term, let � be a ontext, and let � and � be two substitutions. If ��Phas a normal form in ���, then ��(�(��(�P ))) = ��(��P ). Also ��(�(��(��))) = ��(���).The next two lemmas about searh ontexts follow diretly from properties about standardontexts in [10℄.Lemma2. Let � be a valid searh ontext, let �0 be its normal form, and let P and Q be twoterms suh that � ` P : Q. Then �0 is a valid searh ontext and �0 ` P : Q.18



Lemma3. Let � be a normal valid searh ontext whih is neither a suess ontext nor afailure ontext. Then there is an existential triple ((z1 :A1; : : : ; zn :An); z; B) in �, n � 0, suhthat 8z1 :A1 : : : 8zn :An:B is well-typed in � without using the onstraints and B has the form8zn+1 :An+1 : : : 8zm :Am:C where m � n and C is atomi and rigid in �; z1 :A1; : : : ; zm :Am.If x is a variable, P is a term, and � is a standard ontext then [P=x℄� denotes the operationof substituting P for all free ourrenes of x in onstraints and on the right of delarationsin �. The following property is known to hold for standard ontexts in CC and was shown inDowek [9℄ to extend to CC+ ontexts.Lemma4. Let M;N;A be terms and let �; x :B;�0 be a ontext suh that �; x :B;�0 ` M : Aand � ` N : B. Then �; [N=x℄�0 is a valid ontext and �; [N=x℄�0 ` [N=x℄M : [N=x℄A.The next three lemmas are needed to allow us to adapt additional properties in [10℄ to oursetting. Lemmas 5 and 6 provide the neessary orrespondene between standard ontexts andsearh ontexts. Lemma 7 introdues a new onept needed for our soundness proof.Lemma5. Let � be a valid searh ontext and let � be a substitution. Then �� = ��.Proof. The proof is by indution on the length of �. The theorem learly holds if � is the emptyontext. Otherwise, � has the form �0; e and we assume that ��0 = ��0.For the ase when e is a universal delaration of the form x :P , �� is ��0; x :�P and �� is��0; x :�P . By the indution hypothesis and the fat that �P = �P , these two ontexts are thesame.For the ase when e is an existential triple of the form ((z1 : A1; : : : ; zn : An); z; B) wheren � 0, then if there is a tuple hz;�;Mi in �, then �� is ��0;� and hz;�;Mi is in �. Thus ��is ��0;� and �� is ��0;� whih are the same ontext by a simple appliation of the indutionhypothesis. Otherwise, �� is ��0; ((z1 : �A1; : : : ; zn : �An); z; �B). In this ase �� is ��0;9z :8z1 :�A1 : : : 8zn :�An:�B and �� is ��0;9z :8z1 :�A1 : : : 8zn :�An:�B whih are again the sameontext beause � and � are the same substitution on terms.The ase when e is a onstraint triple is similar to the ase for existential triples when theexistential variable is not bound by �.Let � be a valid searh ontext. A substitution � is well-typed in � if �� is a valid ontext,for every tuple hz;�;Mi 2 �, either z does not our in � or if it ours, � has the form�0; ((z1 : A1; : : : ; zn : An); z; B);�00 and ��0;� ` M : �(8z1 : A1 : : : 8zn : An:B) holds. We anassume that all the existential variables introdued in the ontext argument of tuples in � aredistint from one another.Lemma6. Let � be a valid searh ontext and � a substitution. Then � is well-typed in � ifand only if � is well-typed in �.Proof. The proof is by indution on the length of �. The theorem learly holds if � is the emptyontext. Otherwise, � has the form �0; e. We must show that � is well-typed in �0; e if and only if� is well-typed in �0; e. We only show the ase for the forward diretion when e is an existentialtriple of the form ((z1 :A1; : : : ; zn :An); z; B) where n � 0. The other ases are similar, and theproof is easily reversed to get the bakward diretion.19



We assume that � is well-typed in �0; e and we show that � is well-typed in �0; e. Clearly �is well-typed in �0, so by the indution hypothesis, we know that � is well-typed in �0. Thus, byde�nition of well-typed substitution, ��0 is a valid searh ontext and ��0 is a valid standardontext.We �rst onsider the ase when z does not our as the �rst argument in a tuple in �. Sine �is well-typed in �0; ((z1 :A1; : : : ; zn :An); z; B), we know that ��0; ((z1 :�A1; : : : ; zn :�An); z; �B)is a valid searh ontext. Thus, by de�nition, ��0;9z : �(8z1 : A1; : : : ;8zn : An:B) is a validstandard ontext. By Lemma 5, this ontext is the same as ��0;9z :�(8z1 :A1; : : : ;8zn :An:B).We must show that � is well-typed in �0;9z :8z1 :A1; : : : ;8zn :An:B. This follows if we an showthat ��0;9z :�(8z1 :A1; : : : ;8zn :An:B) is a valid ontext. This follows from the valid standardontext above and the fat that � and � are the same when applied to terms.If there is a tuple hz;�;Mi in �, then from the fat that � is well-typed in �0; e, we know that��0; �e is a valid searh ontext, from whih it follows that ��0;� is a valid searh ontext. Thus,��0;� is a valid standard ontext. We also know that ��0;� ` M : �(8z1 :A1 : : : 8zn :An:B)holds. The tuple hz;�;Mi is in �, so we must show that ��0;� is a valid ontext. By Lemma 5,this is the same ontext as ��0;� whih we have shown to be valid. We must also show that��0;� ` M : �(8z1 :A1 : : : 8zn :An:B) holds. Note that ��0 is the same as ��0 by Lemma 5,whih is the same as ��0, whih again by Lemma 5, is the same as ��0. Also � is �. Fromthese equivalenes, and the fat that � and � are the same when applied to terms, the abovejudgment is equivalent to ��0;� ` M : �(8z1 :A1 : : : 8zn :An:B) whih we have shown to hold.We introdue a weaker notion of well-typed substitution restrited to the normal form ofa ontext. A substitution � is ��-well-typed in � if ��(��) is a valid ontext, for every tuplehz;�;Mi 2 �, either z does not our in � or if it ours, � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, both M and �(8z1 : A1 : : : 8zn : An:B) have normal forms in ��(��0;�), and��(��0;�) ` ��(M) : ��(�(8z1 :A1 : : : 8zn :An:B)) holds.Lemma7. Let � be a valid searh ontext and let � be a substitution. If � is well-typed in �,then � is ��-well-typed in �.Proof. This theorem follows diretly from the de�nition of well-typed substitution and Lemma 2.The next four lemmas follow diretly from Lemmas 5, 6, and 7, and properties in [10℄. Wegive the proof of Lemma 10 only.Lemma8. Let � be a valid searh ontext, � a substitution, and P and Q two terms suh that� ` P : Q. If � is well-typed in �, then �� is a valid ontext and �� ` �P : �Q. If � is��-well-typed in �, then ��(��) is a valid ontext and ��(��) ` ��(�P ) : ��(�Q).The omposition of two substitutions � and � , denoted � Æ�, is the union of the set of tripleshz; ��; �Mi suh that hz;�;Mi 2 �, and the set of triples hz;�;Mi suh that hz;�;Mi 2 �and z is does not our as the �rst element of a triple in �.Lemma9. Let � and � be two substitutions and let � be a searh ontext. Then (� Æ�)� = ���.Lemma10. Let � be a valid searh ontext and let � and � be two substitutions.20



1. If � is well-typed in � and � is well-typed in ��, then � Æ � is well-typed in �.2. If � is ��-well-typed in � and � is ��-well-typed in the normal form of ��, then � Æ � is��-well-typed in �.Proof. Assume that � is well-typed in � and � is well-typed in ��. Then ��� is a valid ontext,and so by the equivalene of Lemma 9, (� Æ �)� is a valid ontext. Every tuple in � Æ � eitheromes from � or � . We �rst onsider tuples from �. Let hz;�;Mi be suh a tuple. Thenhz; ��; �Mi is in � Æ �. If � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, we must show that(� Æ �)�0; �� ` �M : (� Æ �)(8z1 :A1 : : : 8zn :An:B): (1)Sine � is well-typed in �, we know that��0;� `M : �(8z1 :A1 : : : 8zn :An:B): (2)We know that � is well-typed in �� and by de�nition of substitution, ��0;� is a subontext of��. Thus, � is well-typed in ��0;�. So from (2) and Lemma 8, we know that���0; �� ` �M : ��(8z1 :A1 : : : 8zn :An:B)whih by Lemma 9 is equivalent to (1) and we have our result. We now onsider tuples from � .Let hz;�;Mi be suh a tuple. By de�nition of omposition, we know that this tuple is in � Æ �and that z is not bound by �. If � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, we must showthat (� Æ �)�0;� `M : (� Æ �)(8z1 :A1 : : : 8zn :An:B): (3)Sine z is not bound by �, we know that �� has the form ��0; ((z1 :�A1; : : : ; zn :�An); z; �B); ��00.Sine � is well-typed in ��, we know that ���0;� ` M : ��(8z1 :A1 : : : 8zn :An:B), whih byLemma 9 is equivalent to (3) and we have our result.For the ase when � is ��-well-typed in � and � is ��-well-typed in the normal form of ��,the proof is similar and also relies on Lemmas 1 and 5.Given valid searh ontext �, a substitution � is said to be a solution to � if � is ��-well-typedin � and ��(��) is a suess ontext. A solution is normal if it binds exatly the existentialvariables of � and for every tuple hz;�;Mi suh that � has the form �0; ((z1 : A1; : : : ; zn :An); z; B);�00, we have that � is empty and M is normal in ��0. For an arbitrary solution �to a ontext �, we obtain the normal form of � from � as follows: remove all tuples hz;�;Misuh that z is not an existential variable in �; for all other tuples hz;�;Mi 2 � suh that � hasthe form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, replae this tuple with hz; hi;M 0i where M 0 is thenormal form of M in ��0.Lemma11. Let � be a valid searh ontext and let � be a solution to �. Let �0 be the normalform of �. Then �0 is a normal solution to �.The remaining lemmas and their proofs follow fairly losely the proof of soundness inDowek [10℄. The main di�erenes are that we must prove additional ases for the SETVARoperation and the ases for INTRO and BACKCHAIN are slightly modi�ed beause of the use ofsearh ontexts. 21



Lemma12. Let � be a normal valid searh ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a searh operation to �. Then �0;� is a valid searhontext.Proof. Let �0 be the single item ontext ((z1 :A1; : : : ; zn :An); z; C). Sine � is a valid searhontext, �0 and �0;�0 are valid searh ontexts, and thus �0 and �0;�0 are valid standardontexts. To show that �0;� is valid, we need to show that �0;� is a valid standard ontext.For the SETVAR ase, � is empty and we have our result.For the INTRO ase, C has the form 8x : A:B, M is some new variable z0 and � is ((z1 :A1; : : : ; zn :An; x :A); z0; B). Sine �0 is the same as � up to renaming of the existential variableand �0;�0 is valid, we have our result.For the BACKCHAIN ase, there is a delaration w : 8y1 :Q1 : : : 8yq :Qq:B with q � 0 whiheither ours in �0 or w is one of z1; : : : ; zn. � is9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq;8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B = 8zn :An:C:From the de�nition of BACKCHAIN, we know that the following hold�0; z1 :A1; : : : ; zn :An ` C : s (1)�0; z1 :A1; : : : ; zn :An ` 8y1 :Q1 : : : 8yq :Qq:B : swhere s is Prop or Type. Thus, for i = 1; : : : ; n, there is a sort si, and for j = 1; : : : ; q, there isa sort s0j suh that the following hold.�0; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (2)�0; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yj�1 :Qj�1 ` Qj : s0j (3)�0; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq :Qq ` B : s (4)For i = 1; : : : ; q, let �i be the ontext ontaining the �rst i elements of �. We prove by indutionon q that �0;�q is valid. If q is 0, �q is empty and we are done. Otherwise assume that �0;�q�1is valid. Sine �0; z1 :A1; : : : ; zn :An is valid, by thinning we know that �0;�q�1; z1 :A1; : : : ; zn :Anis valid. Thus, for i = 1; : : : ; q � 1, by Q-INIT we have that�0;�q�1; z1 :A1; : : : ; zn :An ` hi : 8zn :An:[h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi: (5)From (5), by repeated appliations of APP, for i = 1; : : : ; q � 1, we get�0;�q�1; z1 :A1; : : : ; zn :An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi: (6)From (2) with i = 1; : : : ; n, (3), and thinning, we get�0;�q�1; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (7)�0;�q�1; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq�1 :Qq�1 ` Qq : s0q (8)From (6) with i = 1, (8), and Lemma 4, we obtain:�0;�q�1; z1 :A1; : : : ; zn :An;y2 : [h1z1 : : : zn=y1℄Q2; : : : ; yq�1 : [h1z1 : : : zn=y1℄Qq�1 ` [h1z1 : : : zn=y1℄Qq : s0q22



By repeated appliations of Lemma 4 and (6) with i = 2; : : : ; q � 1, we obtain.�0;�q�1; z1 :A1; : : : ; zn :An ` [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq : s0q: (9)From (9), (7), and repeated appliations of PROD, we an onlude�0;�q�1 ` 8zn :An[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq : s0qfrom whih we an onlude by an appliation of Q-INTRO that �0;�q is valid.It remains to show that the onstraint is well-typed in �0;�q. By repeated appliations ofPROD from (1) and (2), it follows that�0 ` 8zn :An:C : s: (10)By thinning from (2), (4), and (10), the following hold.�0;�q; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (11)�0;�q ` 8zn :An:C : s (12)�0;�q; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq :Qq ` B : s (13)Sine �0;�q is valid, we now know that (6) holds for i = 1; : : : ; q with �q replaing �q�1. Thusby repeated appliations of Lemma 4 from (13) using this new version of (6) with i = 1; : : : ; q,we obtain the following.�0;�q; z1 :A1; : : : ; zn :An ` [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B : s (14)By repeated appliations of PROD from (11) and (14), followed by a single appliation ofEQ-INTRO using (12), we get the desired result.Lemma13. Let � be a normal valid searh ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a searh operation to �. Then �0;� ` M : 8z1 :A1 : : : 8zn :An:C holds.Proof. For the SETVAR ase, C is a set type of the form 8x1 :C1 : : : 8xp :Cp:Prop with p > 0, � isempty, andM has the form �zn :An:Q01\� � �\Q0q where q > 0 and for i = 1; : : : ; q, Q0i is obtainedfrom some formula Pi by an appliation of rule 1,2,3,4, or 5 followed by 0 or more appliationsof rule 6 of Fig. 5. We must show that �0 ` �zn :An:Q01 \ � � � \Q0q : 8zn :An:8xp :Cp:Prop holds.This holds if by appliations of ABS and the de�nition of \, for i = 1; : : : ; q, the following holds.�0; z1 :A1; : : : ; zn :An ` Q0i : 8xp :Cp:Prop:(It is straightforward to show that the left premises of this series of appliations of ABS hold, andalso that if the above judgments hold then �0; z1 :A1; : : : ; zn :An ` Q01 \ � � � \Q0q : 8xp :Cp:Propholds.) For eah i, we proeed by indution on the number k of appliations of rule 6. In thease where k = 0, then Q0i was obtained from Pi by a single appliation of one of the rules1,2,3,4, or 5. Beause � is valid, we know that �0 ` z : 8zn :An:8xp :Cp:Prop holds and thatthe ontext �0; z1 :A1; : : : ; zn :An is valid. By thinning, we get �0; z1 :A1; : : : ; zn :An ` z : 8zn :An:8xp :Cp:Prop and by repeated appliations of APP, we an onlude:�0; z1 :A1; : : : ; zn :An ` zz1 : : : zn : 8x1 :C1 : : : 8xp :Cp:Prop: (1)23



We show the ase when Q0i was obtained from rule 2. Similar (and simpler) reasoning fromthe de�nition of the SETVAR operation and the provisos in Fig. 5 an be used to show that theases for rules 1,3,4, and 5 hold.If Q0i was obtained from rule 2, then from the fat that the provisos hold, there is some j; rwith 0 � j < p and j + r = p suh that (1) an be rewritten as�0; z1 :A1; : : : ; zn :An ` zz1 : : : zn : 8x1 :C1 : : : 8xj :Cj :Cj+1 ! � � � ! Cj+r ! Prop: (2)Pi has the form hx1; : : : ; xj ; f1x1 : : : xp0 ; : : : ; frx1 : : : xp0i 2 zz1 : : : zn ! P 0x1 : : : xp0 for some p0suh that p0 > j and Q0i has the formfhx1; : : : ; xj ; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp0 :Dp0 :w1 =Cj+1 f1x1 : : : xp0 ! � � � ! wr =Cj+r frx1 : : : xp0 ! P 0x1 : : : xp0gfor some terms Dj+1; : : : ;Dp0 : We an prove that this term has type 8x1 :C1 : : : 8xj :Cj :Cj+1 !� � � ! Cj+r ! Prop in ontext �0; z1 : A1; : : : ; zn : An if (by unfolding of the set notation andappliations of ABS and PROD in a bakward diretion) we an prove that the following judgmentholds. (Again, the left premises of the appliations of ABS and PROD follow easily.)�0; z1 :A1; : : : ; zn :An; x1 :C1; : : : ; xj :Cj ; w1 :Cj+1; : : : ; wr :Cj+r; xj+1 :Dj+1; : : : ; xp0 :Dp0` w1 =Cj+1 f1x1 : : : xp0 ! � � � ! wr =Cj+r frx1 : : : xp0 ! P 0x1 : : : xp0 : PropThis follows diretly from the types of =Ci for i = j+1; : : : ; j+r, the types given in the provisosof P 0; f1; : : : ; fr, and appliations of PROD.For the indution ase, when k > 0, Q0i has the form fhy1; : : : ; yq0i j (9 �w :C 0:Q0)g and wemust show that�0; z1 :A1; : : : ; zn :An ` fhy1; : : : ; yq0i j (9 �w :C 0:Q0)g : 8x1 :C1 : : : 8xp :Cp:Prop (3)holds under the assumption that�0; z1 :A1; : : : ; zn :An ` fhy1; : : : ; yq0i j Q0g : 8x1 :C1 : : : 8xp :Cp:Prop (4)holds. Note that for this judgment to be derivable, it must be the ase that q0 � p. Variables anbe renamed so that y1; : : : ; yq0 are the same variables as x1; : : : ; xq. Then (3) follows from (4), thetype of 9, and the fat that aording to the provisos in Fig. 5, w does not our free elsewherein �0.For the INTRO ase, C has the form 8x :A:B, M is some new variable z0 and � is 9z0 :8zn :An:8x :A:B. Then diretly by Q-INIT, �0;� ` z0 : 8zn :An:8x :A:B holds.For the BACKCHAIN ase, there is a delaration w : 8y1 :Q1 : : : 8yq :Qq:B with q � 0 whiheither ours in �0 or w is one of z1; : : : ; zn. The termM is �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn)and � is 9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq;8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B = 8zn :An:C:We must show that�0;� ` �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) : 8zn :An:C (5)24



holds. From the de�nition of BACKCHAIN and the fat that � is valid, we know that�0; z1 :A1; : : : ; zn :An ` C : s�0; z1 :A1; : : : ; zn :An ` w : 8y1 :Q1 : : : 8yq :Qq:Bholds where s is either Prop or Type. By Lemma 12, we know that �0;� is a valid ontext, soby thinning, the following hold. �0;�; z1 :A1; : : : ; zn :An ` C : s (6)�0;�; z1 :A1; : : : ; zn :An ` w : 8y1 :Q1 : : : 8yq :Qq:B (7)From (6), by appliations of PROD (where the left premises are easy to prove as before), we anonlude �0;� ` 8zn :AnC : s: (8)Sine �;� is valid, we also know that both sides of the onstraint in � have the same type.Thus, from (8), we know�0;� ` 8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B : s (9)holds. Also, for i = 1; : : : q, the following hold.�0;�; z1 :A1; : : : ; zn :An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi (10)By repeated appliations of APP from (7) and (10)�0;�; z1 :A1; : : : ; zn :An ` w(h1z1 : : : zn) : : : (hqz1 : : : zn) : [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄Bholds, and by repeated appliations of ABS where the left premises are easy to prove as before�0;� ` �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) :8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B (11)holds. Thus by an appliation of CONV from (8), (9), (11), and the onstraint in �, we anonlude that the desired result (5) holds.Lemma14. Let � be a normal valid searh ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a searh operation to �. Let � be the substitutionontaining the single tuple hz;�;Mi. Then � is well-typed in �.Proof. The proof is by indution on the number of elements in �00. Note that ��0 is just �0. Let�0 be the ontext ontaining the single element ((z1 :A1; : : : ; zn :An); z; C).For the base ase, when �00 is empty, we have to show that �(�0;�0) is valid and that��0;� ` M : �(8zn :An:C) holds. By the de�nition of substitution, �(�0;�0) is simply ��0;�.Sine ��0 is �0, we have to show that �0;� is valid. This follows by Lemma 12. Thus �(�0;�0) isvalid. Sine ��0 is �0, it is also the ase that ��0 is �0. Also, sine � is valid, z does not our freein A1; : : : ; An; C, so �(8zn :An:C) is 8zn :An:C. Thus, we have to show �0;� `M : 8zn :An:C.This follows by Lemma 13.If �00 is non-empty, it has the form �00; e. Thus, �� is �0;�; ��00; �(e). To show that � iswell-typed in �, we must show that �0;�; ��00; �(e) is a valid searh ontext, or equivalently25



that �0;�; ��00; �(e) is a valid standard ontext. By the indution hypothesis, we know that �is well-typed in �0;�0;�00 and thus �0;�; ��00 is a valid ontext.We show the ase when e is an existential triple of the form ((y1 : B1; : : : ; ym : Bm); y;D)where m � 0. The others are similar. Note that � is �0;�0;�00;9y :8ym :Bm:D and that �� is�0;�; ��00;9y :�(8ym :Bm:D). Note that the Q-INTRO rule was the last rule in a proof that � isvalid and thus �0;�0;�00 ` 8ym :Bm:D : s holds where s is Prop or Type. Sine � is well-typedin �0;�0;�00, by Lemma 8 we know that �0;�; ��00 ` �(8ym :Bm:D) : s and thus the standardontext �0;�; ��00;9y :�(8ym :Bm:D) is valid, and hene so is the orresponding searh ontext�0;�; ��00; ((y1 :�B1; : : : ; ym :�Bm); y; �D).Let � be a normal valid searh ontext and let �1; : : : ; �n be a derivation of �. The normalform of �n Æ � � � Æ �1 is alled the substitution denoted by the derivation �1; : : : ; �n.Lemma15. Let � be a valid searh ontext and let �1; : : : ; �n be a derivation of �. Then thesubstitution denoted by the derivation �1; : : : ; �n is a solution to �.Proof. We �rst prove that �n Æ � � � Æ �1 is ��-well-typed in � by indution on n. If n is 0,then �n Æ � � � Æ �1 is empty and we only need to show that ��(�n Æ � � � Æ �1�) is valid. Notethat �n Æ � � � Æ �1� is �. Sine � is valid, by Lemma 2 we an onlude that its normal formis valid. For the indution ase, we assume that �n�1 Æ � � � Æ �1 is ��-well-typed in �. Thus��(�n�1 Æ � � � Æ �1�) is valid. Sine �n is the result of applying one of the searh operationsto this ontext, by Lemma 14, we know that �n is well-typed in ��(�n�1 Æ � � � Æ �1�), and byLemma 7, it is ��-well-typed in ��(�n�1 Æ � � � Æ �1�). Sine �n�1 Æ � � � Æ �1 is ��-well-typed in �and �n is ��-well-typed in ��(�n�1 Æ � � � Æ�1�), by Lemma 10, �n Æ � � � Æ�1 is ��-well-typed in �.By the de�nition of derivation, ��(�n : : : �1�) is a suess ontext. By Lemma 9, this is thesame ontext as ��(�n Æ � � � Æ �1�). Sine ��(�n Æ � � � Æ �1�) is a suess ontext and �n Æ � � � Æ �1is ��-well-typed in �, we an onlude that �n Æ � � � Æ �1 is a solution to �. By Lemma 11, itsnormal form is also a solution.Theorem16. (Soundness) Let � be a normal valid CC ontext (without existential variables oronstraints) and let A be a normal term of type Prop or Type in �. Let �0 be the searh ontext�; (hi; z; A). If there exists a derivation of �0, then there exists a term M suh that � ` M : Aholds in CC.Proof. Let � be the substitution denoted by a derivation of �0. Sine � is normal, it ontainsa single tuple of the form hz; hi;Mi for some term M in normal form. By Lemma 15, � is asolution, and thus by de�nition it is ��-well-typed in �0. By de�nition of ��-well-typed, weknow that ��(��) ` ��(M) : ��(�A) holds. Note that �� is � and reall that � is normal.Thus ��(��) is �. Sine � ontains no existential triples or onstraint triples, � is �. Also, sineM is normal ��(M) is M . In addition, sine � is valid and A is well-typed in �, we know thatz does not our in A and thus �A is A. Thus, sine A is normal, we have that ��(�A) is A.So the above judgment is equivalent to � `M : A and we have our result.3.3 Maximal Solutions for Set VariablesLet � be a normal valid searh ontext of the form �0; (�; z; A);�00 suh that �0 does not ontainany existential triples, � has the form z1 : A1; : : : ; zn : An for some n � 0, and A is a settype in �0;�. Let � be a substitution and M a term suh that � ontains the single tuple26



hz; hi; �zn :An:Mi and � is well-typed in �. M is a maximal solution for zz1 : : : zn in � if thenormal form of �� has a solution and for any substitution �0 ontaining a single tuple of theform hA; hi; �zn :An:Ni, it is the ase that whenever the following hold:1. �0 is well-typed in �;2. the normal form of �0� has a solution;3. there is a term P suh that �0;� ` P : M � N holds;then there is always a term Q suh that �0;� ` Q : M =S N holds. Note that it is built intothis de�nition that �0;� `M : A and �0;� ` N : A hold.Theorems 17-21 justify the maximal solutions given in Fig. 5, while Theorem 22 justi�estaking the intersetion of maximal solutions of di�erent ourrenes of a set variable as donein the SETVAR operation in Set. 3. The proofs are similar to the proofs in Bledsoe [3℄ butrequire extensions for our setting. We give the proof of Theorem 17 for illustration and skeththe others.Theorem17. Let � and �0 be ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xp :Cp,respetively, where n � 0 and p > 0. Let � be a normal valid searh ontext of the form�0; (�; z; A); ((�;�0); h; hx1; : : : ; xpi 2 zz1 : : : zn ! Px1 : : : xp)suh that �0 does not ontain any existential or onstraint triples, A is a set type of the form8x1 :C1 : : : 8xp :Cp:Prop, the judgment �0;� ` P : A holds, and the terms in �0 ontain no freeourrenes of z. Then fhx1; : : : ; xpi j Px1 : : : xpg is a maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xpi j Px1 : : : xpgi and hh; hi; �zn :An:�xp :Cp:�x :Px1 : : : xp:xi;respetively. We �rst show that � is a solution to the normal form of ��.First note that ��(�(��(��))) is ��(�0), whih is just �0 sine � (and therefore �0) is normal.�0 is a suess ontext sine it is valid and ontains no existential or onstraint triples. It remainsto show that � is ��-well-typed in ��(��). Note that ��(��) is��(�0; ((�;�0); h; hx1; : : : ; xpi 2 fhx1; : : : ; xpi j Px1 : : : xpg ! Px1 : : : xp))whih after expanding de�nitions and normalizing, results in a ontext of the form�0; ((�;�0); h; Px1 : : : xp ! Px1 : : : xp):We must show that��(��0) ` ��(�zn :An:�xp :Cp:�x :Px1 : : : xp:x) :��(8zn :An:8xp :Cp:Px1 : : : xp ! Px1 : : : xp) (1)holds. It is straightforward to onstrut a proof of�0 ` (�zn :An:�xp :Cp:�x :Px1 : : : xp:x) : (8zn :An:8xp :Cp:Px1 : : : xp ! Px1 : : : xp) (2)27



From the fat that ��(��0) is �0 and ��-onvertibility, it follows from (2) that (1) holds. From (1)and the fat that ���0 is �0 whih we know to be in normal form and valid, we have that � is��-well-typed in the normal form of ��. Sine �0 is also a suess ontext, we have that � is asolution to the normal form of ��.We must now show that fhx1; : : : ; xpi j Px1 : : : xpg is maximal. Assume that there are termsN;P 0 and substitution �0 ontaining the single tuple hz; hi; �zn :An:Ni suh that �0 is well-typedin �, the normal form of �0� has a solution, and the judgment�0;� ` P 0 : fhx1; : : : ; xpi j Px1 : : : xpg � N (3)holds. We must show that there is a term Q suh that�0;� ` Q : fhx1; : : : ; xpi j Px1 : : : xpg =S Nor equivalently�0;� ` Q : (fhx1; : : : ; xpi j Px1 : : : xpg � N) ^ (N � fhx1; : : : ; xpi j Px1 : : : xpg) (4)holds. Note that z does not our free in �, �0, or P . Thus ��(�0�) has the form�0; ((�;�0); h; hx1; : : : ; xpi 2 N ! Px1 : : : xp):Sine ��(�0�) has a solution, by Lemma 11, we know it has a normal solution, say � 0, ontaininga single tuple of the form hh; hi; Q0i where Q0 is a term in normal form. Sine � 0 is a solution,we know that it is ��-well-typed in ��(�0�), and thus�0 ` Q0 : 8zn :An:8xp :Cp:hx1; : : : ; xpi 2 N ! Px1 : : : xp:holds. This judgment is equivalent to�0 ` Q0 : 8zn :An:8xp :Cp:hx1; : : : ; xpi 2 N ! hx1 : : : xpi 2 fhx1; : : : ; xpi j Px1 : : : xpgwhih is equivalent to �0 ` Q0 : 8zn :An:N � fhx1; : : : ; xpi j Px1 : : : xpg:Hene Q0 must have the form �zn :An:Q00 where Q00 is in normal form and the following alsoholds: �0;� ` Q00 : N � fhx1; : : : ; xpi j Px1 : : : xpg: (5)Using (3) and (5), we an take Q in (4) to be�C :Prop:�f : (fhx1; : : : ; xpi j Px1 : : : xpg � N)! (N � fhx1; : : : ; xpi j Px1 : : : xp)g ! C:fP 0Q00and we have our result.Theorem18. Let � and �0 be ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespetively, where n; j � 0. Let � be a normal valid searh ontext of the form�0; (�; z; B); ((�;�0); h; hx1; : : : ; xj ; f1x1 : : : xp; : : : ; frx1 : : : xpi 2 zz1 : : : zn ! P 0x1 : : : xp)for some p > j and r > 0 suh that �0 does not ontain any existential or onstraint triples, Bis a set type of the form 8x1 :C1 : : : 8xj :Cj:Cj+1 ! � � � ! Cj+r ! Prop, the terms in �0 ontainno free ourrenes of z, and the following judgments hold�;� ` P 0 : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:P rop�;� ` fi : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:Cj+i for i = 1; : : : ; r:28



Then fhx1; : : : ; xj; w1; : : : ; wri j 8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp ! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpgis a maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xj; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp ! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpgihh; hi; �zn :An:�xj :Cj :�f : (8xj+1 :Dj+1 : : : 8xp :Dp:f1x1 : : : xp =Cj+1 f1x1 : : : xp ! � � � ! frx1 : : : xp =Cj+r frx1 : : : xp ! P 0x1 : : : xp):fxj+1 : : : xp(�P :Cj+1 ! Prop:�x :P (f1x1 : : : xp):x) : : : (�P :Cj+r ! Prop:�x :P (frx1 : : : xp):x)irespetively. As in the proof of Theorem 17, we an show that � is a solution to the normalform of ��, and that the solution for zz1 : : : zn is maximal.Theorem19. Let � and �0 be ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespetively, where n; j � 0. Let � be a normal valid searh ontext of the form�0; (�; z; B); ((�;�0); h; hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn ! Q)for some r > 0 suh that �0 does not ontain any existential or onstraint triples, B is a set typeof the form 8x1 :C1 : : : 8xj :Cj:Cj+1 ! � � � ! Cj+r ! Prop, the judgment �0;� ` Q : Prop holds,and the judgments �0;�;�0 `Mi : Cj+i hold for i = 1; : : : ; r, and the terms in �0 ontain no freeourrenes of z. Then fhx1; : : : ; xj ; w1; : : : ; wri j w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qg isa maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xj ; w1; : : : ; wri j w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qgihh; hi; �zn :An:�xj :Cj:�f : (M1 =Cj+1 M1 ! � � � !Mr =Cj+r Mr ! Q):f(�P :Cj+1 ! Prop:�x :PM1:x) : : : (�P :Cj+r ! Prop:�x :PMr:x)irespetively. As in the previous theorems, we an show that � is a solution to the normal formof ��, and that the solution for zz1 : : : zn is maximal.Theorem20. Let � and �0 be ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespetively, where n; j � 0. Let � be a normal valid searh ontext of the form�0; (�; z; B); ((�;�0); h;:(hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn)for some r > 0 suh that �0 does not ontain any existential or onstraint triples, B is a settype of the form 8x1 : C1 : : : 8xj : Cj:Cj+1 ! � � � ! Cj+r ! Prop, the judgments �0;�;�0 `Mi : Cj+i hold for i = 1; : : : ; r, and the terms in �0 ontain no free ourrenes of z. Thenfhx1; : : : ; xj ; w1; : : : ; wri j :(w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr)g is a maximal solution forzz1 : : : zn in �.Proof. This theorem is an instane of Theorem 19 with ? as an instane of Q.29



Theorem21. Let � be a ontext of the form z1 :A1; : : : ; zn :An where n � 0. Let � be a normalvalid searh ontext of the form�0; (�; z; A); (�; h; hN1 ; : : : ; Npi 2 zz1 : : : zn)for some p > 0 suh that �0 does not ontain any existential or onstraint triples, A is a settype of the form 8x1 : C1 : : : 8xp : Cp:Prop, and for i = 1; : : : ; p, the judgments �0;� ` Ni :[N1=x1; : : : ; Ni�1=xi�1℄Ci hold. Then fhx1; : : : ; xpi j >g is a maximal solution for zz1 : : : zn in�.Proof. Let � and � be the substitutions ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xpi j >gi and hh; hi; �zn :An:�C :Prop:�x :C:xi;respetively. As in the previous theorems, we an show that � is a solution to the normal formof ��. To show that the universal set fhx1; : : : ; xpi j >g is maximal, we simply show that forany set N , N � fhx1; : : : ; xpi j >g. The following is the judgment stating this fat.�0;� ` �x1 :C1 : : : �xp :Cp:�x0 :Nx1 : : : xp:�C :Prop:�x :C:x :8x1 :C1 : : : 8xp :Cp:Nx1 : : : xp ! 8C :Prop:C ! CTheorem22. Let � be a ontext of the form z1 :A1; : : : ; zn :An where n � 0. Let � be a normalvalid searh ontext of the form �0; (�; z; A); (�; h; P ^Q)suh that �0 does not ontain any existential or onstraint triples, A is a set type of the form8x1 :C1 : : : 8xp :Cp:Prop for some p > 0, and �0;9z :8zn :An:A;� ` P ^Q : Prop holds. Let C 0and h0 be variables that do not our in �, let �0 be the ontext C 0 :Prop; h0 :P ! Q! C 0, andlet D1 and D2 be maximal solutions for A in�0; (�; z; A); ((�;�0); h; P ) and �0; (�; z; A); ((�;�0); h;Q);respetively. Then D1 \D2 is a maximal solution for A in �.Proof. Let �1 and �2 be the ontexts �0; (�; z; A); ((�;�0); h; P ) and �0; (�; z; A); ((�;�0); h;Q),respetively. Let �1, �2, and � be the substitutions ontaining the single tupleshz; hi; �zn :An:D1i; hz; hi; �zn :An:D2i; hz; hi; �zn :An:D1 \D2i;respetively. Note that D1 \D2 is an abbreviation for�x1 :C1 : : : �xp :Cp:8C 0 :Prop:(D1x1 : : : xp ! D2x1 : : : xp ! C 0)! C 0:Beause D1 and D2 are maximal solutions for A in �1 and �2, respetively, we know that thereare terms M1 and M2 and substitutions �1 and �2 de�ned as follows,hh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:M1ihh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:M2i30



respetively, suh that �1 is a normal solution to the normal form of �1�1 and �2 is a normalsolution to the normal form of �2�2. Using these substitutions, it is straightforward to showthat hh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:h0M1M2i:is a solution to the normal form of ��.The proof that D1 \D2 is maximal follows the same reasoning as the orresponding proofin Bledsoe [3℄. Sine no extensions are needed to adapt this proof to our setting beyond whatalready appears in the proof of Theorem 17, we omit the details.4 A Complete Searh ProedureTo inorporate the full expressiveness of CC, we extend CC+ to Meta as de�ned in [10℄. Thisinferene system inludes all the rules for CC+ plus the following additional rule where Externis a new sort. ` � ontext (TYPE-EXTERN)� ` Type : ExternIn addition, in the rules of Fig. 1, s2 in (PROD) an be Extern, and s in (INTRO), (Q-INTRO), and(ABS) an also be Extern. In this setion, validity of standard and searh ontexts will be withrespet to Meta.The SETVAR, INTRO, and BACKCHAIN operations are suÆient for proving the examplesgiven in Set. 1 as well as most of the examples in Bledsoe [3℄ and they are also the onesimplemented in our �Prolog implementation. We add the SPLIT, PROD, and POLY operationsbelow to obtain the SetVar+ proedure that is omplete for the full CC. As stated earlier, theyadd ompliations for direting searh. For example, one POLY beomes appliable, it is possibleto apply it in�nitely many times.With the addition of the three new operations, we no longer need SETVAR. The proedureis omplete without it. We leave it in beause even in the ontext of a omplete proedure, itis useful for direting searh towards �nding ertain substitution instanes more quikly. Theother operations are useful for the ases when SETVAR isn't enough. Sine it is not needed,SETVAR does not appear in the proof of ompleteness of SetVar+. It's soundness was alreadyestablished in the previous setion.SPLIT operation. Let � be a valid searh ontext and ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm) aandidate triple in �, where m;n � 0, and � ` xM1 : : : Mm : s holds where s is Prop or Type. Ifthere is a universal delaration w :Q suh that either w is one of z1; : : : ; zn or w :Q ours to theleft of ((z1 :A1; : : : ; zn :An); z; xM1 : : : Mm) in �, the judgment �; z1 :A1; : : : ; zn :An ` Q : s holds,Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), and y is any existential variable in �,then let h1; : : : ; hq be variables that do not our in �. Let � be the ontext z1 :A1; : : : ; zn :An.Let �0 be the ontext (�; h1; Q1);(�; h2; [h1z1 : : : zn=y1℄Q2);...(�; hq; [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq):Choose a j suh that j > 0. For i = 1; : : : ; j, let si be either Prop or Type. Let H1; : : : ;Hj ,K1; : : : ;Kj , hq+1; : : : ; hq+j be variables that do not our in �. For i = 1; : : : ; j, let �i be the31



following ontext (�;Hi; si);(�;Ki;Hiz1 : : : zn ! s);(�; L;8u :Hiz1 : : : zn:Kiz1 : : : znu)(�; hq+i;Hiz1 : : : zn)where if i = 1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Np and if i > 1, L is theterm Ki�1z1 : : : zn(hq+i�1z1 : : : zn). Let �0 be the ontext(�;Kjz1 : : : zn(hq+jz1 : : : zn); xM1 : : : Mm):Let � be the ontext �0;�1; : : : ;�j ;�0. Let � be the substitutionfhz;�; �zn :An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)ig:PROD operation. Let � be a valid searh ontext and ((z1 :A1; : : : ; zn :An); z; s0) a andidatetriple in �, where n � 0 and s0 is Type or Extern. Let s be the sort suh that � ` s : s0. Let �be the substitution fhz; hi; �zn :An:sig.POLY operation. Let � be a valid searh ontext and ((z1 :A1; : : : ; zn :An); z; s0) a andidatetriple in �, where n � 0, and s0 is any sort. Let s be Prop or Type and let � be the ontextz1 :A1; : : : ; zn :An. Let h and k be variables that do not our in �. Let � be the ontext(�; h; s); (�; k; hz1 : : : zn ! s0):Let � be the substitution fhz;�; �zn :An:8u :hz1 : : : zn:kz1 : : : znuig.The SPLIT operation an be viewed as an extension of BACKCHAIN. If j were allowed to be0 in this operation, the operation essentially redues to BACKCHAIN. We illustrate its use byreturning to the example from Set. 3.1 for whih INTRO and BACKCHAIN were not suÆient.The following intermediate ontext appeared in the example as ontext (12).�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x);M 01; Px); ((x :Nat; h :A0x);M 02; Qx) (1)Consider the seond existential triple as a andidate triple for the SPLIT operation. The universaldelaration used in this operation will be h :A0x from the loal ontext. We hoose j to be 1and s1 to be Prop. The ontext �0 of this operation is empty in this ase and �1 is as follows�1 := ((x :Nat; h :A0x);H1;Prop);((x :Nat; h :A0x);K1;H1xh! Prop);((x :Nat; h :A0x); A0x;8u :H1xh:K1xhu);((x :Nat; h :A0x); h1;H1xh)where H1;K1; h1 are new variables. � is obtained by adding ((x :Nat; h :A0x);K1xh(h1xh); Px)to the end of �1. The substitution � generated by this operation is� := fhM 01;�; �x :Nat:�h :A0x:h(h1xh)ig:Applying � to (1), we get�;((x :Nat); A0;Prop); ((x :Nat; h :A0x);H1;Prop);((x :Nat; h :A0x);K1;H1xh! Prop); ((x :Nat; h :A0x); A0x;8u :H1xh:K1xhu);((x :Nat; h :A0x); h1;H1xh); ((x :Nat; h :A0x);K1xh(h1xh); Px);((x :Nat; h :A0x);M 02; Qx): 32



Note the onstraint whih equates A0x with the non-atomi type 8u :H1xh:K1xhu. The POLYoperation must be used to obtain an instantiation for A0 that an lead to a ontext in whihthis onstraint is satis�ed. We illustrate by going bak to the ontext (1), and onsidering the�rst existential triple as the andidate triple. Let s of POLY be Prop. We obtain the followingontext and substitution� := ((x :Nat); h0;Prop); ((x :Nat); k; (h0x! Prop))� := fhA0;�; �x :Nat:8u :h0x:kxuigwhere h0 and k are new variables. Applying � to (1), we get�;((x :Nat); h0;Prop); ((x :Nat); k; (h0x! Prop));((x :Nat; h : (8u :h0x:kxu));M 01; Px); ((x :Nat; h : (8u :h0x:kxu));M 02; Qx)Note here that A0x has been replaed by the non-atomi type 8u :h0x:kxu.To prove orretness of SetVar+, we prove soundness by extending Theorem 16 for SetVarto the new operations, and we prove ompleteness relative to Dowek's proedure.Theorem23. (Soundness of SetVar+) Let � be a normal valid Meta ontext without existentialvariables or onstraints suh that the types of universal variables in delarations are Prop or Typebut not Extern. Let A be a normal well-typed term in �. Let �0 be the searh ontext �; (hi; z; A).If there exists a derivation of �0, then there exists a term M suh that � `M : A holds in CC.Proof. The properties in Set. 3.2 about searh ontexts in CC+ also hold for searh ontextsof Meta. We only need to extend Lemmas 12 and 13 with ases for SPLIT, PROD, and POLY.Sine these ases follow similarly to the ases already shown, we omit the details. One theselemmas are extended, Lemma 14 and 15 and Theorem 16 follow diretly for the extended searhproedure.To prove ompleteness we introdue Dowek's proedure, whih we all P. P operates diretlyon Meta ontexts. These ontexts are restrited so that the types of universal variables indelarations are Prop or Type but not Extern. We de�ne a andidate delaration in a standardMeta ontext � to be an existential delaration of the form 9z : (8z1 :A1 : : : 8zn :An:xM1 : : :Mp)where n; p � 0 and x is universal in �; z1 :A1; : : : ; zn :An: Like SetVar+, at eah step, a searhoperation is applied resulting in a substitution. Note that sine only variables in existentialdelarations an have type Extern, if the proedure leads to a suess ontext, all suh variableswill be instantiated eliminating all ourrenes of Extern and resulting in a valid CC ontext.The proedure is de�ned by the three searh operations given below. The �rst ombinesINTRO, BACKCHAIN, and SPLIT, while the other two orrespond diretly to PROD and POLY.1. Let � be a valid Meta ontext and 9z :P a andidate delaration in �, where P has theform 8z1 :A1 : : : 8zn :An:xM1 : : :Mm (m;n � 0) and � ` P : s holds where s is any sort(inluding Extern). This operation applies if there is a universal delaration w :Q suhthat either w is one of z1; : : : ; zn or w :Q ours to the left of this andidate delarationin �, Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), and � ` Q : s holds. Leth1; : : : ; hq be variables that do not our in �. Let �0 be the ontext9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq:33



Choose a j suh that j � 0. For i = 1; : : : ; j, let si be either Prop or Type. Let H1; : : : ;Hj ,K1; : : : ;Kj , hq+1; : : : ; hq+j be variables that do not our in �. For i = 1; : : : ; j, let �i bethe following ontext9Hi :8zn :An:si;9Ki :8zn :An:Hiz1 : : : zn ! s;8zn :An:L = 8zn :An:8u :Hiz1 : : : zn:Kiz1 : : : znu9hq+i :8zn :An:Hiz1 : : : znwhere if i = 1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Np and if i > 1, L isthe term Ki�1z1 : : : zn(hq+i�1z1 : : : zn). If r = 0, let �0 be the ontext8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Nn = 8zn :An:xM1 : : : Mm:Otherwise, let �0 be the ontext(8zn :An:Kjz1 : : : zn(hq+jz1 : : : zn) = 8zn :An:xM1 : : :Mm):Let � be the ontext �0;�1; : : : ;�j ;�0. Let � be the substitution:fhz;�; �zn :An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)ig:2. Let � be a valid searh ontext and 9z :P a andidate delaration in �, where P has theform 8z1 :A1 : : : 8zn :An:s0 (n � 0) and s0 is Type or Extern. Let s be the sort suh that� ` s : s0. Let � be the substitution fhz; hi; �zn :An:sig.3. Let � be a valid searh ontext and 9z :P a andidate delaration in �, where P has theform 8z1 :A1 : : : 8zn :An:s0 (n � 0) and s0 is any sort. Let s be Prop or Type and let � bethe ontext 9h :8zn :An:s;9k :8zn :An:hz1 : : : zn ! s0:Let � be the substitution fhz;�; �zn :An:8u :hz1 : : : zn:kz1 : : : znuig.To prove ompleteness of SetVar+, in the following lemma we show that every operation thatan be performed on a standard ontext in P has a orresponding operation or set of operationson searh ontexts in SetVar+. The lemma is stated using standard ontexts. For a standardontext �, when applying operations of SetVar+, � is viewed as the ontext suh that everyexistential delaration of the form 9z :A is replaed by (hi; z; A) and every onstraint P = Q isreplaed by (hi; P;Q).Lemma24. Let � be a valid Meta ontext suh that the types of universal variables in dela-rations are Prop or Type but not Extern. If � is the result of applying a searh operation inP, then it is either the ase that subsequent operations to �� always lead to a failure ontextor there is a series of operations in SetVar+ with substitutions �1; : : : ; �n suh that the normalforms of �� and (�1 Æ � � � Æ �n)� are the same ontext.Proof. Let hhi; z;Qi be the andidate delaration to whih the operation in P is applied. � hasthe form �0; hhi; z;Qi;�00 . For the ase when the operation applied is the �rst operation of P, Qhas the form 8z1 :A1 : : : 8zn :An:xM1 : : : Mm:34



Let � be the substitution resulting from the appliation of the �rst operation. In SetVar+, wean �rst apply INTRO n times with substitutions �1; : : : ; �n where for i = 1; : : : ; n, �i isfhz0i�1; ((z1 :A1; : : : ; zi :Ai); z0i;8zi+1 :Ai+1 : : : 8zn :An:xM1 : : :Mm)igwhere z is z00 and z01; : : : ; z0n are new variables. We obtain the ontext�0; ((z1 :A1; : : : ; zn :An); z0n; xM1 : : :Mm);�00:We �rst onsider the ase when j of the �rst operation of P is 0. If x is w or an existentialvariable, then we apply BACKCHAIN in SetVar+ to obtain substitution �0 where the ontext �in the tuple in � is the same as � in �0. In partiular, if �0 is the substitution fhz0n;�;Mig forsome term M , then � is the substitution fhz;�;Mig. Note that �0 is fhz0n;�;Mig and thus�0 di�ers from � only in the name of the variable it binds. We show that (�1 Æ � � � Æ �n Æ �0)� isthe same ontext as ��. By Lemma 9, (�1 Æ � � � Æ �n Æ �0)� is �0�n � � � �1�, and so by Lemma 5,�0�n � � � �1� is �0(�n � � � �1�). By a simple indution on n, we an show that for i = 1; : : : ; n,the ontext �i � � � �1� is �0; hhi; z0i; Qi; [z0i=z℄�00. Thus, �0(�n � � � �1�) is �0;�; [M=z0n℄([z0n=z℄�00).Sine [M=z0n℄([z0n=z℄�00) is just [M=z℄�00, it is easy to see that this ontext is also �� and thus(�1 Æ � � � Æ �n Æ �0)� is the same ontext as ��.For the ase when j = 0 and x is universal and di�erent from w (whih is allowed in P), itis easy to see that the resulting ontext leads to a failure ontext; one the existential variablesthat remain in the onstraint that gets added by applying the substitution are fully instantiated,this onstraint will relate two terms that are not ��-onvertible.For the ase when j > 0, the �rst operation of P orresponds to a series of n appliations ofINTRO, followed by the SPLIT operation in SetVar+. Similar reasoning an be applied to showthat �� is (�1 Æ � � � Æ �n)�.Similarly, the ases for the seond and third operations of P orrespond to a series of appli-ations of INTRO followed by an appliation of PROD or POLY, respetively.Theorem25. (Completeness) Let � be a valid Meta ontext without existential variables oronstraints suh that the types of universal variables in delarations are Prop or Type but notExtern. Let A be a normal well-typed term in �. If there exists a derivation of �;9z :A in P,then there is a derivation of �; (hi; z; A) in SetVar+.Proof. We prove the following stronger statement. Let � be an arbitrary normal valid searhontext suh that the types of universal variables in delarations are Prop or Type but not Extern.If � has a derivation in P, then � has a derivation in SetVar+. The proof is by indution on thelength of a derivation in P. The desired theorem follows diretly.5 ConlusionWe have shown how to adapt Bledsoe's method for generating maximal solutions for set variablesto the Calulus of Construtions and proved its orretness. In addition, we have disussed theoperation of the proedure on various sublanguages. The proedure presented here has beenimplemented as a set of tatis within an interative tati-style theorem prover. These tatisan be ombined to automate the searh proedure for CC so that it works eÆiently on thelass of theorems involving existential quanti�ation over sets. It an also be used as a tati inCoq to provide some automation for this lass of theorems.35



We have adapted and generalized results from Bledsoe [3℄. The basi rules and ombiningrules for onjuntion were adapted fairly diretly, while the ombining rules for disjuntion werehandled in a distributed manner. The remaining rules in Bledsoe [3℄ are quite speialized andinvolve substitution instanes expressing a funtion applied n times to x as fn(x). These rulesshould also be straightforward to add to the proedure here, though their addition would requireadding some axioms to the ontext to express fn sine it annot be expressed diretly in CC. Theproedure is strutured in suh a way that adding more rules for maximal solutions is ahievedby simply adding new lauses to the SETVAR operation.We have shown how one proedure designed for a higher-order logi an be arried over to thetype theory setting. There are many other interesting proedures worth investigation. Bledsoeand Feng give a more general set of rules for maximal solutions in [4℄. This proedure, however,relies heavily on resolution tehniques whih may be diÆult to adapt to our setting. Anotherproedure for automating the instantiation of set variables is the Z-math inferene rule in [1℄,whih should be possible to adapt to our setting fairly diretly. In addition, many other theoremproving tehniques in a variety of domains have been developed for both higher-order logi andhigher-order type theory that would be interesting to investigate and adapt to aid proof searhin the other setting.AknowledgementsThe author would like to thank the anonymous reviewers for numerous helpful suggestions.Referenes[1℄ S. C. Bailin and D. Barker-Plummer. Z-math: An inferene rule for inrementally elabo-rating set instantiation. Journal of Automated Reasoning, 11(3):391{428, De. 1993.[2℄ H. Barendregt. Introdution to generalized type systems. Journal of Funtional Program-ming, 1(2):124{154, April 1991.[3℄ W. W. Bledsoe. A maximal method for set variables in automati theorem proving. MahineIntelligene, 9:53{100, 1979.[4℄ W. W. Bledsoe and G. Feng. SET-VAR. Journal of Automated Reasoning, 11(3):293{314,1993.[5℄ A. Churh. A formulation of the simple theory of types. Journal of Symboli Logi, 5:56{68,1940.[6℄ R. L. Constable et al. Implementing Mathematis with the Nuprl Proof Development System.Prentie-Hall, 1986.[7℄ T. Coquand and G. Huet. The alulus of onstrutions. Information and Computation,76(2/3):95{120, February/Marh 1988.[8℄ C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-Mohring, C. Mu~noz,C. Murthy, C. Parent, A. Sa��bi, and B. Werner. The Coq Proof Assistant referene manual.Tehnial report, INRIA, 1995. 36



[9℄ G. Dowek. D�emonstration Automatique dans le Calul des Construtions. PhD thesis,Universit�e Paris VII, De. 1991.[10℄ G. Dowek. A omplete proof synthesis method for the ube of type systems. Journal ofLogi and Computation, 3(3):287{315, 1993.[11℄ G. Dowek, T. Hardin, and C. Kirhner. Higher-order uni�ation via expliit substitutions.In Tenth Annual Symposium on Logi in Computer Siene, pages 366{374, 1995.[12℄ A. Felty. Enoding the alulus of onstrutions in a higher-order logi. In Eighth AnnualSymposium on Logi in Computer Siene, pages 233{244, June 1993.[13℄ A. Felty. Implementing tatis and tatials in a higher-order logi programming language.Journal of Automated Reasoning, 11(1):43{81, Aug. 1993.[14℄ A. Felty. Proof searh with set variable instantiation in the alulus of onstrutions. InThirteenth International Conferene on Automated Dedution, pages 658{672. Springer-Verlag Leture Notes in Computer Siene, July 1996.[15℄ M. J. C. Gordon and T. F. Melham. Introdution to HOL|A Theorem Proving Environ-ment for Higher Order Logi. Cambridge University Press, 1993.[16℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logis. Journal of theACM, 40(1):143{184, Jan. 1993.[17℄ W. A. Howard. The formulae-as-type notion of onstrution, 1969. In To H. B. Curry:Essays in Combinatory Logi, Lambda Calulus, and Formalism, pages 479{490. AademiPress, 1980.[18℄ G. Huet. A uniform approah to type theory. In G. Huet, editor, Logial Foundations ofFuntional Programming. Addison Wesley, 1990.[19℄ L. Magnusson. The Implementation of ALF: A Proof Editor Based on Martin-L�of'sMonomorphi Type Theory with Expliit Substitution. PhD thesis, Chalmers Universityof Tehnology/G�oteborg University, Jan. 1995.[20℄ P. Martin-L�of. Intuitionisti Type Theory. Studies in Proof Theory Leture Notes. BIB-LIOPOLIS, Napoli, 1984.[21℄ D. Miller, G. Nadathur, F. Pfenning, and A. Sedrov. Uniform proofs as a foundation forlogi programming. Annals of Pure and Applied Logi, 51:125{157, 1991.[22℄ C. Mu~noz. A Calulus of Substitutions for Inomplete-Proof Representation in Type Theory.PhD thesis, Universit�e Paris 7, INRIA Researh Report RR-3309 (English version), 1997.[23℄ L. C. Paulson. Isabelle: A Generi Theorem Prover, volume 828 of Leture Notes in Com-puter Siene. Springer-Verlag, 1994.
37


