
The Cal
ulus of Constru
tions as a Framework for Proof Sear
hwith Set Variable Instantiation�Amy FeltyBell LaboratoriesLu
ent Te
hnologies, 600 Mountain Ave., Murray Hill, NJ 07974, USAfelty�resear
h.bell-labs.
omAbstra
tWe show how a pro
edure developed by Bledsoe for automati
ally �nding substitutioninstan
es for set variables in higher-order logi

an be adapted to provide in
reased automa-tion in proof sear
h in the Cal
ulus of Constru
tions (CC). Bledsoe's pro
edure operateson an extension of �rst-order logi
 that allows existential quanti�
ation over set variables.This
lass of variables
an also be identi�ed in CC. The existen
e of a
orresponden
e be-tween higher-order logi
 and higher-order type theories su
h as CC is well-known. CC
anbe viewed as an extension of higher-order logi
 where the basi
 terms of the language, thesimply-typed �-terms, are repla
ed with terms
ontaining dependent types. We show howBledsoe's te
hniques
an be in
orporated into a reformulation of a sear
h pro
edure for CCgiven by Dowek and extended to handle terms with dependent types. We introdu
e a notionof sear
h
ontext for CC whi
h allow us to separate the operations of assumption introdu
tionand ba
k
haining. Sear
h
ontexts allow a smooth integration of the step whi
h �nds solu-tions to set variables. We dis
uss how the pro
edure
an be restri
ted to obtain pro
eduresfor set variable instantiation in sublanguages of CC su
h as the Logi
al Framework (LF) andhigher-order hereditary Harrop formulas (hohh). The latter serves as the logi
al foundationof the �Prolog logi
 programming language.1 Introdu
tionBoth higher-order logi
 and higher-order type theories serve as the logi
al foundation of a va-riety of intera
tive ta
ti
-style theorem provers. For example, both HOL [15℄ and Isabelle [23℄implement higher-order logi
, while Coq [8℄ implements the Cal
ulus of Constru
tions (CC) typetheory [7℄ and Nuprl [6℄ implements Martin-L�of type theory [20℄. Mu
h work has been
arriedout in both kinds of systems on building ta
ti
s and automating proof sear
h. However, littlework has been done on providing the means for exploiting proof sear
h methods designed for onekind of system within the other. In this paper, we show how a parti
ular proof sear
h pro
eduredesigned for higher-order logi

an be used to help automate the sear
h for proofs in CC.In some
ases, su
h as the se
ond-order polymorphi
 �-
al
ulus and se
ond-order proposi-tional logi
, the
orresponden
e between higher-order logi
 and higher-order type theories isexa
t and known as the Curry-Howard isomorphism [17℄. Although it is less dire
t for CC, oneway to view the
orresponden
e was shown in Felty [12℄. Intuitively, a fun
tional type P ! Q�In Theoreti
al Computer S
ien
e, 232(1-2):187{229, February 2000.

Copyright 2000, Elsevier S
ien
e.1

orresponds to an impli
ation, while a dependent type 8x :P:Q
orresponds to universal quanti�-
ation. An important di�eren
e is that while in CC the type P
an be an arbitrary CC type, inhigher-order logi
 (e:g:, Chur
h's simple theory of types [5℄) P must be a simple type. AlthoughCC types in
lude the types of the simply-typed �-
al
ulus, they also in
lude mu
h more.Formally establishing su
h
orresponden
es provides a framework in whi
h to study howtheorem proving te
hniques designed for one kind of system
an be applied to proof sear
hin the other. In this paper we adapt te
hniques des
ribed in Bledsoe [3℄ for the automati
dis
overy of substitutions for set variables to a modi�ed version of the sear
h pro
edure for CCgiven by Dowek in [9, 10℄. (Below, we refer ex
lusively to [10℄ ex
ept for the
ase where we usean auxiliary result that o

urs only in [9℄.) Dowek's pro
edure a
tually operates on all typesystems in Barendregt's
ube [2℄. We use only the restri
tion to CC. In our formulation, weboth adapt these te
hniques to the type theoreti
 setting as well as extend them to handle theextra expressivity of dependent types. To in
orporate dependent types, we
onsider not onlysingle element membership su
h as t 2 A, but also sets of tuples ht1; : : : ; tni 2 A where for1 � i < j � n, the type of tj may depend on the type of ti.In Bledsoe [3℄, the pro
edure for �nding substitution instan
es is implemented within anautomati
 theorem prover for natural dedu
tion in �rst-order logi
, thus extending it to handleexistential quanti�
ation over a restri
ted set of se
ond-order variables. The pro
edure has beensu

essfully applied to obtain results in intermediate analysis, topology, logi
, and programveri�
ation. To prove a theorem with set variables, the theorem prover makes two passes.The �rst �nds maximal solutions for these variables. On
e instantiated with the solutions, theformula be
omes �rst-order, and the built-in strategy for proving �rst-order formulas is used.If the formula is provable, maximal solutions for set variables will lead to a proof. However,maximal solutions may be given during the �rst pass even though the formula is not provable.Thus the se
ond pass is required. We take an example from Bledsoe [3℄ to illustrate maximalsolutions. Consider the theoremP (a) � 9A(8x(x 2 A � P (x)) ^ 9y(y 2 A)):A maximal solution for A is a term B that when substituted for A results in a provable formula,and su
h that for any other solution C, whenever B � C it must be the
ase that C is the same asB. In this example, if we
onsider the two
onjun
ts separately, the set fx j P (x)g is a maximalsolution for A in the �rst, and the universal set is a solution for the se
ond. Their interse
tion,fx j P (x)g, is a maximal solution for A in the formula as a whole. Note that there are oftennon-maximal solutions that result in provable formulas. In this
ase, for example, ; is a solutionto the �rst
onjun
t. However, it is not a solution to the whole formula. Maximal solutions aremore generally useful be
ause solutions to subformulas are easily
ombined to obtain solutionsto the whole formula.Dowek's pro
edure for automati
 proof sear
h in CC is a
omplete pro
edure. It beginswith the type representing the formula to be proved and attempts to �nd a term of that typerepresenting a proof. However, although the pro
edure is
omplete, it is not eÆ
ient in pra
ti
ebe
ause of the
omplexity of CC. In parti
ular, the number of sear
h paths qui
kly be
omesprohibitive for most theorems. In the presen
e of assumptions with polymorphi
 types, forexample, there may be in�nite bran
hing at many points during sear
h. The main
ause of su
hin�nite bran
hing is the need to enumerate types. There are many ways to dire
t the sear
h bytuning it to a parti
ular
lass of theorems. Our work
an be viewed as the tuning of Dowek'spro
edure to �nd proofs more dire
tly for theorems in the
lass
onsidered by Bledsoe, i:e:,theorems in an extension of �rst-order logi
 with existential quanti�
ation over a
ertain
lassof higher-order variables. 2

This work has two parts. The �rst part is the introdu
tion of the notion of sear
h
ontext forCC. In Dowek [10℄, the operations of assumption introdu
tion and ba
k
haining are
ombined;sear
h
ontexts allow us to separate them. This separation was inspired by our implementationin �Prolog (see below). By making this separation, we are able to present the pro
edure in more�ne-grain steps. We believe this re�nement enhan
es understanding as well as allows a smootherintegration of the step whi
h �nds maximal solutions to set variables. The integration of thisstep is the se
ond part of the work. The result is a pro
edure whi
h in
orporates Bledsoe'smethod into Dowek's algorithm.We present two pro
edures. The �rst,
alled SetVar, is not
omplete for CC, but is
ompletefor the
lass
onsidered by Bledsoe as well as for proof sear
h in interesting sublanguages ofCC su
h as higher-order hereditary Harrop formulas (hohh) [21℄ and the Logi
al Framework(LF) [16℄. In LF, proof sear
h
overs the sear
h for a term of a parti
ular type, but not for atype of a parti
ular kind. We present the SetVar pro
edure as a set of three sear
h operations,one whose sole purpose is to instantiate set variables. If we leave out this operation, the SetVarpro
edure restri
ted to the other two sear
h operations is a
omplete sear
h pro
edure for bothhohh and LF. However, simply adding in this operation does not present an interesting sear
hpro
edure for either language. In the
ase of LF, there are no set variables be
ause quanti�
ationover predi
ates is not allowed, so the extra sear
h operation does not add anything. In the
aseof hohh, quanti�
ation over predi
ates that
orrespond to set variables is severely restri
ted, sothe extra sear
h operation adds little. We will dis
uss how, in both
ases, the languages
an bedire
tly extended to allow set variables in a manner that is analogous to the way that �rst-orderlogi
 is extended in Bledsoe's system. Furthermore, set variables with dependent types are easilyin
orporated into LF.The se
ond pro
edure, SetVar+, extends SetVar to a
omplete pro
edure for CC by addinga few more sear
h operations. As a whole, it
an be viewed as a reformulation of Dowek'spro
edure with the addition of an operation spe
ialized for �nding maximal solutions to setvariables. The
lass of variables
orresponding to set variables are already
ontained within CC,and so no extension of the language needs to be made to in
orporate them. However, adding theoperation whi
h instantiates them provides a pro
edure whi
h expands bran
hes of the sear
hthat lead to maximal solutions more dire
tly. On the other hand, removing this spe
ializedoperation does not a�e
t
ompleteness.This paper extends Felty [14℄ in several ways. First, we separate the pro
edures SetVar andSetVar+. SetVar should be more useful in pra
ti
e be
ause it eliminates the non-determinismthat
orresponds to enumerating types, while still handling most examples and remaining
om-plete for various sublanguages of CC extended with set variables. Se
ond, the introdu
tion ofsear
h
ontexts is new. Third, we in
lude proofs of soundness of SetVar and soundness and
ompleteness of SetVar+. We prove
ompleteness by showing that every operation in Dowek'spro
edure has a
orresponding set of operations in SetVar+. We
ould prove soundness byproving the
onverse, i:e:, that every exe
ution of SetVar+
an be divided into sequen
es of op-erations su
h that ea
h sequen
e
orresponds to an operation in Dowek's pro
edure. Instead, weprove it dire
tly to illustrate how it
an be proved using sear
h
ontexts. The proof follows thebasi
 outline of Dowek's proof and in addition veri�es that the additional operation for �ndingmaximal solutions preserves soundness.We have implemented a prototype of the SetVar pro
edure in �Prolog [21℄. We use agoal-dire
ted ta
ti
 style framework where ea
h of the sear
h operations of the pro
edure isimplemented as a ta
ti
 [13℄. The SetVar pro
edure as des
ribed here does not resolve all non-determinism in sear
h. In the prototype, the non-determinism is resolved by having the user3

spe
ify whi
h operation to apply at ea
h step. Using this prototype, we have proved the exam-ples in this paper as well as some of the examples
lassi�ed as \major examples" in Bledsoe [3℄.Although we have not yet done so, the set of ta
ti
s we have implemented
an be
ombined toobtain a pro
edure that
orresponds fairly dire
tly to a one-pass version of Bledsoe's pro
edure.Su
h a pro
edure would be able to prove most of the examples in Bledsoe [3℄ fully automati-
ally. This pro
edure
ould also be in
orporated into Coq as a ta
ti
, and used to automati
allygenerate substitution instan
es when applied to goals of the appropriate form.In the next se
tion, we present CC and an extension of it due to Dowek [10℄ whi
h is usedas the foundation for the sear
h pro
edures. We also show how to map set theory into CC.We use the usual notion that a set is a predi
ate over elements of a parti
ular type, or overother sets. In addition, we de�ne maximal solutions in our setting, whi
h dire
tly extend thosein Bledsoe [3℄. In Se
t. 3, we present sear
h
ontexts and use them in presenting the SetVarsear
h pro
edure. We also show that it is sound. In addition, we prove theorems that justify themaximal solutions used in the sear
h pro
edure. These theorems are extensions of the theoremsin Bledsoe [3℄. In Se
t. 4, we present the SetVar+ pro
edure and prove its
orre
tness. Finally,we
on
lude in Se
t. 5.2 The Cal
ulus of Constru
tions and Set VariablesThe syntax of terms of the Cal
ulus of Constru
tions (CC) is given by the following grammar.Type j Prop j x j PQ j �x :P:Q j 8x :P:QHere Type and Prop are
onstants
alled sorts, x ranges over variables, and P and Q rangeover terms. We also use other upper
ase letters to denote terms, and both upper and lower
ase letters to denote variables. We assume a denumerable set of CC variables. The variablex is bound in the expressions �x :P:Q and 8x :P:Q. The former binding operator
orrespondsto the usual notion of �-abstra
tion, while the latter
orresponds to abstra
tion in dependenttypes. We write P ! Q for 8x :P:Q when x does not o

ur in Q. In both kinds of bindings, wesometimes leave o� the type P of x when it
an be easily inferred. A
ontext is an ordered listof pairs of the form x :P ,
alled a de
laration, where x is a variable and P a term. We use �,�, and � to denote
ontexts.The rules of CC are given in Fig. 1. In these rules, s, s1, and s2 are either Type or Prop. In(INTRO), (PROD), and (ABS), we assume that the variable x does not already o

ur as the lefthand side of a de
laration in �. A tree built using the rules of Fig. 1 is
alled a proof. We saythat � is a valid
ontext if there is a proof su
h that (` �
ontext) o

urs at the root. We saythat � ` P : Q holds or is derivable in CC if � is a valid
ontext and this judgment o

urs atthe root of a proof. In this
ase, we also say that P has type Q or is of type Q in �, that Q isthe type of P in �, and that P is well-typed in �. When Q is a sort, we say that P is a type in �.In addition, sometimes we simply write � ` P : Q to indi
ate that this judgment is derivable.It will be
lear from
ontext when this is the
ase.Terms that di�er only in the names of bound variables are identi�ed. If x is a variableand P is a term then [P=x℄ denotes the operation of substituting P for all free o

urren
es ofx, systemati
ally
hanging bound variables in order to avoid variable
apture. The expression[P1=x1; : : : ; Pn=xn℄ denotes the simultaneous substitution of the terms P1; : : : ; Pn for distin
tvariables x1; : : : ; xn, respe
tively. The relation of
onvertibility up to �; �; and � is written as=��. Given valid
ontext �, all terms that are well-typed in � have a unique ��-normal form anda unique ��-long form (whi
h we
all the normal form in �), as well as a unique type modulo4

` hi
ontext (EMPTY-CTX) ` �
ontext � ` P : s (INTRO)` �; x :P
ontext` �
ontext (PROP-TYPE)� ` Prop : Type x :P 2 � ` �
ontext (INIT)� ` x : P� ` P : s1 �; x :P ` Q : s2 (PROD)� ` 8x :P:Q : s2� ` 8x :R:Q : s �; x :R ` P : Q (ABS)� ` �x :R:P : 8x :R:Q� ` P1 : 8x :Q1:Q2 � ` P2 : Q1 (APP)� ` P1P2 : [P2=x℄Q2� ` Q : s � ` Q0 : s � ` P : Q Q =�� Q0 (CONV)� ` P : Q0Figure 1: CC Typing Rules` �
ontext � ` P : s (Q-INTRO)` �;9x :P
ontext ` �
ontext � ` P : Q � ` P 0 : Q (EQ-INTRO)` �; P = P 0
ontext9x :P 2 � ` �
ontext (Q-INIT)� ` x : PFigure 2: Additional Typing Rules for CC+��-equivalen
e. We will often say \if term P has the form Q" to mean that P is ��-
onvertibleto a term of the form Q.Several other properties of CC are used later. For example if (` �; x :P
ontext) is derivable,we know that � ` P : s is derivable for some sort s. If � ` �x : R:P : 8x : R:Q is derivable,we know that �; x :R ` P : Q is derivable. Also if �;� and �;�0 are valid
ontexts, then the
ontext �;�;�0 is also valid as long as the variables on the left in de
larations in � and �0 aredistin
t. This property is
alled thinning. Finally, we note that for terms P;Q;R, if P =�� Q,then [R=x℄P =�� [R=x℄Q.As in Dowek [10℄, the des
ription of the sear
h pro
edure and the proof of its
orre
tnessrelies on extending CC to allows existential quanti�
ation of the form 9x : P and equationsbetween terms, written P = Q, to appear in
ontexts. We
all the new inferen
e system CC+.Given a
ontext �, a variable x is universal (existential) in � if there is a P su
h that x :P 2 �(9x :P 2 �). The de
laration x :P 2 � is also
alled a universal de
laration and 9x :P 2 � is
alled an existential de
laration. The equation P = Q is
alled a
onstraint. A
ontext element iseither a de
laration or
onstraint, sometimes denoted e. A term P is
losed in � if every variablex o

urring free in P is universal in �, and the type of x is
losed in �. The CC+ typing rulesin
lude all those for CC plus the additional rules in Fig. 2. In addition, =�� in (CONV) in Fig. 1is repla
ed by =��� whi
h denotes equality modulo ��-
onversion plus the
onstraints in �. Asub
ontext of a
ontext � is any
ontext obtained by removing some elements of �. Given termsP and Q and
ontext �, P is said to be of type Q in � without using the
onstraints if there is5

^ := �A;B :Prop:8C :Prop:((A! B ! C)! C)_ := �A;B :Prop:8C :Prop:((A! C)! (B ! C)! C)9Q := �P :Q! Prop:8C :Prop:((8x :Q:Px! C)! C)? := 8C :Prop:C> := 8C :Prop:C ! C: := �A :Prop:A! ?=Q := �M;N :Q:8P :Q! Prop:PM ! PNFigure 3: CC En
oding of the Conne
tives of Higher-Order Logi
a sub
ontext �
ontaining no
onstraints su
h that � ` P : Q. All terms that are well-typedin a
ontext without using the
onstraints have a unique normal form [10℄. The normal form ofa
ontext is obtained by repla
ing all types of variables and all members of
onstraints that arewell-typed without using the
onstraints by their normal forms.We say that a term P is atomi
 in
ontext � (in CC or CC+) if there is a Q su
h that� ` P : Q is derivable and there is a variable x and terms M1; : : : ;Mn, n � 0 su
h thatP =�� xM1 : : :Mn. If x is universal in �, we say that P is rigid. Otherwise, x is existential in� and we say that P is
exible. We say that K is a base type in � if K is a type in � and K isatomi
 in �.Generally, proof sear
h in CC+ starts with a
ontext of the form �;9x :P where � is a
ontextof universal de
larations, P is a property to be proved from the de
larations in �, and x is a\pla
eholder" for a proof of P . The goal of the sear
h pro
ess is to instantiate x with a term oftype P (or equivalently, a proof of formula P). The sear
h pro
ess will generate the instantiationin
rementally, and along the way new existential variables and
onstraints between terms willbe generated. Proof sear
h terminates su

essfully when the term instantiating x
ontains noexistential variables and all
onstraints generated along the way are satis�ed.It is shown in Huet [18℄ that higher-order logi
 is
ontained within CC. Terms are introdu
edthat en
ode the
onne
tives and it is shown that the
orresponding natural dedu
tion inferen
erules are provable in CC. Here, we use the abbreviations for the
onne
tives, whi
h are given inFig. 3. For example, when we write the term (9Q �x :Q:A), it represents the term 8C :Prop:((8x :Q:A! C)! C), and en
odes the formula 9Qx:A where 9Q is the existential quanti�er at typeQ in higher-order logi
. In CC, it must be the
ase that � ` Q : Prop or � ` Q : Type where� is the
ontext in whi
h the existentially quanti�ed expression o

urs. We often omit thetype subs
ript Q on 9Q be
ause it
an be inferred from the type of the bound variable in theargument. For readability, we will use in�x notation for the binary
onne
tives. Impli
ationand universal quanti�
ation are en
oded dire
tly using the fun
tion arrow and dependent type
onstru
tor of CC, respe
tively. Note that equality is Leibniz equality indexed over types in thesame way as existential quanti�
ation.In set theory, from the fa
t that a 2 fx : P (x)g, it is possible to immediately dedu
e P (a).In our en
oding, we build in this
orresponden
e dire
tly and de�ne sets to be predi
ates of a
ertain
lass of types. Term A is a set type in
ontext � if � ` A : Type is derivable and A hasthe form 8x1 :A1 : : : 8xn :An:Prop, where n > 0 and for i = 1; : : : ; n, Ai is a rigid base type orset type in �; x1 :A1; : : : ; xi�1 :Ai�1. Term M is a set in
ontext � if � ` M : A and A is a settype in �. In our setting, a set variable is a
tually a term of a
ertain form. In parti
ular, aset in
ontext � of the form zz1 : : : zn where z is an existential variable in �, and z1; : : : ; zn aredistin
t universal variables in � is
alled a set variable in �.To illustrate, let � be the
ontext Nat :Type; 0 :Nat; s :Nat ! Nat. Note that Nat ! Prop,6

fhx1; : : : ; xni j Ag := �x1 :A1 : : : �xn :An:AhM1; : : : ;Mni 2 B := (BM1 : : :Mn); := �x1 :A1 : : : �xn :An:?B � C := 8x1 :A1 : : : 8xn :An:(hx1; : : : ; xni 2 B)! (hx1; : : : ; xni 2 C)B [C := �x1 :A1 : : : �xn :An:((hx1; : : : ; xni 2 B) _ (hx1; : : : ; xni 2 C))B \ C := �x1 :A1 : : : �xn :An:((hx1; : : : ; xni 2 B) ^ (hx1; : : : ; xni 2 C))B =S C := (B � C) ^ (C � B)Provisos: �x1 :A1 : : : �xn :An:A, B, and C are sets in some
ontext �� ` �x1 :A1 : : : �xn :An:A : 8x1 :A1 : : : 8xn :An:Prop� ` B : 8x1 :A1 : : : 8xn :An:Prop� ` C : 8x1 :A1 : : : 8xn :An:Prop� `Mi : [M1=x1; : : : ;Mi�1=xi�1℄Ai for i = 1; : : : ; nFigure 4: CC En
oding of Sets(Nat! Prop)! Prop, ((Nat! Prop)! Prop)! Prop, et
: are all set types. Thus predi
atesover type Nat, predi
ates over sets of type Nat, predi
ates over sets of sets of type Nat, et
:are all sets. We use abbreviations for sets and set operations to keep the
orresponden
e withset membership in Bledsoe's work. Fig. 4
ontains these abbreviations. We write =S for setequality.Returning to the example given in Se
t. 1, we illustrate its proof within the framework of CC.Let � be the CC
ontext Nat :Type; P :Nat ! Prop; a :Nat. Proving the theorem from Se
t. 1in higher-order logi

orresponds to �nding a CC term M su
h that the following judgment isderivable.� `M : Pa! (9 �A :Nat ! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A)))Expanding the �rst 9 and applying ABS three times in the ba
kward dire
tion, we get thefollowing judgment as the rightmost premise. (We ignore the left premise of ea
h appli
ation.These are easily proved.)�; h1 :Pa;C :Prop;h2 :8A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A))! C`M 0 : CHere, M 0 is a new term su
h that M is equal to �h1:�C:�h2:M 0. Let �0 be the
ontext in theabove judgment
ontaining �; h1; C; and h2. The proof
an be
ompleted using two appli
ationsof (APP) from h2, setting M 0 to h2AM 00, where A and M 00 are terms that must be �lled in byproving the following two judgments.�0 ` A : Nat! Prop�0 `M 00 : (8x :Nat:hxi 2 A! Px) ^ (9 �y :Nat:hyi 2 A)As in Se
t. 1, we take A to be fx j Pxg, and so we must prove �0 ` fx j Pxg : Nat! Prop and�nd a term M 00 su
h that�0 `M 00 : (8x :Nat:hxi 2 fx j Pxg ! Px) ^ (9 �y :Nat:hyi 2 fx j Pxg)7

holds. The �rst judgment is dire
tly provable be
ause by de�nition fx j Pxg is just �x :Nat:Px whi
h is �-equivalent to P . After expanding de�nitions in the se
ond judgment, it isstraightforward to �ll in M 00 and
omplete the proof.Fig. 5 shows maximal solutions for variables A and B in various subformulas. A is assumedto o

ur in
ontext � only in the form hM1; : : : ;Mni 2 A, and similarly for B. These are thesolutions
onsidered by Bledsoe in the form handled by our version of Dowek's pro
edure. Asstated, our solutions are generalizations of Bledsoe's solutions in that they allow tuples insteadof singleton members of sets and dependen
ies may o

ur in the types of the tuples.We will use these rules dire
tly in the pro
edure in the next se
tion. The �rst rule isthe one that was used to determine the solution of the �rst
onjun
t of the example above.Although the se
ond rule looks
ompli
ated, it is just the dependent-type version of solving forfx 2 B ! P 0(x) obtaining maximal solution fz j 8x(z = fx ! P 0(x))g: In the CC version,the types of the last r arguments of the tuple
an depend on the types of the �rst j argumentsbut not on the types of ea
h other. The remaining rules are fairly straightforward. Sin
e ourrules are extensions of Bledsoe's rules, we extend the theorems in [3℄ whi
h justify the role ofthese rules in determining maximal solutions. The proofs of the extended theorems appear inSe
t. 3.3.3 Proof Sear
h with Set Variable InstantiationThe SetVar pro
edure is de�ned using our modi�ed notion of
ontexts
alled sear
h
ontexts.To distinguish them from the notion of
ontext de�ned in the previous se
tion, we say standard
ontext to denote the latter. In Dowek [10℄ and Felty [14℄, the sear
h pro
edure was des
ribedas dire
t operations on standard
ontexts. We �rst de�ne the notions of existential triple and
onstraint triple whi
h repla
e existential de
larations and
onstraints. An existential triple is atuple of the form (�; z; B) where � is a standard
ontext
ontaining only universal de
larations,z is a variable, and B is a term. A
onstraint triple is a tuple of the form (�; P;Q) where � is astandard
ontext
ontaining only universal de
larations and P and Q are terms. In either
ase,� is
alled a lo
al
ontext and the universal variables in � are
alled lo
al variables. A sear
h
ontext is an ordered list of universal de
larations, existential triples, and
onstraint triples.We de�ne an operation
atten on
ontext elements of sear
h
ontexts as follows:�
atten(e) is e if e is a universal de
laration.�
atten((z1 :A1; : : : ; zn :An); z; B) is 9z : (8z1 :A1 : : : 8zn :An:B).�
atten((z1 :A1; : : : ; zn :An); P;Q) is (8z1 :A1 : : : 8zn :An:P) = (8z1 :A1 : : : 8zn :An:Q).We extend the
atten operation to sear
h
ontexts in the obvious way: given
ontext �,
atten(�)is the
ontext su
h that ea
h element e of � is mapped to
atten(e). We write e as shorthandfor
atten(e) and � as shorthand for
atten(�). Note that
atten maps a sear
h
ontext to astandard
ontext. We say that a sear
h
ontext � is valid if � is valid. Note that variables
anbe renamed so that we
an assume that all universal variables and lo
al variables o

ur at moston
e on the left of a de
laration. We do not do so, but instead assume that all lo
al variables ina parti
ular existential or
onstraint triple, although not ne
essarily distin
t from lo
al variablesin other triples, are distin
t from ea
h other and from all other universal variables in the
ontext.Note that under this assumption, given a valid sear
h
ontext �; (�; z; B) or �; (�; P;Q), thesear
h
ontext �;� is also valid and equivalently the standard
ontext �;� is valid.8

Subformula Solution for A or B1: hx1; : : : ; xpi 2 Az1 : : : zn ! Px1 : : : xp �! fhx1; : : : ; xpi j Px1 : : : xpg2: hx1; : : : ; xj; f1x1 : : : xp; : : : ; frx1 : : : xpi 2 Bz1 : : : zn ! P 0x1 : : : xp�! fhx1; : : : ; xj; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpg3: hx1; : : : ; xj;M1; : : : ;Mri 2 Bz1 : : : zn ! Q �! fhx1; : : : ; xj; w1; : : : ; wri jw1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qg4: :(hx1; : : : ; xj ;M1; : : : ;Mri 2 Bz1 : : : zn) �! fhx1; : : : ; xj; w1; : : : ; wri j:(w1 =Cj+1 M1 ^ � � � ^ wr =Cj+r Mr)g5: hN1; : : : ; Npi 2 Az1 : : : zn �! fhx1; : : : ; xpi j >g6: If 1-4 yield fhy1; : : : ; yqi j Q0g, and w is a free variable of type C in Q0�! fhy1; : : : ; yqi j (9 �w :C:Q0)gProvisos:� Az1 : : : zn and Bz1 : : : zn are set variables in some
ontext �, i:e:, they are sets in �, A andB are existential variables in �, and z1; : : : ; zn are distin
t universal variables in �.� p > 0; j � 0; p > j; r > 0; n � 0.� � ` Az1 : : : zn : 8x1 :C1 : : : 8xp :Cp:Prop� � ` Bz1 : : : zn : 8x1 :C1 : : : 8xj :Cj :Cj+1 ! � � � ! Cj+r ! Prop� � ` P : 8x1 :C1 : : : 8xp :Cp:Prop� � ` P 0 : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:P rop� � ` fi : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:Cj+i for i = 1; : : : ; r� � ` Q : Prop� �; x1 :C1; : : : ; xj :Cj `Mi : Cj+i for i = 1; : : : ; r� � ` Ni : [N1=x1; : : : ; Ni�1=xi�1℄Ci for i = 1; : : : ; p� � ` C : Prop or � ` C : Type� All universal variables o

urring in P; P 0; Q; f1; : : : ; fr;M1; : : : ;Mr appear before A or Bin �.� A;B; x1; : : : ; xp; w1; : : : ; wr do not o

ur free in P; P 0; Q; f1; : : : ; fr;M1; : : : ;Mr.� A;B also do not o

ur free in C1; : : : ; Cp or C1; : : : ; Cj+r;Dj+1; : : : ;Dp.� x1; : : : ; xp; w are distin
t universal variables in � that do not o

ur free elsewhere in �.Figure 5: Maximal Solutions for Various Subformulas
9

Note that we
an equate standard
ontexts with sear
h
ontexts whose lo
al
ontexts are allempty by viewing (hi; z; B) as alternate syntax for 9z :B and (hi; P;Q) as alternate syntax forP = Q. Thus, all standard
ontexts
an be viewed as sear
h
ontexts of a parti
ular form. Thisequivalen
e allows us to dire
tly adapt many properties of
ontexts shown in [10℄.The de�nition of normal form for a
ontext (see Se
t. 2) is extended to sear
h
ontexts: thenormal form of a sear
h
ontext � is obtained as follows.� For ea
h universal de
laration in �, if the type of the universal variable is well-typed in �without using the
onstraints, repla
e the type by its normal form in �.� For ea
h existential triple (�; z; B) in �, if the type of z in
atten(�; z; B) is well-typed in� without using the
onstraints, then repla
e B and the types of the universal variablesin � with their normal forms in �;�.� For ea
h
onstraint triple (�; P;Q) in �, if the members of the
onstraint
atten(�; P;Q)are well-typed in � without using the
onstraints, then repla
e P , Q, and the types of theuniversal variables in � with their normal forms in �;�.We de�ne substitution for sear
h
ontexts. Let � be a set of tuples of the form hz;�;Miwhere z is a variable, � is a sear
h
ontext, and M is a term. The set � is a substitution if forany variable z, there is at most one tuple in � with z as its �rst
omponent. The appli
ation ofsu
h a substitution to a term is de�ned in the usual way ignoring the middle arguments of tuples.The appli
ation of substitution � to a sear
h
ontext �, denoted ��, is de�ned re
ursively asfollows.� If � is hi, �� is hi.� If � is �0; x :P , then �� is ��0; x :�P .� If � is �0; ((z1 :A1; : : : ; zn :An); z; B) where n � 0, then if there is a tuple hz;�;Mi in �,�� is ��0;�. Otherwise, �� is ��0; ((z1 :�A1; : : : ; zn :�An); z; �B).� If � is �0; ((z1 :A1; : : : ; zn :An); P;Q), then �� is ��0; ((z1 :�A1; : : : ; zn :�An); �P; �Q).By restri
ting the above de�nition so that both � and � are required to be standard
ontexts,we obtain the de�nition of substitution given in Dowek [10℄. Given substitution �, we write �to denote the substitution obtained by repla
ing the
ontext argument � of ea
h tuple in � by�. Note that � and � are the same substitution on terms, i:e:, for any term P , �P = �P .A valid
ontext � is a su

ess
ontext if it
ontains no existential triples and for every
onstraint triple e,
atten(e) relates ��-
onvertible terms. A valid
ontext � is a failure
ontextif it
ontains a
onstraint triple e su
h that
atten(e) relates two terms that have no freeo

urren
es of existential variables and that are not ��-
onvertible. Let � be a valid sear
h
ontext. A
andidate triple of � is an existential triple((z1 :A1; : : : ; zn :An); z;8x1 :B1 : : : 8xm :Bm:xM1 : : :Mp)where n;m; p � 0 and x is universal in �; z1 :A1; : : : ; zn :An; x1 :B1; : : : ; xm :Bm: As we will seein Se
t. 3.2, if a valid
ontext is not a su

ess or failure
ontext, there is always at least one
andidate triple. 10

3.1 The SetVar Pro
edureThe SETVAR, INTRO, and BACKCHAIN operations des
ribed below de�ne the SetVar sear
hpro
edure. At ea
h step, an operation is applied to a sear
h
ontext in normal form. Theresult is a substitution �. The substitution is applied to the input sear
h
ontext whi
h isthen normalized to obtain the input to the next step of the pro
edure. Generally, the originalinput has the form �; (hi; z; P) where � is a standard
ontext and P is a theorem for whi
ha proof is sought. If a su

ess
ontext is rea
hed then the series of substitutions provides asolution to z whi
h represents the proof. Along the way set variables may arise. Their solutions
an also be extra
ted from the series of substitutions. In des
ribing these operations, we oftenwrite 8xn :An:K to denote the term 8x1 :A1 : : : 8xn :An:K, where n � 0. Similarly, we write�xn : An:K to denote the term �x1 : A1 : : : �xn : An:K. Note that this notation is overloadedsin
e it also denotes
atten. However, sin
e
atten only applies to
ontexts or
ontext elements,there should be no
onfusion.SETVAR operation. Let � be a valid sear
h
ontext and ((z1 :A1; : : : ; zn :An); z;8x1 :C1 : : : 8xp :Cp:Prop) a
andidate triple in �, where n � 0, p > 0, and 8x1 :C1 : : : 8xp :Cp:Prop is a set type.Let � be the
ontext z1 : A1; : : : ; zn : An. In order for this operation to apply, there must beq o

urren
es of z in terms in � where q > 0, and for i = 1; : : : ; q, the ith o

urren
e is insome term Pi whi
h is part of an existential triple of the form ((�;�i); z0i; Pi) o

urring afterthe
andidate triple
ontaining z. Furthermore, Pi must be of one of the following forms:1. hx1; : : : ; xpi 2 zz1 : : : zn ! Px1 : : : xp2. hx1; : : : ; xj ; f1x1 : : : xp0 ; : : : ; frx1 : : : xp0i 2 zz1 : : : zn ! P 0x1 : : : xp03. hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn ! Q4. :(hx1; : : : ; xj;M1; : : : ;Mri 2 zz1 : : : zn)5. hN1; : : : ; Npi 2 zz1 : : : znsu
h that the provisos of the
orresponding rule in Fig. 5 hold in the
ontext �; z1 :A1; : : : ; zn :An.For i = 1; : : : ; q, let Qi be the solution for zz1 : : : zn in Pi a

ording to rules 1-5 of Fig. 5. Ifappropriate, apply rule 6 of the �gure as many times as possible to Qi to obtain Q0i. Let Q bethe term Q01 \ � � � \Q0q. Let � be the singleton set
ontaining the tuple hz; hi; �zn :An:Qi.INTRO operation. Let � be a valid sear
h
ontext and ((z1 : A1; : : : ; zn : An); z;8x : A:B) a
andidate triple in �. Let z0 be a variable that does not o

ur in � and assume x does not o

urin �. Let � be the
ontext
ontaining the single triple ((z1 :A1; : : : ; zn :An; x :A); z0; B), and let� be fhz;�; z0ig:BACKCHAIN operation. Let � be a valid sear
h
ontext and ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm)a
andidate triple in �, where m;n � 0, and �; z1 : A1; : : : ; zn : An ` xM1 : : :Mm : s holdswhere s is Prop or Type. If there is a universal de
laration w :Q su
h that either w is one ofz1; : : : ; zn or w :Q o

urs to the left of ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm) in �, the judgment�; z1 :A1; : : : ; zn :An ` Q : s holds, Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), andy is x or any existential variable in �, then we
an \ba
k
hain" on Q as follows. Let h1; : : : ; hqbe variables that do not o

ur in �. Let � be the
ontext z1 : A1; : : : ; zn : An. Let � be the
ontext (�; h1; Q1);(�; h2; [h1z1 : : : zn=y1℄Q2);...(�; hq; [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq);(�; [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Nn; xM1 : : :Mm):11

Let � be fhz;�; �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn)ig:A derivation of a sear
h
ontext � is a list of substitutions �1; : : : ; �n su
h that for i =1; : : : ; n, �i is the result of applying one of the sear
h operations to the normal form of �i�1 : : : �1�and the normal form of �n : : : �1� is a su

ess
ontext.As mentioned earlier, the use of sear
h
ontexts allows us to separate a single operation inDowek's pro
edure into two operations here, INTRO and BACKCHAIN, whi
h
orrespond to fairlyintuitive steps of proof sear
h. The INTRO operation performs the introdu
tion of assumptionsinto the environment. In parti
ular, assumptions are introdu
ed into lo
al
ontexts. In thesear
h
ontext as a whole, the third element of existential triples represent the formulas thatmust be proved, and for any given formula the assumptions that are available to use in its proofare those in its lo
al
ontext as well as all universal de
larations that o

ur before the triple.The BACKCHAIN operation performs the usual operation of ba
k
haining on an assumptionwhen the formula to be proved \mat
hes" the atomi
 part of the assumption. In parti
ular,for the parti
ular
andidate triple involved, it is not required that its third argument be thesame as or unify with the atomi
 part of the assumption used in ba
k
haining. Instead, a
onstraint is added that must be
he
ked as the sear
h pro
eeds. Subsequent sear
h operationsmay instantiate existential variables in su
h a way that the
onstraint may or may not relate twoterms that are ��-
onvertible. In the
ase when they are not ��-
onvertible, the
ontext be
omesa failure
ontext. In addition to the
onstraint, BACKCHAIN generates new existential triplesfor the subgoals that must still be proven. Also, a substitution is formed whi
h instantiatesthe existential variable in the original
andidate triple. Whenever there are subgoals, thisinstantiation is partial sin
e it will
ontain o

urren
es of the new existential variables
reatedfor the subgoals.Sear
h
ontexts provide a way to simplify the handling of s
oping
onstraints within theframework of a proof sear
h pro
edure whi
h operates by �lling in substitution instan
es forexistential variables in
rementally. This notion of
ontext does not deviate far from the standardone in the sense that at any point during sear
h a simple translation via the
atten operation
anbe applied to transform sear
h
ontexts whi
h
ontain lo
al
ontexts ba
k to ordinary
ontexts.This
atten operation is essential in forming and propagating substitutions. These substitutions
an be said to use a fun
tional en
oding of s
ope. In Dowek's pro
edure [10℄, this fun
tionalen
oding of s
ope is used in both
ontexts and substitutions. At the other end of the spe
trumare various
al
uli that avoid a fun
tional en
oding by integrating existential variables withexpli
it substitutions. Examples in
lude the ��-
al
ulus [11℄, the �L�-
al
ulus [22℄, and thesubstitution
al
ulus for Martin-L�of type theory [19℄. In these
al
uli, existential variables aredistin
t from ordinary variables and substitutions are represented expli
itly, allowing redu
tionof terms with existential variables to be delayed as ne
essary until the terms are �lled in. The
al
uli involved are more
omplex, but they provide simpli�ed handling of s
oping
onstraintsand representation of substitutions.Note that the pro
edure as des
ribed is non-deterministi
 sin
e it does not spe
ify an orderon the appli
ation of sear
h operations. As mentioned earlier, our implementation in �Prolog re-solves non-determinism by requesting input from the user. Depth-�rst sear
h with ba
ktra
kingis another possible strategy.To illustrate, we des
ribe the exe
ution of the pro
edure on two examples. We start with asimple example to illustrate the intera
tion of INTRO and BACKCHAIN. The se
ond example isa modi�ed form of our earlier example. The proof of this example
ontains an essential use ofthe SETVAR operation; it is not possible to prove it using only INTRO and BACKCHAIN. For the12

�rst example, let � be the
ontextNat :Type; P :Nat! Prop; a :Natas in the previous se
tion from whi
h we want to prove the theorem (8n :Nat:Pn) ! Pa: Webegin with the following sear
h
ontext.�; (hi;M; (8n :Nat:Pn)! Pa) (1)This
ontext is in normal form and the existential triple is a
andidate triple to whi
h the INTROoperation
an be applied. Note that (8n :Nat:Pn) ! Pa
an be written 8h : (8n :Nat:Pn):Pa.The operation results in a substitution �1 of the formfhM; ((h : (8n :Nat:Pn));M 0; Pa);M 0igwhere M 0 is a new variable. Applying this substitution to (1), we obtain the
ontext�; ((h : (8n :Nat:Pn));M 0; Pa): (2)When applying INTRO, it is a
tually not ne
essary to
hange the name of the existential variable.Here, all o

urren
es ofM are repla
ed withM 0 whi
h is another variable of the same type (afterapplying
atten). Instead, we
an just keep M . We adopt this
onvention in the next examplebelow. In this example, we
an now apply BACKCHAIN with the existential triple as the
andidatetriple. The universal de
laration we will use in this appli
ation of BACKCHAIN is h : (8n :Nat:Pn).We know this operation
an be applied be
ause both of the following judgments hold as required.�;9M 0 : (8n :Nat:Pn)! Pa; h : (8n :Nat:Pn) ` Pa : Prop�;9M 0 : (8n :Nat:Pn)! Pa; h : (8n :Nat:Pn) ` (8n :Nat:Pn) : PropWe form the
ontext �2 of the BACKCHAIN operation((h : (8n :Nat:Pn)); N;Nat); ((h : (8n :Nat:Pn)); [Nh=n℄Pn; Pa)where the �rst element is an existential triple with new variable N , and the se
ond element is a
onstraint triple. The term [Nh=n℄Pn is just P (Nh). The substitution �2 of this operation isfhM 0;�2; �h : (8n :Nat:Pn):h(Nh)ig:Applying �2 to (2)
ompletes the appli
ation of BACKCHAIN and gives�; ((h : (8n :Nat:Pn)); N;Nat); ((h : (8n :Nat:Pn)); P (Nh); Pa): (3)Let �0 denote the above
ontext. Note that �0 is�;9N :8h : (8n :Nat:Pn):Nat;8h : (8n :Nat:Pn):P (Nh) = 8h : (8n :Nat:Pn):Pa:One more appli
ation of BACKCHAIN will
omplete the sear
h. This time, we apply it using the
andidate triple ((h : (8n :Nat:Pn)); N;Nat) and the universal de
laration a :Nat. In this
ase,the two typing judgments required to hold in order to apply BACKCHAIN are the same:�0; h : (8n :Nat:Pn) ` Nat : Type:The
ontext �3
ontains only the simple
onstraint ((h : (8n : Nat:Pn));Nat;Nat) and thus,the substitution �3 is fhN;�3; �h : (8n : Nat:Pn):aig: Applying this substitution to (3) andnormalizing results in the following
ontext.�; ((h : (8n :Nat:Pn));Nat;Nat); ((h : (8n :Nat:Pn)); Pa; Pa): (4)13

Note that this
ontext
ontains no existential triples and two
onstraint triples that relate ��-equivalent terms. Thus it is a su

ess
ontext and sear
h is
ompleted. The proof of the formula(8n :Nat:Pn) ! Pa in the
ontext we started with is obtained by applying the substitutionsobtained at ea
h step to the original existential variable M and normalizing. In this
ase, thenormal form of �3�2�1M is the term �h : (8n :Nat:Pn):haFor the se
ond example, let � be the
ontextNat :Type; P :Nat! Prop; Q :Nat! Prop:We want to �nd a term to instantiate M in the following sear
h
ontext.�; (hi;M;9 �A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (8x :Nat:hxi 2 A! Qx))) (5)The formula we want to prove
ontains o

urren
es of 9 and ^, whi
h we must �rst expandbefore pro
eeding with sear
h. To simplify the presentation of this example, we �rst make someobservations about proofs of formulas
ontaining these
onne
tives. Consider the general
aseof proof sear
h in a
ontext of the form �; (�;M;9 �x :Q:P) where � is a
ontext of the formz1 :A1; : : : ; zn :An. Expanding 9, this
ontext is the same as�; (�;M;8C :Prop:(8x :Q:Px! C)! C): (6)In general, in sear
hing for a proof of an existential formula, a term is
hosen to instantiate thebound variable and sear
h pro
eeds. Alternately, a variable or pla
eholder is used whi
h gets�lled in as sear
h
ontinues. In the SetVar pro
edure, two appli
ations of INTRO followed by anappli
ation of BACKCHAIN to the existential triple in
ontext (6) has the a�e
t of introdu
ingsu
h a pla
eholder. To see this, �rst note, that we
an apply INTRO, generating the substitution�1, fhM; ((�; C :Prop);M; (8x :Q:Px! C)! C);Mig:Here, we reuse the name M as dis
ussed above. Applying �1 to (6) results in the
ontext�; ((�; C :Prop);M; (8x :Q:Px! C)! C): (7)A se
ond INTRO generates the substitution �2,fhM; ((�; C :Prop; h : (8x :Q:Px! C));M;C);Migand thus the
ontext �; ((�; C :Prop; h : (8x :Q:Px! C));M;C) (8)Now, we
an apply BACKCHAIN to the above existential triple using universal de
laration h :(8x :Q:Px! C). From now on, we leave out showing that the ne
essary typing judgments holdin order for BACKCHAIN to be appli
able. Using new variables X and M 0, we form the
ontext�3 as follows ((�; C :Prop; h : (8x :Q:Px! C));X;Q);((�; C :Prop; h : (8x :Q:Px! C));M 0; P (Xz1 : : : znCh));((�; C :Prop; h : (8n :Nat:Pn)); C;C):The substitution �3 of this operation isfhM;�3;8zn :An:�C :Prop:�h : (8x :Q:Px! C):h(Xz1 : : : znCh)(M 0z1 : : : znCh)ig:Applying �3 to (8), we get �;�3. Note the roles of X and M 0. In parti
ular, Xz1 : : : znCh isthe pla
eholder for the term bound by existential quanti�
ation while M 0z1 : : : znCh must be14

�lled in with the proof of the instantiated formula. Also, note the roles of h and C in thesethree steps. They are introdu
ed only to be used immediately in ba
k
haining and it is unlikelythat they will have any further role in the sear
h for a proof. Also, note that the
onstraint in�3 relates equivalent terms and that no subsequent instantiations of existential variables will
hange that. We use these fa
ts to introdu
e a sear
h operation, whi
h we
all EXISTS-INTRO,that abbreviates this sequen
e of steps and eliminates C, h, and the
onstraint. In parti
ular,we introdu
e a new
onstant 9I. From a
ontext of the form in (6) using new variables X0 andM 00, the EXISTS-INTRO operation generates the
ontext �(�;X0; Q); (�;M 00; P (X0z1 : : : zn))and the substitution �fhM;�;8zn :An:(9I (X0z1 : : : zn) (M 00z1 : : : zn))ig:In our example, we will use this operation in pla
e of the sequen
e of two appli
ations of INTROfollowed by an appli
ation of BACKCHAIN as above. It will always be the
ase that any appli
ationof this operation
an be expanded into a sequen
e of the three operations using new variables X,M 0, C, and h. In the abbreviated version all o

urren
es of X0z1 : : : zn andM 00z1 : : : zn stand forXz1 : : : znCh and M 0z1 : : : znCh, respe
tively. Also, 9I (X0z1 : : : zn) (M 00z1 : : : zn) abbreviatesthe term �C :Prop:�h : (8x :Q:Px! C):h(Xz1 : : : znCh)(M 0z1 : : : znCh):Sin
e the variables C and h along with their types are left out of lo
al
ontexts, these de
larationsas well as the
onstraint must be put ba
k in to get the expanded form. In the unabbreviatedsequen
e, note that on
e C and h are introdu
ed, they stay around. Thus, the abbreviated forma
tually
hanges the
ontexts that appear in subsequent sear
h. However, it is straightforwardto transform a derivation that uses EXISTS-INTRO to one
ontaining only SETVAR, INTRO, andBACKCHAIN, systemati
ally adding o

urren
es of C and h where ne
essary. Using the abbrevi-ated form has the
onsequen
e of imposing the restri
tion that, be
ause C and h do not appearat all, they do not apper in subsequent substitution terms. This restri
tion is not a serious onefor the
lass of theorems we are
onsidering.We introdu
e a similar operation
alled AND-INTRO to abbreviate several steps for the
asewhen the
ontext has the form �; (�;M;A ^B). Note that this
ontext denotes�; (�;M;8C :Prop:(A! B ! C)! C):AND-INTRO generates the
ontext �, whi
h is simply(�;M0; A); (�;M 00; B)and the substitution �fhM;�;8zn :An:(^I (M0z1 : : : zn)(M 00z1 : : : zn))ig:This operation
an also be expanded to two appli
ations of INTRO followed by BACKCHAIN.Similar to EXISTS-INTRO, there are variables M , M 0, C, and h su
h that in the abbreviatedversion, all o

urren
es ofM0z1 : : : zn andM 00z1 : : : zn stand forMz1 : : : znCh andM 0z1 : : : znCh,respe
tively, and ^I (M0z1 : : : zn)(M 00z1 : : : zn) abbreviates the term�C :Prop:�h :A! B ! C:h(Mz1 : : : znCh)(M 0z1 : : : znCh):15

Furthermore, to get the expanded form, the de
larations C :Prop and h :A ! B ! C must beadded to lo
al
ontext � in elements of � and the
onstraint ((�; C :Prop; h :A! B ! C); C;C)must also be added to �. Also, AND-INTRO imposes a restri
tion similar to EXISTS-INTRO sin
eC and h do not apper in �.The EXISTS-INTRO and AND-INTRO operations, respe
tively,
an now be used for the �rsttwo steps of proof sear
h in our se
ond example denoted by the
ontext (5). First, the result ofapplying EXISTS-INTRO is the
ontext �1 and substitution �1, respe
tively, as follows where A0and M 00 are new variables.�1 := (hi; A0;Nat! Prop); (hi;M 00; (8x :Nat:hxi 2 A0 ! Px) ^ (8x :Nat:hxi 2 A0 ! Qx))�1 := fhM;�1; (9I X0 M 00)igApplying �1 to
ontext (5), we get the following
ontext:�; (hi; A0;Nat! Prop); (hi;M 00; (8x :Nat:hxi 2 A0 ! Px) ^ (8x :Nat:hxi 2 A0 ! Qx)): (9)Using the triple
ontaining M 00 as the
andidate triple, the result of applying AND-INTRO is thefollowing
ontext and substitution:�2 := (hi;M 01;8x :Nat:hxi 2 A0 ! Px); (hi;M 02;8x :Nat:hxi 2 A0 ! Qx)�2 := fhM 00;�2; (^I M 01 M 02)ig:Applying �2 to
ontext (9), we get the following
ontext:�; (hi; A0;Nat! Prop);(hi;M 01;8x :Nat:hxi 2 A0 ! Px); (hi;M 02;8x :Nat:hxi 2 A0 ! Qx): (10)We
an now apply SETVAR to obtain a solution for A0 using the maximal solutions for the twotypes
ontaining A0. In parti
ular, for this appli
ation, the existential triple
ontaining A0 isthe
andidate triple and the remaining two existential triples
ontain o

urren
es of A0. Botho

urren
es are in formulas of the �rst form listed in the de�nition of SETVAR and thus themaximal solution in ea
h
ase is obtained using rule 1 of Fig. 5. The substitution resulting fromthis appli
ation is: �3 := fhA0; hi; fhxi j Pxg \ fhxi j Qxgig:After substitution and �-
onversion, the
ontext be
omes:�;(hi;M 01;8x :Nat:(hxi 2 (fhxi j Pxg \ fhxi j Qxg))! Px);(hi;M 02;8x :Nat:(hxi 2 (fhxi j Pxg \ fhxi j Qxg))! Qx):Note that expanding all de�nitions, this
ontext is equivalent to�;(hi;M 01;8x :Nat:(8C :Prop:((Px! Qx! C)! C))! Px);(hi;M 02;8x :Nat:(8C :Prop:((Px! Qx! C)! C))! Qx):From this point on, several more instan
es of INTRO and BACKCHAIN are needed to transformthis
ontext to a su

ess
ontext.To see why this derivation
an not be
ompleted without SETVAR,
onsider again the
on-text (10) of this example just before SETVAR was applied. Expanding de�nitions, this
ontextis equivalent to�; (hi; A0;Nat! Prop); (hi;M 01;8x :Nat:A0x! Px); (hi;M 02;8x :Nat:A0x! Qx) (11)16

After applying all possible instan
es of INTRO, we get the
ontext�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x);M 01; Px); ((x :Nat; h :A0x);M 02; Qx) (12)At this point BACKCHAIN
an be applied to any of the existential triples, but none leads to asu

ess
ontext. For example,
onsider the �rst triple. The only universal de
larations that
anbe used in ba
k
haining are the de
larations of P :Nat! Prop or Q :Nat! Prop. If the �rst isused, then the following
ontext and substitution are generated.� := ((x :Nat);X;Nat); ((x :Nat);Prop;Prop)� := fhA0;�; �x :Nat:P (Xx)igAfter one more BACKCHAIN to �ll in X using lo
al de
laration x :Nat, the instantiation for A0be
omes �x : Nat:Px. Similarly, if the de
laration Q : Nat ! Prop were
hosen instead, twoappli
ations of BACKCHAIN would lead to the instan
e �x :Nat:Qx for A0.The same problem o

urs if we begin with a BACKCHAIN using the se
ond or third existentialtriples in
ontext (12). Consider the se
ond triple. The only universal de
laration that
an beused in ba
k
haining is h :A0x in the lo
al
ontext. Using this de
laration, the following
ontextand substitution are generated.� := ((x :Nat; h :A0x); A0x; Px)� := fhM 01;�; �x :Nat:�h :A0x:higApplying � to the
ontext (12) results in the
ontext�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); A0x; Px); ((x :Nat; h :A0x);M 02; Qx)The variable A0 will not get �lled in until the �rst existential triple is used in ba
k
haining. Theonly way to satisfy the new
onstraint is to use P :Nat ! Prop as the universal de
laration insu
h an appli
ation of BACKCHAIN, whi
h as before, leads to �x :Nat:Px as the instantiation forA0. At this point, the only way to
ontinue sear
h is to apply BACKCHAIN to the existential triple
ontaining M 02. However, su
h a BACKCHAIN leads to a
onstraint ((x :Nat; h :A0x); Px;Qx)whi
h relates two terms that are not ��-
onvertible, and thus the result is a failure
ontext.In a similar manner, starting with a BACKCHAIN on the third existential triple in (12) alsoleads to a failure
ontext. The problem in this example is that restri
ting sear
h to INTRO andBACKCHAIN for
es instan
es of A0x to be atomi
 and no atomi
 instan
e leads to a proof. TheSETVAR operation, on the other hand, results in a type
ontaining set interse
tion, whi
h unfoldsto
onjun
tion, whi
h further unfolds to a non-atomi
 type. As we will see in Se
tion 4, withoutSETVAR, we must use the operation whi
h performs enumeration of types in order to get aninstan
e for A0x that is not atomi
. In general, type enumeration leads to a very large sear
hspa
e. One way to view the SETVAR operation is as a method for
ontrolling type enumerationfor theorems in a parti
ular
lass.As mentioned, SetVar also serves as a proof sear
h pro
edure for extensions of hohh andLF. We view either one as a sublanguage of CC+ by making appropriate restri
tions. Forexample, to restri
t the pro
edure to hohh, we must restri
t the types of bound variables in
ontext elements to be types in Chur
h's simple theory of types. In addition, we must pla
erestri
tions on the syntax of types that are analogous to the restri
tions pla
ed on formulas ofhigher-order logi
 in hohh. To des
ribe one of the restri
tions, we de�ne the notion of positiveand negative o

urren
es of terms in formulas. If a term A o

urs in a base type P in some
ontext �, A is said to o

ur positively in P . Term A o

urs positively (negatively) in 8x :P:Q17

or P ! Q if A o

urs positively (negatively) in Q or negatively (positively) in P . In hohh, oneof the restri
tions on the syntax of formulas is that for every base type xM1 : : :Mn, if this termappears positively in a universal de
laration, then x
annot be an existential variable; it mustbe a universal variable. Similarly, if xM1 : : :Mn appears negatively in an existential de
laration,then x must be a universal variable. In our extension, we relax this restri
tion and allow x to bean existential variable whenever its type has the form �1 ! � � � ! �j ! � 01 ! � � � ! � 0k ! Propfor some j � 0 and k > 0, the type � 01 ! � � � ! � 0k ! Prop is a set type, and x only o

ursin expressions of the form hx1; : : : ; xki 2 xz1 : : : zj where xz1 : : : zj is a set variable. In thissublanguage of CC+, the INTRO and BACKCHAIN operations
orrespond fairly
losely to sear
hoperations in the �Prolog interpreter, while the SETVAR operation handles instantiation of setvariables in the extended language. In addition, the SETVAR operation within the
ontext ofthis extended version of hohh gives a formalization of Bledsoe's pro
edure in a higher-order logi
setting. In
ontrast, SetVar is des
ribed in an adho
 extension to �rst-order logi
 in Bledsoe [3℄.To use this pro
edure for proof sear
h in LF, we must extend LF to permit quanti�
ationover
ertain predi
ates. We permit su
h quanti�
ation in a restri
ted way, similar to the way itis permitted in the extension of hohh above. In parti
ular, we allow existential quanti�
ationover predi
ate x whenever the following
onditions hold: the type of x type has the form8xj : Aj :8zk : Bk:Prop for some j � 0 and k > 0; the types A1; : : : ; Aj are any LF types; thetypes B1; : : : ; Bk are base types in LF (whi
h means that the type 8zk :Bk:Prop is a set typeof a parti
ular form); and x only o

urs in expressions of the form hx1; : : : ; xki 2 xz1 : : : zjwhere xz1 : : : zj is a set variable. In Bledsoe's setting, after instantiating all set variables, theformula be
omes a formula of �rst-order logi
. Similarly, in LF with the extension just des
ribed,whenever a
ontext has a derivation, it will be the
ase that after instantiation of existentialquanti�ers, the result is a valid
ontext in pure LF. For LF, an additional
hange is needed.Be
ause LF does not permit general quanti�
ation over predi
ates, we
annot use the dire
ten
oding of logi
al
onne
tives and set operations des
ribed in the previous se
tion. Instead,these de�nitions need to be axiomatized in LF.3.2 Soundness of the SetVar Sear
h Pro
edureWe begin by stating and proving some general properties about sear
h
ontexts, substitution,and normal forms.Given term P and
ontext �, we write ��(P;�) (or just ��(P) when � obvious) to denotethe normal form of P in � if it has one. Similarly, we write ��(�) to denote the normal formof
ontext �. Let � be a valid sear
h
ontext. When applying a series of substitutions to a
ontext or term, it is easy to see that if a normalization is performed after all substitutionsare
ompleted, then any intermediate normalization steps have no e�e
t. The following lemmastates this fa
t.Lemma1. Let P be a term, let � be a
ontext, and let � and � be two substitutions. If ��Phas a normal form in ���, then ��(�(��(�P))) = ��(��P). Also ��(�(��(��))) = ��(���).The next two lemmas about sear
h
ontexts follow dire
tly from properties about standard
ontexts in [10℄.Lemma2. Let � be a valid sear
h
ontext, let �0 be its normal form, and let P and Q be twoterms su
h that � ` P : Q. Then �0 is a valid sear
h
ontext and �0 ` P : Q.18

Lemma3. Let � be a normal valid sear
h
ontext whi
h is neither a su

ess
ontext nor afailure
ontext. Then there is an existential triple ((z1 :A1; : : : ; zn :An); z; B) in �, n � 0, su
hthat 8z1 :A1 : : : 8zn :An:B is well-typed in � without using the
onstraints and B has the form8zn+1 :An+1 : : : 8zm :Am:C where m � n and C is atomi
 and rigid in �; z1 :A1; : : : ; zm :Am.If x is a variable, P is a term, and � is a standard
ontext then [P=x℄� denotes the operationof substituting P for all free o

urren
es of x in
onstraints and on the right of de
larationsin �. The following property is known to hold for standard
ontexts in CC and was shown inDowek [9℄ to extend to CC+
ontexts.Lemma4. Let M;N;A be terms and let �; x :B;�0 be a
ontext su
h that �; x :B;�0 ` M : Aand � ` N : B. Then �; [N=x℄�0 is a valid
ontext and �; [N=x℄�0 ` [N=x℄M : [N=x℄A.The next three lemmas are needed to allow us to adapt additional properties in [10℄ to oursetting. Lemmas 5 and 6 provide the ne
essary
orresponden
e between standard
ontexts andsear
h
ontexts. Lemma 7 introdu
es a new
on
ept needed for our soundness proof.Lemma5. Let � be a valid sear
h
ontext and let � be a substitution. Then �� = ��.Proof. The proof is by indu
tion on the length of �. The theorem
learly holds if � is the empty
ontext. Otherwise, � has the form �0; e and we assume that ��0 = ��0.For the
ase when e is a universal de
laration of the form x :P , �� is ��0; x :�P and �� is��0; x :�P . By the indu
tion hypothesis and the fa
t that �P = �P , these two
ontexts are thesame.For the
ase when e is an existential triple of the form ((z1 : A1; : : : ; zn : An); z; B) wheren � 0, then if there is a tuple hz;�;Mi in �, then �� is ��0;� and hz;�;Mi is in �. Thus ��is ��0;� and �� is ��0;� whi
h are the same
ontext by a simple appli
ation of the indu
tionhypothesis. Otherwise, �� is ��0; ((z1 : �A1; : : : ; zn : �An); z; �B). In this
ase �� is ��0;9z :8z1 :�A1 : : : 8zn :�An:�B and �� is ��0;9z :8z1 :�A1 : : : 8zn :�An:�B whi
h are again the same
ontext be
ause � and � are the same substitution on terms.The
ase when e is a
onstraint triple is similar to the
ase for existential triples when theexistential variable is not bound by �.Let � be a valid sear
h
ontext. A substitution � is well-typed in � if �� is a valid
ontext,for every tuple hz;�;Mi 2 �, either z does not o

ur in � or if it o

urs, � has the form�0; ((z1 : A1; : : : ; zn : An); z; B);�00 and ��0;� ` M : �(8z1 : A1 : : : 8zn : An:B) holds. We
anassume that all the existential variables introdu
ed in the
ontext argument of tuples in � aredistin
t from one another.Lemma6. Let � be a valid sear
h
ontext and � a substitution. Then � is well-typed in � ifand only if � is well-typed in �.Proof. The proof is by indu
tion on the length of �. The theorem
learly holds if � is the empty
ontext. Otherwise, � has the form �0; e. We must show that � is well-typed in �0; e if and only if� is well-typed in �0; e. We only show the
ase for the forward dire
tion when e is an existentialtriple of the form ((z1 :A1; : : : ; zn :An); z; B) where n � 0. The other
ases are similar, and theproof is easily reversed to get the ba
kward dire
tion.19

We assume that � is well-typed in �0; e and we show that � is well-typed in �0; e. Clearly �is well-typed in �0, so by the indu
tion hypothesis, we know that � is well-typed in �0. Thus, byde�nition of well-typed substitution, ��0 is a valid sear
h
ontext and ��0 is a valid standard
ontext.We �rst
onsider the
ase when z does not o

ur as the �rst argument in a tuple in �. Sin
e �is well-typed in �0; ((z1 :A1; : : : ; zn :An); z; B), we know that ��0; ((z1 :�A1; : : : ; zn :�An); z; �B)is a valid sear
h
ontext. Thus, by de�nition, ��0;9z : �(8z1 : A1; : : : ;8zn : An:B) is a validstandard
ontext. By Lemma 5, this
ontext is the same as ��0;9z :�(8z1 :A1; : : : ;8zn :An:B).We must show that � is well-typed in �0;9z :8z1 :A1; : : : ;8zn :An:B. This follows if we
an showthat ��0;9z :�(8z1 :A1; : : : ;8zn :An:B) is a valid
ontext. This follows from the valid standard
ontext above and the fa
t that � and � are the same when applied to terms.If there is a tuple hz;�;Mi in �, then from the fa
t that � is well-typed in �0; e, we know that��0; �e is a valid sear
h
ontext, from whi
h it follows that ��0;� is a valid sear
h
ontext. Thus,��0;� is a valid standard
ontext. We also know that ��0;� ` M : �(8z1 :A1 : : : 8zn :An:B)holds. The tuple hz;�;Mi is in �, so we must show that ��0;� is a valid
ontext. By Lemma 5,this is the same
ontext as ��0;� whi
h we have shown to be valid. We must also show that��0;� ` M : �(8z1 :A1 : : : 8zn :An:B) holds. Note that ��0 is the same as ��0 by Lemma 5,whi
h is the same as ��0, whi
h again by Lemma 5, is the same as ��0. Also � is �. Fromthese equivalen
es, and the fa
t that � and � are the same when applied to terms, the abovejudgment is equivalent to ��0;� ` M : �(8z1 :A1 : : : 8zn :An:B) whi
h we have shown to hold.We introdu
e a weaker notion of well-typed substitution restri
ted to the normal form ofa
ontext. A substitution � is ��-well-typed in � if ��(��) is a valid
ontext, for every tuplehz;�;Mi 2 �, either z does not o

ur in � or if it o

urs, � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, both M and �(8z1 : A1 : : : 8zn : An:B) have normal forms in ��(��0;�), and��(��0;�) ` ��(M) : ��(�(8z1 :A1 : : : 8zn :An:B)) holds.Lemma7. Let � be a valid sear
h
ontext and let � be a substitution. If � is well-typed in �,then � is ��-well-typed in �.Proof. This theorem follows dire
tly from the de�nition of well-typed substitution and Lemma 2.The next four lemmas follow dire
tly from Lemmas 5, 6, and 7, and properties in [10℄. Wegive the proof of Lemma 10 only.Lemma8. Let � be a valid sear
h
ontext, � a substitution, and P and Q two terms su
h that� ` P : Q. If � is well-typed in �, then �� is a valid
ontext and �� ` �P : �Q. If � is��-well-typed in �, then ��(��) is a valid
ontext and ��(��) ` ��(�P) : ��(�Q).The
omposition of two substitutions � and � , denoted � Æ�, is the union of the set of tripleshz; ��; �Mi su
h that hz;�;Mi 2 �, and the set of triples hz;�;Mi su
h that hz;�;Mi 2 �and z is does not o

ur as the �rst element of a triple in �.Lemma9. Let � and � be two substitutions and let � be a sear
h
ontext. Then (� Æ�)� = ���.Lemma10. Let � be a valid sear
h
ontext and let � and � be two substitutions.20

1. If � is well-typed in � and � is well-typed in ��, then � Æ � is well-typed in �.2. If � is ��-well-typed in � and � is ��-well-typed in the normal form of ��, then � Æ � is��-well-typed in �.Proof. Assume that � is well-typed in � and � is well-typed in ��. Then ��� is a valid
ontext,and so by the equivalen
e of Lemma 9, (� Æ �)� is a valid
ontext. Every tuple in � Æ � either
omes from � or � . We �rst
onsider tuples from �. Let hz;�;Mi be su
h a tuple. Thenhz; ��; �Mi is in � Æ �. If � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, we must show that(� Æ �)�0; �� ` �M : (� Æ �)(8z1 :A1 : : : 8zn :An:B): (1)Sin
e � is well-typed in �, we know that��0;� `M : �(8z1 :A1 : : : 8zn :An:B): (2)We know that � is well-typed in �� and by de�nition of substitution, ��0;� is a sub
ontext of��. Thus, � is well-typed in ��0;�. So from (2) and Lemma 8, we know that���0; �� ` �M : ��(8z1 :A1 : : : 8zn :An:B)whi
h by Lemma 9 is equivalent to (1) and we have our result. We now
onsider tuples from � .Let hz;�;Mi be su
h a tuple. By de�nition of
omposition, we know that this tuple is in � Æ �and that z is not bound by �. If � has the form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, we must showthat (� Æ �)�0;� `M : (� Æ �)(8z1 :A1 : : : 8zn :An:B): (3)Sin
e z is not bound by �, we know that �� has the form ��0; ((z1 :�A1; : : : ; zn :�An); z; �B); ��00.Sin
e � is well-typed in ��, we know that ���0;� ` M : ��(8z1 :A1 : : : 8zn :An:B), whi
h byLemma 9 is equivalent to (3) and we have our result.For the
ase when � is ��-well-typed in � and � is ��-well-typed in the normal form of ��,the proof is similar and also relies on Lemmas 1 and 5.Given valid sear
h
ontext �, a substitution � is said to be a solution to � if � is ��-well-typedin � and ��(��) is a su

ess
ontext. A solution is normal if it binds exa
tly the existentialvariables of � and for every tuple hz;�;Mi su
h that � has the form �0; ((z1 : A1; : : : ; zn :An); z; B);�00, we have that � is empty and M is normal in ��0. For an arbitrary solution �to a
ontext �, we obtain the normal form of � from � as follows: remove all tuples hz;�;Misu
h that z is not an existential variable in �; for all other tuples hz;�;Mi 2 � su
h that � hasthe form �0; ((z1 :A1; : : : ; zn :An); z; B);�00, repla
e this tuple with hz; hi;M 0i where M 0 is thenormal form of M in ��0.Lemma11. Let � be a valid sear
h
ontext and let � be a solution to �. Let �0 be the normalform of �. Then �0 is a normal solution to �.The remaining lemmas and their proofs follow fairly
losely the proof of soundness inDowek [10℄. The main di�eren
es are that we must prove additional
ases for the SETVARoperation and the
ases for INTRO and BACKCHAIN are slightly modi�ed be
ause of the use ofsear
h
ontexts. 21

Lemma12. Let � be a normal valid sear
h
ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a sear
h operation to �. Then �0;� is a valid sear
h
ontext.Proof. Let �0 be the single item
ontext ((z1 :A1; : : : ; zn :An); z; C). Sin
e � is a valid sear
h
ontext, �0 and �0;�0 are valid sear
h
ontexts, and thus �0 and �0;�0 are valid standard
ontexts. To show that �0;� is valid, we need to show that �0;� is a valid standard
ontext.For the SETVAR
ase, � is empty and we have our result.For the INTRO
ase, C has the form 8x : A:B, M is some new variable z0 and � is ((z1 :A1; : : : ; zn :An; x :A); z0; B). Sin
e �0 is the same as � up to renaming of the existential variableand �0;�0 is valid, we have our result.For the BACKCHAIN
ase, there is a de
laration w : 8y1 :Q1 : : : 8yq :Qq:B with q � 0 whi
heither o

urs in �0 or w is one of z1; : : : ; zn. � is9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq;8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B = 8zn :An:C:From the de�nition of BACKCHAIN, we know that the following hold�0; z1 :A1; : : : ; zn :An ` C : s (1)�0; z1 :A1; : : : ; zn :An ` 8y1 :Q1 : : : 8yq :Qq:B : swhere s is Prop or Type. Thus, for i = 1; : : : ; n, there is a sort si, and for j = 1; : : : ; q, there isa sort s0j su
h that the following hold.�0; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (2)�0; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yj�1 :Qj�1 ` Qj : s0j (3)�0; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq :Qq ` B : s (4)For i = 1; : : : ; q, let �i be the
ontext
ontaining the �rst i elements of �. We prove by indu
tionon q that �0;�q is valid. If q is 0, �q is empty and we are done. Otherwise assume that �0;�q�1is valid. Sin
e �0; z1 :A1; : : : ; zn :An is valid, by thinning we know that �0;�q�1; z1 :A1; : : : ; zn :Anis valid. Thus, for i = 1; : : : ; q � 1, by Q-INIT we have that�0;�q�1; z1 :A1; : : : ; zn :An ` hi : 8zn :An:[h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi: (5)From (5), by repeated appli
ations of APP, for i = 1; : : : ; q � 1, we get�0;�q�1; z1 :A1; : : : ; zn :An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi: (6)From (2) with i = 1; : : : ; n, (3), and thinning, we get�0;�q�1; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (7)�0;�q�1; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq�1 :Qq�1 ` Qq : s0q (8)From (6) with i = 1, (8), and Lemma 4, we obtain:�0;�q�1; z1 :A1; : : : ; zn :An;y2 : [h1z1 : : : zn=y1℄Q2; : : : ; yq�1 : [h1z1 : : : zn=y1℄Qq�1 ` [h1z1 : : : zn=y1℄Qq : s0q22

By repeated appli
ations of Lemma 4 and (6) with i = 2; : : : ; q � 1, we obtain.�0;�q�1; z1 :A1; : : : ; zn :An ` [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq : s0q: (9)From (9), (7), and repeated appli
ations of PROD, we
an
on
lude�0;�q�1 ` 8zn :An[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq : s0qfrom whi
h we
an
on
lude by an appli
ation of Q-INTRO that �0;�q is valid.It remains to show that the
onstraint is well-typed in �0;�q. By repeated appli
ations ofPROD from (1) and (2), it follows that�0 ` 8zn :An:C : s: (10)By thinning from (2), (4), and (10), the following hold.�0;�q; z1 :A1; : : : ; zi�1 :Ai�1 ` Ai : si (11)�0;�q ` 8zn :An:C : s (12)�0;�q; z1 :A1; : : : ; zn :An; y1 :Q1; : : : ; yq :Qq ` B : s (13)Sin
e �0;�q is valid, we now know that (6) holds for i = 1; : : : ; q with �q repla
ing �q�1. Thusby repeated appli
ations of Lemma 4 from (13) using this new version of (6) with i = 1; : : : ; q,we obtain the following.�0;�q; z1 :A1; : : : ; zn :An ` [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B : s (14)By repeated appli
ations of PROD from (11) and (14), followed by a single appli
ation ofEQ-INTRO using (12), we get the desired result.Lemma13. Let � be a normal valid sear
h
ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a sear
h operation to �. Then �0;� ` M : 8z1 :A1 : : : 8zn :An:C holds.Proof. For the SETVAR
ase, C is a set type of the form 8x1 :C1 : : : 8xp :Cp:Prop with p > 0, � isempty, andM has the form �zn :An:Q01\� � �\Q0q where q > 0 and for i = 1; : : : ; q, Q0i is obtainedfrom some formula Pi by an appli
ation of rule 1,2,3,4, or 5 followed by 0 or more appli
ationsof rule 6 of Fig. 5. We must show that �0 ` �zn :An:Q01 \ � � � \Q0q : 8zn :An:8xp :Cp:Prop holds.This holds if by appli
ations of ABS and the de�nition of \, for i = 1; : : : ; q, the following holds.�0; z1 :A1; : : : ; zn :An ` Q0i : 8xp :Cp:Prop:(It is straightforward to show that the left premises of this series of appli
ations of ABS hold, andalso that if the above judgments hold then �0; z1 :A1; : : : ; zn :An ` Q01 \ � � � \Q0q : 8xp :Cp:Propholds.) For ea
h i, we pro
eed by indu
tion on the number k of appli
ations of rule 6. In the
ase where k = 0, then Q0i was obtained from Pi by a single appli
ation of one of the rules1,2,3,4, or 5. Be
ause � is valid, we know that �0 ` z : 8zn :An:8xp :Cp:Prop holds and thatthe
ontext �0; z1 :A1; : : : ; zn :An is valid. By thinning, we get �0; z1 :A1; : : : ; zn :An ` z : 8zn :An:8xp :Cp:Prop and by repeated appli
ations of APP, we
an
on
lude:�0; z1 :A1; : : : ; zn :An ` zz1 : : : zn : 8x1 :C1 : : : 8xp :Cp:Prop: (1)23

We show the
ase when Q0i was obtained from rule 2. Similar (and simpler) reasoning fromthe de�nition of the SETVAR operation and the provisos in Fig. 5
an be used to show that the
ases for rules 1,3,4, and 5 hold.If Q0i was obtained from rule 2, then from the fa
t that the provisos hold, there is some j; rwith 0 � j < p and j + r = p su
h that (1)
an be rewritten as�0; z1 :A1; : : : ; zn :An ` zz1 : : : zn : 8x1 :C1 : : : 8xj :Cj :Cj+1 ! � � � ! Cj+r ! Prop: (2)Pi has the form hx1; : : : ; xj ; f1x1 : : : xp0 ; : : : ; frx1 : : : xp0i 2 zz1 : : : zn ! P 0x1 : : : xp0 for some p0su
h that p0 > j and Q0i has the formfhx1; : : : ; xj ; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp0 :Dp0 :w1 =Cj+1 f1x1 : : : xp0 ! � � � ! wr =Cj+r frx1 : : : xp0 ! P 0x1 : : : xp0gfor some terms Dj+1; : : : ;Dp0 : We
an prove that this term has type 8x1 :C1 : : : 8xj :Cj :Cj+1 !� � � ! Cj+r ! Prop in
ontext �0; z1 : A1; : : : ; zn : An if (by unfolding of the set notation andappli
ations of ABS and PROD in a ba
kward dire
tion) we
an prove that the following judgmentholds. (Again, the left premises of the appli
ations of ABS and PROD follow easily.)�0; z1 :A1; : : : ; zn :An; x1 :C1; : : : ; xj :Cj ; w1 :Cj+1; : : : ; wr :Cj+r; xj+1 :Dj+1; : : : ; xp0 :Dp0` w1 =Cj+1 f1x1 : : : xp0 ! � � � ! wr =Cj+r frx1 : : : xp0 ! P 0x1 : : : xp0 : PropThis follows dire
tly from the types of =Ci for i = j+1; : : : ; j+r, the types given in the provisosof P 0; f1; : : : ; fr, and appli
ations of PROD.For the indu
tion
ase, when k > 0, Q0i has the form fhy1; : : : ; yq0i j (9 �w :C 0:Q0)g and wemust show that�0; z1 :A1; : : : ; zn :An ` fhy1; : : : ; yq0i j (9 �w :C 0:Q0)g : 8x1 :C1 : : : 8xp :Cp:Prop (3)holds under the assumption that�0; z1 :A1; : : : ; zn :An ` fhy1; : : : ; yq0i j Q0g : 8x1 :C1 : : : 8xp :Cp:Prop (4)holds. Note that for this judgment to be derivable, it must be the
ase that q0 � p. Variables
anbe renamed so that y1; : : : ; yq0 are the same variables as x1; : : : ; xq. Then (3) follows from (4), thetype of 9, and the fa
t that a

ording to the provisos in Fig. 5, w does not o

ur free elsewherein �0.For the INTRO
ase, C has the form 8x :A:B, M is some new variable z0 and � is 9z0 :8zn :An:8x :A:B. Then dire
tly by Q-INIT, �0;� ` z0 : 8zn :An:8x :A:B holds.For the BACKCHAIN
ase, there is a de
laration w : 8y1 :Q1 : : : 8yq :Qq:B with q � 0 whi
heither o

urs in �0 or w is one of z1; : : : ; zn. The termM is �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn)and � is 9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq;8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B = 8zn :An:C:We must show that�0;� ` �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) : 8zn :An:C (5)24

holds. From the de�nition of BACKCHAIN and the fa
t that � is valid, we know that�0; z1 :A1; : : : ; zn :An ` C : s�0; z1 :A1; : : : ; zn :An ` w : 8y1 :Q1 : : : 8yq :Qq:Bholds where s is either Prop or Type. By Lemma 12, we know that �0;� is a valid
ontext, soby thinning, the following hold. �0;�; z1 :A1; : : : ; zn :An ` C : s (6)�0;�; z1 :A1; : : : ; zn :An ` w : 8y1 :Q1 : : : 8yq :Qq:B (7)From (6), by appli
ations of PROD (where the left premises are easy to prove as before), we
an
on
lude �0;� ` 8zn :AnC : s: (8)Sin
e �;� is valid, we also know that both sides of the
onstraint in � have the same type.Thus, from (8), we know�0;� ` 8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B : s (9)holds. Also, for i = 1; : : : q, the following hold.�0;�; z1 :A1; : : : ; zn :An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi�1z1 : : : zn=yi�1℄Qi (10)By repeated appli
ations of APP from (7) and (10)�0;�; z1 :A1; : : : ; zn :An ` w(h1z1 : : : zn) : : : (hqz1 : : : zn) : [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄Bholds, and by repeated appli
ations of ABS where the left premises are easy to prove as before�0;� ` �zn :An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) :8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄B (11)holds. Thus by an appli
ation of CONV from (8), (9), (11), and the
onstraint in �, we
an
on
lude that the desired result (5) holds.Lemma14. Let � be a normal valid sear
h
ontext of the form �0; ((z1 :A1; : : : ; zn :An); z; C);�00.Let fhz;�;Mig be the result of applying a sear
h operation to �. Let � be the substitution
ontaining the single tuple hz;�;Mi. Then � is well-typed in �.Proof. The proof is by indu
tion on the number of elements in �00. Note that ��0 is just �0. Let�0 be the
ontext
ontaining the single element ((z1 :A1; : : : ; zn :An); z; C).For the base
ase, when �00 is empty, we have to show that �(�0;�0) is valid and that��0;� ` M : �(8zn :An:C) holds. By the de�nition of substitution, �(�0;�0) is simply ��0;�.Sin
e ��0 is �0, we have to show that �0;� is valid. This follows by Lemma 12. Thus �(�0;�0) isvalid. Sin
e ��0 is �0, it is also the
ase that ��0 is �0. Also, sin
e � is valid, z does not o

ur freein A1; : : : ; An; C, so �(8zn :An:C) is 8zn :An:C. Thus, we have to show �0;� `M : 8zn :An:C.This follows by Lemma 13.If �00 is non-empty, it has the form �00; e. Thus, �� is �0;�; ��00; �(e). To show that � iswell-typed in �, we must show that �0;�; ��00; �(e) is a valid sear
h
ontext, or equivalently25

that �0;�; ��00; �(e) is a valid standard
ontext. By the indu
tion hypothesis, we know that �is well-typed in �0;�0;�00 and thus �0;�; ��00 is a valid
ontext.We show the
ase when e is an existential triple of the form ((y1 : B1; : : : ; ym : Bm); y;D)where m � 0. The others are similar. Note that � is �0;�0;�00;9y :8ym :Bm:D and that �� is�0;�; ��00;9y :�(8ym :Bm:D). Note that the Q-INTRO rule was the last rule in a proof that � isvalid and thus �0;�0;�00 ` 8ym :Bm:D : s holds where s is Prop or Type. Sin
e � is well-typedin �0;�0;�00, by Lemma 8 we know that �0;�; ��00 ` �(8ym :Bm:D) : s and thus the standard
ontext �0;�; ��00;9y :�(8ym :Bm:D) is valid, and hen
e so is the
orresponding sear
h
ontext�0;�; ��00; ((y1 :�B1; : : : ; ym :�Bm); y; �D).Let � be a normal valid sear
h
ontext and let �1; : : : ; �n be a derivation of �. The normalform of �n Æ � � � Æ �1 is
alled the substitution denoted by the derivation �1; : : : ; �n.Lemma15. Let � be a valid sear
h
ontext and let �1; : : : ; �n be a derivation of �. Then thesubstitution denoted by the derivation �1; : : : ; �n is a solution to �.Proof. We �rst prove that �n Æ � � � Æ �1 is ��-well-typed in � by indu
tion on n. If n is 0,then �n Æ � � � Æ �1 is empty and we only need to show that ��(�n Æ � � � Æ �1�) is valid. Notethat �n Æ � � � Æ �1� is �. Sin
e � is valid, by Lemma 2 we
an
on
lude that its normal formis valid. For the indu
tion
ase, we assume that �n�1 Æ � � � Æ �1 is ��-well-typed in �. Thus��(�n�1 Æ � � � Æ �1�) is valid. Sin
e �n is the result of applying one of the sear
h operationsto this
ontext, by Lemma 14, we know that �n is well-typed in ��(�n�1 Æ � � � Æ �1�), and byLemma 7, it is ��-well-typed in ��(�n�1 Æ � � � Æ �1�). Sin
e �n�1 Æ � � � Æ �1 is ��-well-typed in �and �n is ��-well-typed in ��(�n�1 Æ � � � Æ�1�), by Lemma 10, �n Æ � � � Æ�1 is ��-well-typed in �.By the de�nition of derivation, ��(�n : : : �1�) is a su

ess
ontext. By Lemma 9, this is thesame
ontext as ��(�n Æ � � � Æ �1�). Sin
e ��(�n Æ � � � Æ �1�) is a su

ess
ontext and �n Æ � � � Æ �1is ��-well-typed in �, we
an
on
lude that �n Æ � � � Æ �1 is a solution to �. By Lemma 11, itsnormal form is also a solution.Theorem16. (Soundness) Let � be a normal valid CC
ontext (without existential variables or
onstraints) and let A be a normal term of type Prop or Type in �. Let �0 be the sear
h
ontext�; (hi; z; A). If there exists a derivation of �0, then there exists a term M su
h that � ` M : Aholds in CC.Proof. Let � be the substitution denoted by a derivation of �0. Sin
e � is normal, it
ontainsa single tuple of the form hz; hi;Mi for some term M in normal form. By Lemma 15, � is asolution, and thus by de�nition it is ��-well-typed in �0. By de�nition of ��-well-typed, weknow that ��(��) ` ��(M) : ��(�A) holds. Note that �� is � and re
all that � is normal.Thus ��(��) is �. Sin
e �
ontains no existential triples or
onstraint triples, � is �. Also, sin
eM is normal ��(M) is M . In addition, sin
e � is valid and A is well-typed in �, we know thatz does not o

ur in A and thus �A is A. Thus, sin
e A is normal, we have that ��(�A) is A.So the above judgment is equivalent to � `M : A and we have our result.3.3 Maximal Solutions for Set VariablesLet � be a normal valid sear
h
ontext of the form �0; (�; z; A);�00 su
h that �0 does not
ontainany existential triples, � has the form z1 : A1; : : : ; zn : An for some n � 0, and A is a settype in �0;�. Let � be a substitution and M a term su
h that �
ontains the single tuple26

hz; hi; �zn :An:Mi and � is well-typed in �. M is a maximal solution for zz1 : : : zn in � if thenormal form of �� has a solution and for any substitution �0
ontaining a single tuple of theform hA; hi; �zn :An:Ni, it is the
ase that whenever the following hold:1. �0 is well-typed in �;2. the normal form of �0� has a solution;3. there is a term P su
h that �0;� ` P : M � N holds;then there is always a term Q su
h that �0;� ` Q : M =S N holds. Note that it is built intothis de�nition that �0;� `M : A and �0;� ` N : A hold.Theorems 17-21 justify the maximal solutions given in Fig. 5, while Theorem 22 justi�estaking the interse
tion of maximal solutions of di�erent o

urren
es of a set variable as donein the SETVAR operation in Se
t. 3. The proofs are similar to the proofs in Bledsoe [3℄ butrequire extensions for our setting. We give the proof of Theorem 17 for illustration and sket
hthe others.Theorem17. Let � and �0 be
ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xp :Cp,respe
tively, where n � 0 and p > 0. Let � be a normal valid sear
h
ontext of the form�0; (�; z; A); ((�;�0); h; hx1; : : : ; xpi 2 zz1 : : : zn ! Px1 : : : xp)su
h that �0 does not
ontain any existential or
onstraint triples, A is a set type of the form8x1 :C1 : : : 8xp :Cp:Prop, the judgment �0;� ` P : A holds, and the terms in �0
ontain no freeo

urren
es of z. Then fhx1; : : : ; xpi j Px1 : : : xpg is a maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions
ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xpi j Px1 : : : xpgi and hh; hi; �zn :An:�xp :Cp:�x :Px1 : : : xp:xi;respe
tively. We �rst show that � is a solution to the normal form of ��.First note that ��(�(��(��))) is ��(�0), whi
h is just �0 sin
e � (and therefore �0) is normal.�0 is a su

ess
ontext sin
e it is valid and
ontains no existential or
onstraint triples. It remainsto show that � is ��-well-typed in ��(��). Note that ��(��) is��(�0; ((�;�0); h; hx1; : : : ; xpi 2 fhx1; : : : ; xpi j Px1 : : : xpg ! Px1 : : : xp))whi
h after expanding de�nitions and normalizing, results in a
ontext of the form�0; ((�;�0); h; Px1 : : : xp ! Px1 : : : xp):We must show that��(��0) ` ��(�zn :An:�xp :Cp:�x :Px1 : : : xp:x) :��(8zn :An:8xp :Cp:Px1 : : : xp ! Px1 : : : xp) (1)holds. It is straightforward to
onstru
t a proof of�0 ` (�zn :An:�xp :Cp:�x :Px1 : : : xp:x) : (8zn :An:8xp :Cp:Px1 : : : xp ! Px1 : : : xp) (2)27

From the fa
t that ��(��0) is �0 and ��-
onvertibility, it follows from (2) that (1) holds. From (1)and the fa
t that ���0 is �0 whi
h we know to be in normal form and valid, we have that � is��-well-typed in the normal form of ��. Sin
e �0 is also a su

ess
ontext, we have that � is asolution to the normal form of ��.We must now show that fhx1; : : : ; xpi j Px1 : : : xpg is maximal. Assume that there are termsN;P 0 and substitution �0
ontaining the single tuple hz; hi; �zn :An:Ni su
h that �0 is well-typedin �, the normal form of �0� has a solution, and the judgment�0;� ` P 0 : fhx1; : : : ; xpi j Px1 : : : xpg � N (3)holds. We must show that there is a term Q su
h that�0;� ` Q : fhx1; : : : ; xpi j Px1 : : : xpg =S Nor equivalently�0;� ` Q : (fhx1; : : : ; xpi j Px1 : : : xpg � N) ^ (N � fhx1; : : : ; xpi j Px1 : : : xpg) (4)holds. Note that z does not o

ur free in �, �0, or P . Thus ��(�0�) has the form�0; ((�;�0); h; hx1; : : : ; xpi 2 N ! Px1 : : : xp):Sin
e ��(�0�) has a solution, by Lemma 11, we know it has a normal solution, say � 0,
ontaininga single tuple of the form hh; hi; Q0i where Q0 is a term in normal form. Sin
e � 0 is a solution,we know that it is ��-well-typed in ��(�0�), and thus�0 ` Q0 : 8zn :An:8xp :Cp:hx1; : : : ; xpi 2 N ! Px1 : : : xp:holds. This judgment is equivalent to�0 ` Q0 : 8zn :An:8xp :Cp:hx1; : : : ; xpi 2 N ! hx1 : : : xpi 2 fhx1; : : : ; xpi j Px1 : : : xpgwhi
h is equivalent to �0 ` Q0 : 8zn :An:N � fhx1; : : : ; xpi j Px1 : : : xpg:Hen
e Q0 must have the form �zn :An:Q00 where Q00 is in normal form and the following alsoholds: �0;� ` Q00 : N � fhx1; : : : ; xpi j Px1 : : : xpg: (5)Using (3) and (5), we
an take Q in (4) to be�C :Prop:�f : (fhx1; : : : ; xpi j Px1 : : : xpg � N)! (N � fhx1; : : : ; xpi j Px1 : : : xp)g ! C:fP 0Q00and we have our result.Theorem18. Let � and �0 be
ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespe
tively, where n; j � 0. Let � be a normal valid sear
h
ontext of the form�0; (�; z; B); ((�;�0); h; hx1; : : : ; xj ; f1x1 : : : xp; : : : ; frx1 : : : xpi 2 zz1 : : : zn ! P 0x1 : : : xp)for some p > j and r > 0 su
h that �0 does not
ontain any existential or
onstraint triples, Bis a set type of the form 8x1 :C1 : : : 8xj :Cj:Cj+1 ! � � � ! Cj+r ! Prop, the terms in �0
ontainno free o

urren
es of z, and the following judgments hold�;� ` P 0 : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:P rop�;� ` fi : 8x1 :C1 : : : 8xj :Cj :8xj+1 :Dj+1 : : : 8xp :Dp:Cj+i for i = 1; : : : ; r:28

Then fhx1; : : : ; xj; w1; : : : ; wri j 8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp ! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpgis a maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions
ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xj; w1; : : : ; wri j8xj+1 :Dj+1 : : : 8xp :Dp:w1 =Cj+1 f1x1 : : : xp ! � � � ! wr =Cj+r frx1 : : : xp ! P 0x1 : : : xpgihh; hi; �zn :An:�xj :Cj :�f : (8xj+1 :Dj+1 : : : 8xp :Dp:f1x1 : : : xp =Cj+1 f1x1 : : : xp ! � � � ! frx1 : : : xp =Cj+r frx1 : : : xp ! P 0x1 : : : xp):fxj+1 : : : xp(�P :Cj+1 ! Prop:�x :P (f1x1 : : : xp):x) : : : (�P :Cj+r ! Prop:�x :P (frx1 : : : xp):x)irespe
tively. As in the proof of Theorem 17, we
an show that � is a solution to the normalform of ��, and that the solution for zz1 : : : zn is maximal.Theorem19. Let � and �0 be
ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespe
tively, where n; j � 0. Let � be a normal valid sear
h
ontext of the form�0; (�; z; B); ((�;�0); h; hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn ! Q)for some r > 0 su
h that �0 does not
ontain any existential or
onstraint triples, B is a set typeof the form 8x1 :C1 : : : 8xj :Cj:Cj+1 ! � � � ! Cj+r ! Prop, the judgment �0;� ` Q : Prop holds,and the judgments �0;�;�0 `Mi : Cj+i hold for i = 1; : : : ; r, and the terms in �0
ontain no freeo

urren
es of z. Then fhx1; : : : ; xj ; w1; : : : ; wri j w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qg isa maximal solution for zz1 : : : zn in �.Proof. Let � and � be the substitutions
ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xj ; w1; : : : ; wri j w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr ! Qgihh; hi; �zn :An:�xj :Cj:�f : (M1 =Cj+1 M1 ! � � � !Mr =Cj+r Mr ! Q):f(�P :Cj+1 ! Prop:�x :PM1:x) : : : (�P :Cj+r ! Prop:�x :PMr:x)irespe
tively. As in the previous theorems, we
an show that � is a solution to the normal formof ��, and that the solution for zz1 : : : zn is maximal.Theorem20. Let � and �0 be
ontexts of the form z1 :A1; : : : ; zn :An and x1 :C1; : : : ; xj :Cjrespe
tively, where n; j � 0. Let � be a normal valid sear
h
ontext of the form�0; (�; z; B); ((�;�0); h;:(hx1; : : : ; xj ;M1; : : : ;Mri 2 zz1 : : : zn)for some r > 0 su
h that �0 does not
ontain any existential or
onstraint triples, B is a settype of the form 8x1 : C1 : : : 8xj : Cj:Cj+1 ! � � � ! Cj+r ! Prop, the judgments �0;�;�0 `Mi : Cj+i hold for i = 1; : : : ; r, and the terms in �0
ontain no free o

urren
es of z. Thenfhx1; : : : ; xj ; w1; : : : ; wri j :(w1 =Cj+1 M1 ! � � � ! wr =Cj+r Mr)g is a maximal solution forzz1 : : : zn in �.Proof. This theorem is an instan
e of Theorem 19 with ? as an instan
e of Q.29

Theorem21. Let � be a
ontext of the form z1 :A1; : : : ; zn :An where n � 0. Let � be a normalvalid sear
h
ontext of the form�0; (�; z; A); (�; h; hN1 ; : : : ; Npi 2 zz1 : : : zn)for some p > 0 su
h that �0 does not
ontain any existential or
onstraint triples, A is a settype of the form 8x1 : C1 : : : 8xp : Cp:Prop, and for i = 1; : : : ; p, the judgments �0;� ` Ni :[N1=x1; : : : ; Ni�1=xi�1℄Ci hold. Then fhx1; : : : ; xpi j >g is a maximal solution for zz1 : : : zn in�.Proof. Let � and � be the substitutions
ontaining the single tupleshz; hi; �zn :An:fhx1; : : : ; xpi j >gi and hh; hi; �zn :An:�C :Prop:�x :C:xi;respe
tively. As in the previous theorems, we
an show that � is a solution to the normal formof ��. To show that the universal set fhx1; : : : ; xpi j >g is maximal, we simply show that forany set N , N � fhx1; : : : ; xpi j >g. The following is the judgment stating this fa
t.�0;� ` �x1 :C1 : : : �xp :Cp:�x0 :Nx1 : : : xp:�C :Prop:�x :C:x :8x1 :C1 : : : 8xp :Cp:Nx1 : : : xp ! 8C :Prop:C ! CTheorem22. Let � be a
ontext of the form z1 :A1; : : : ; zn :An where n � 0. Let � be a normalvalid sear
h
ontext of the form �0; (�; z; A); (�; h; P ^Q)su
h that �0 does not
ontain any existential or
onstraint triples, A is a set type of the form8x1 :C1 : : : 8xp :Cp:Prop for some p > 0, and �0;9z :8zn :An:A;� ` P ^Q : Prop holds. Let C 0and h0 be variables that do not o

ur in �, let �0 be the
ontext C 0 :Prop; h0 :P ! Q! C 0, andlet D1 and D2 be maximal solutions for A in�0; (�; z; A); ((�;�0); h; P) and �0; (�; z; A); ((�;�0); h;Q);respe
tively. Then D1 \D2 is a maximal solution for A in �.Proof. Let �1 and �2 be the
ontexts �0; (�; z; A); ((�;�0); h; P) and �0; (�; z; A); ((�;�0); h;Q),respe
tively. Let �1, �2, and � be the substitutions
ontaining the single tupleshz; hi; �zn :An:D1i; hz; hi; �zn :An:D2i; hz; hi; �zn :An:D1 \D2i;respe
tively. Note that D1 \D2 is an abbreviation for�x1 :C1 : : : �xp :Cp:8C 0 :Prop:(D1x1 : : : xp ! D2x1 : : : xp ! C 0)! C 0:Be
ause D1 and D2 are maximal solutions for A in �1 and �2, respe
tively, we know that thereare terms M1 and M2 and substitutions �1 and �2 de�ned as follows,hh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:M1ihh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:M2i30

respe
tively, su
h that �1 is a normal solution to the normal form of �1�1 and �2 is a normalsolution to the normal form of �2�2. Using these substitutions, it is straightforward to showthat hh; hi; �zn :An:�C 0 :Prop:�h0 :P ! Q! C 0:h0M1M2i:is a solution to the normal form of ��.The proof that D1 \D2 is maximal follows the same reasoning as the
orresponding proofin Bledsoe [3℄. Sin
e no extensions are needed to adapt this proof to our setting beyond whatalready appears in the proof of Theorem 17, we omit the details.4 A Complete Sear
h Pro
edureTo in
orporate the full expressiveness of CC, we extend CC+ to Meta as de�ned in [10℄. Thisinferen
e system in
ludes all the rules for CC+ plus the following additional rule where Externis a new sort. ` �
ontext (TYPE-EXTERN)� ` Type : ExternIn addition, in the rules of Fig. 1, s2 in (PROD)
an be Extern, and s in (INTRO), (Q-INTRO), and(ABS)
an also be Extern. In this se
tion, validity of standard and sear
h
ontexts will be withrespe
t to Meta.The SETVAR, INTRO, and BACKCHAIN operations are suÆ
ient for proving the examplesgiven in Se
t. 1 as well as most of the examples in Bledsoe [3℄ and they are also the onesimplemented in our �Prolog implementation. We add the SPLIT, PROD, and POLY operationsbelow to obtain the SetVar+ pro
edure that is
omplete for the full CC. As stated earlier, theyadd
ompli
ations for dire
ting sear
h. For example, on
e POLY be
omes appli
able, it is possibleto apply it in�nitely many times.With the addition of the three new operations, we no longer need SETVAR. The pro
edureis
omplete without it. We leave it in be
ause even in the
ontext of a
omplete pro
edure, itis useful for dire
ting sear
h towards �nding
ertain substitution instan
es more qui
kly. Theother operations are useful for the
ases when SETVAR isn't enough. Sin
e it is not needed,SETVAR does not appear in the proof of
ompleteness of SetVar+. It's soundness was alreadyestablished in the previous se
tion.SPLIT operation. Let � be a valid sear
h
ontext and ((z1 :A1; : : : ; zn :An); z; xM1 : : :Mm) a
andidate triple in �, where m;n � 0, and � ` xM1 : : : Mm : s holds where s is Prop or Type. Ifthere is a universal de
laration w :Q su
h that either w is one of z1; : : : ; zn or w :Q o

urs to theleft of ((z1 :A1; : : : ; zn :An); z; xM1 : : : Mm) in �, the judgment �; z1 :A1; : : : ; zn :An ` Q : s holds,Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), and y is any existential variable in �,then let h1; : : : ; hq be variables that do not o

ur in �. Let � be the
ontext z1 :A1; : : : ; zn :An.Let �0 be the
ontext (�; h1; Q1);(�; h2; [h1z1 : : : zn=y1℄Q2);...(�; hq; [h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq):Choose a j su
h that j > 0. For i = 1; : : : ; j, let si be either Prop or Type. Let H1; : : : ;Hj ,K1; : : : ;Kj , hq+1; : : : ; hq+j be variables that do not o

ur in �. For i = 1; : : : ; j, let �i be the31

following
ontext (�;Hi; si);(�;Ki;Hiz1 : : : zn ! s);(�; L;8u :Hiz1 : : : zn:Kiz1 : : : znu)(�; hq+i;Hiz1 : : : zn)where if i = 1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Np and if i > 1, L is theterm Ki�1z1 : : : zn(hq+i�1z1 : : : zn). Let �0 be the
ontext(�;Kjz1 : : : zn(hq+jz1 : : : zn); xM1 : : : Mm):Let � be the
ontext �0;�1; : : : ;�j ;�0. Let � be the substitutionfhz;�; �zn :An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)ig:PROD operation. Let � be a valid sear
h
ontext and ((z1 :A1; : : : ; zn :An); z; s0) a
andidatetriple in �, where n � 0 and s0 is Type or Extern. Let s be the sort su
h that � ` s : s0. Let �be the substitution fhz; hi; �zn :An:sig.POLY operation. Let � be a valid sear
h
ontext and ((z1 :A1; : : : ; zn :An); z; s0) a
andidatetriple in �, where n � 0, and s0 is any sort. Let s be Prop or Type and let � be the
ontextz1 :A1; : : : ; zn :An. Let h and k be variables that do not o

ur in �. Let � be the
ontext(�; h; s); (�; k; hz1 : : : zn ! s0):Let � be the substitution fhz;�; �zn :An:8u :hz1 : : : zn:kz1 : : : znuig.The SPLIT operation
an be viewed as an extension of BACKCHAIN. If j were allowed to be0 in this operation, the operation essentially redu
es to BACKCHAIN. We illustrate its use byreturning to the example from Se
t. 3.1 for whi
h INTRO and BACKCHAIN were not suÆ
ient.The following intermediate
ontext appeared in the example as
ontext (12).�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x);M 01; Px); ((x :Nat; h :A0x);M 02; Qx) (1)Consider the se
ond existential triple as a
andidate triple for the SPLIT operation. The universalde
laration used in this operation will be h :A0x from the lo
al
ontext. We
hoose j to be 1and s1 to be Prop. The
ontext �0 of this operation is empty in this
ase and �1 is as follows�1 := ((x :Nat; h :A0x);H1;Prop);((x :Nat; h :A0x);K1;H1xh! Prop);((x :Nat; h :A0x); A0x;8u :H1xh:K1xhu);((x :Nat; h :A0x); h1;H1xh)where H1;K1; h1 are new variables. � is obtained by adding ((x :Nat; h :A0x);K1xh(h1xh); Px)to the end of �1. The substitution � generated by this operation is� := fhM 01;�; �x :Nat:�h :A0x:h(h1xh)ig:Applying � to (1), we get�;((x :Nat); A0;Prop); ((x :Nat; h :A0x);H1;Prop);((x :Nat; h :A0x);K1;H1xh! Prop); ((x :Nat; h :A0x); A0x;8u :H1xh:K1xhu);((x :Nat; h :A0x); h1;H1xh); ((x :Nat; h :A0x);K1xh(h1xh); Px);((x :Nat; h :A0x);M 02; Qx): 32

Note the
onstraint whi
h equates A0x with the non-atomi
 type 8u :H1xh:K1xhu. The POLYoperation must be used to obtain an instantiation for A0 that
an lead to a
ontext in whi
hthis
onstraint is satis�ed. We illustrate by going ba
k to the
ontext (1), and
onsidering the�rst existential triple as the
andidate triple. Let s of POLY be Prop. We obtain the following
ontext and substitution� := ((x :Nat); h0;Prop); ((x :Nat); k; (h0x! Prop))� := fhA0;�; �x :Nat:8u :h0x:kxuigwhere h0 and k are new variables. Applying � to (1), we get�;((x :Nat); h0;Prop); ((x :Nat); k; (h0x! Prop));((x :Nat; h : (8u :h0x:kxu));M 01; Px); ((x :Nat; h : (8u :h0x:kxu));M 02; Qx)Note here that A0x has been repla
ed by the non-atomi
 type 8u :h0x:kxu.To prove
orre
tness of SetVar+, we prove soundness by extending Theorem 16 for SetVarto the new operations, and we prove
ompleteness relative to Dowek's pro
edure.Theorem23. (Soundness of SetVar+) Let � be a normal valid Meta
ontext without existentialvariables or
onstraints su
h that the types of universal variables in de
larations are Prop or Typebut not Extern. Let A be a normal well-typed term in �. Let �0 be the sear
h
ontext �; (hi; z; A).If there exists a derivation of �0, then there exists a term M su
h that � `M : A holds in CC.Proof. The properties in Se
t. 3.2 about sear
h
ontexts in CC+ also hold for sear
h
ontextsof Meta. We only need to extend Lemmas 12 and 13 with
ases for SPLIT, PROD, and POLY.Sin
e these
ases follow similarly to the
ases already shown, we omit the details. On
e theselemmas are extended, Lemma 14 and 15 and Theorem 16 follow dire
tly for the extended sear
hpro
edure.To prove
ompleteness we introdu
e Dowek's pro
edure, whi
h we
all P. P operates dire
tlyon Meta
ontexts. These
ontexts are restri
ted so that the types of universal variables inde
larations are Prop or Type but not Extern. We de�ne a
andidate de
laration in a standardMeta
ontext � to be an existential de
laration of the form 9z : (8z1 :A1 : : : 8zn :An:xM1 : : :Mp)where n; p � 0 and x is universal in �; z1 :A1; : : : ; zn :An: Like SetVar+, at ea
h step, a sear
hoperation is applied resulting in a substitution. Note that sin
e only variables in existentialde
larations
an have type Extern, if the pro
edure leads to a su

ess
ontext, all su
h variableswill be instantiated eliminating all o

urren
es of Extern and resulting in a valid CC
ontext.The pro
edure is de�ned by the three sear
h operations given below. The �rst
ombinesINTRO, BACKCHAIN, and SPLIT, while the other two
orrespond dire
tly to PROD and POLY.1. Let � be a valid Meta
ontext and 9z :P a
andidate de
laration in �, where P has theform 8z1 :A1 : : : 8zn :An:xM1 : : :Mm (m;n � 0) and � ` P : s holds where s is any sort(in
luding Extern). This operation applies if there is a universal de
laration w :Q su
hthat either w is one of z1; : : : ; zn or w :Q o

urs to the left of this
andidate de
larationin �, Q has the form 8y1 :Q1 : : : 8yq :Qq:yN1 : : : Np (p; q � 0), and � ` Q : s holds. Leth1; : : : ; hq be variables that do not o

ur in �. Let �0 be the
ontext9h1 :8zn :An:Q1;9h2 :8zn :An:[h1z1 : : : zn=y1℄Q2;...9hq :8zn :An:[h1z1 : : : zn=y1; : : : ; hq�1z1 : : : zn=yq�1℄Qq:33

Choose a j su
h that j � 0. For i = 1; : : : ; j, let si be either Prop or Type. Let H1; : : : ;Hj ,K1; : : : ;Kj , hq+1; : : : ; hq+j be variables that do not o

ur in �. For i = 1; : : : ; j, let �i bethe following
ontext9Hi :8zn :An:si;9Ki :8zn :An:Hiz1 : : : zn ! s;8zn :An:L = 8zn :An:8u :Hiz1 : : : zn:Kiz1 : : : znu9hq+i :8zn :An:Hiz1 : : : znwhere if i = 1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Np and if i > 1, L isthe term Ki�1z1 : : : zn(hq+i�1z1 : : : zn). If r = 0, let �0 be the
ontext8zn :An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq℄yN1 : : : Nn = 8zn :An:xM1 : : : Mm:Otherwise, let �0 be the
ontext(8zn :An:Kjz1 : : : zn(hq+jz1 : : : zn) = 8zn :An:xM1 : : :Mm):Let � be the
ontext �0;�1; : : : ;�j ;�0. Let � be the substitution:fhz;�; �zn :An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)ig:2. Let � be a valid sear
h
ontext and 9z :P a
andidate de
laration in �, where P has theform 8z1 :A1 : : : 8zn :An:s0 (n � 0) and s0 is Type or Extern. Let s be the sort su
h that� ` s : s0. Let � be the substitution fhz; hi; �zn :An:sig.3. Let � be a valid sear
h
ontext and 9z :P a
andidate de
laration in �, where P has theform 8z1 :A1 : : : 8zn :An:s0 (n � 0) and s0 is any sort. Let s be Prop or Type and let � bethe
ontext 9h :8zn :An:s;9k :8zn :An:hz1 : : : zn ! s0:Let � be the substitution fhz;�; �zn :An:8u :hz1 : : : zn:kz1 : : : znuig.To prove
ompleteness of SetVar+, in the following lemma we show that every operation that
an be performed on a standard
ontext in P has a
orresponding operation or set of operationson sear
h
ontexts in SetVar+. The lemma is stated using standard
ontexts. For a standard
ontext �, when applying operations of SetVar+, � is viewed as the
ontext su
h that everyexistential de
laration of the form 9z :A is repla
ed by (hi; z; A) and every
onstraint P = Q isrepla
ed by (hi; P;Q).Lemma24. Let � be a valid Meta
ontext su
h that the types of universal variables in de
la-rations are Prop or Type but not Extern. If � is the result of applying a sear
h operation inP, then it is either the
ase that subsequent operations to �� always lead to a failure
ontextor there is a series of operations in SetVar+ with substitutions �1; : : : ; �n su
h that the normalforms of �� and (�1 Æ � � � Æ �n)� are the same
ontext.Proof. Let hhi; z;Qi be the
andidate de
laration to whi
h the operation in P is applied. � hasthe form �0; hhi; z;Qi;�00 . For the
ase when the operation applied is the �rst operation of P, Qhas the form 8z1 :A1 : : : 8zn :An:xM1 : : : Mm:34

Let � be the substitution resulting from the appli
ation of the �rst operation. In SetVar+, we
an �rst apply INTRO n times with substitutions �1; : : : ; �n where for i = 1; : : : ; n, �i isfhz0i�1; ((z1 :A1; : : : ; zi :Ai); z0i;8zi+1 :Ai+1 : : : 8zn :An:xM1 : : :Mm)igwhere z is z00 and z01; : : : ; z0n are new variables. We obtain the
ontext�0; ((z1 :A1; : : : ; zn :An); z0n; xM1 : : :Mm);�00:We �rst
onsider the
ase when j of the �rst operation of P is 0. If x is w or an existentialvariable, then we apply BACKCHAIN in SetVar+ to obtain substitution �0 where the
ontext �in the tuple in � is the same as � in �0. In parti
ular, if �0 is the substitution fhz0n;�;Mig forsome term M , then � is the substitution fhz;�;Mig. Note that �0 is fhz0n;�;Mig and thus�0 di�ers from � only in the name of the variable it binds. We show that (�1 Æ � � � Æ �n Æ �0)� isthe same
ontext as ��. By Lemma 9, (�1 Æ � � � Æ �n Æ �0)� is �0�n � � � �1�, and so by Lemma 5,�0�n � � � �1� is �0(�n � � � �1�). By a simple indu
tion on n, we
an show that for i = 1; : : : ; n,the
ontext �i � � � �1� is �0; hhi; z0i; Qi; [z0i=z℄�00. Thus, �0(�n � � � �1�) is �0;�; [M=z0n℄([z0n=z℄�00).Sin
e [M=z0n℄([z0n=z℄�00) is just [M=z℄�00, it is easy to see that this
ontext is also �� and thus(�1 Æ � � � Æ �n Æ �0)� is the same
ontext as ��.For the
ase when j = 0 and x is universal and di�erent from w (whi
h is allowed in P), itis easy to see that the resulting
ontext leads to a failure
ontext; on
e the existential variablesthat remain in the
onstraint that gets added by applying the substitution are fully instantiated,this
onstraint will relate two terms that are not ��-
onvertible.For the
ase when j > 0, the �rst operation of P
orresponds to a series of n appli
ations ofINTRO, followed by the SPLIT operation in SetVar+. Similar reasoning
an be applied to showthat �� is (�1 Æ � � � Æ �n)�.Similarly, the
ases for the se
ond and third operations of P
orrespond to a series of appli-
ations of INTRO followed by an appli
ation of PROD or POLY, respe
tively.Theorem25. (Completeness) Let � be a valid Meta
ontext without existential variables or
onstraints su
h that the types of universal variables in de
larations are Prop or Type but notExtern. Let A be a normal well-typed term in �. If there exists a derivation of �;9z :A in P,then there is a derivation of �; (hi; z; A) in SetVar+.Proof. We prove the following stronger statement. Let � be an arbitrary normal valid sear
h
ontext su
h that the types of universal variables in de
larations are Prop or Type but not Extern.If � has a derivation in P, then � has a derivation in SetVar+. The proof is by indu
tion on thelength of a derivation in P. The desired theorem follows dire
tly.5 Con
lusionWe have shown how to adapt Bledsoe's method for generating maximal solutions for set variablesto the Cal
ulus of Constru
tions and proved its
orre
tness. In addition, we have dis
ussed theoperation of the pro
edure on various sublanguages. The pro
edure presented here has beenimplemented as a set of ta
ti
s within an intera
tive ta
ti
-style theorem prover. These ta
ti
s
an be
ombined to automate the sear
h pro
edure for CC so that it works eÆ
iently on the
lass of theorems involving existential quanti�
ation over sets. It
an also be used as a ta
ti
 inCoq to provide some automation for this
lass of theorems.35

We have adapted and generalized results from Bledsoe [3℄. The basi
 rules and
ombiningrules for
onjun
tion were adapted fairly dire
tly, while the
ombining rules for disjun
tion werehandled in a distributed manner. The remaining rules in Bledsoe [3℄ are quite spe
ialized andinvolve substitution instan
es expressing a fun
tion applied n times to x as fn(x). These rulesshould also be straightforward to add to the pro
edure here, though their addition would requireadding some axioms to the
ontext to express fn sin
e it
annot be expressed dire
tly in CC. Thepro
edure is stru
tured in su
h a way that adding more rules for maximal solutions is a
hievedby simply adding new
lauses to the SETVAR operation.We have shown how one pro
edure designed for a higher-order logi

an be
arried over to thetype theory setting. There are many other interesting pro
edures worth investigation. Bledsoeand Feng give a more general set of rules for maximal solutions in [4℄. This pro
edure, however,relies heavily on resolution te
hniques whi
h may be diÆ
ult to adapt to our setting. Anotherpro
edure for automating the instantiation of set variables is the Z-mat
h inferen
e rule in [1℄,whi
h should be possible to adapt to our setting fairly dire
tly. In addition, many other theoremproving te
hniques in a variety of domains have been developed for both higher-order logi
 andhigher-order type theory that would be interesting to investigate and adapt to aid proof sear
hin the other setting.A
knowledgementsThe author would like to thank the anonymous reviewers for numerous helpful suggestions.Referen
es[1℄ S. C. Bailin and D. Barker-Plummer. Z-mat
h: An inferen
e rule for in
rementally elabo-rating set instantiation. Journal of Automated Reasoning, 11(3):391{428, De
. 1993.[2℄ H. Barendregt. Introdu
tion to generalized type systems. Journal of Fun
tional Program-ming, 1(2):124{154, April 1991.[3℄ W. W. Bledsoe. A maximal method for set variables in automati
 theorem proving. Ma
hineIntelligen
e, 9:53{100, 1979.[4℄ W. W. Bledsoe and G. Feng. SET-VAR. Journal of Automated Reasoning, 11(3):293{314,1993.[5℄ A. Chur
h. A formulation of the simple theory of types. Journal of Symboli
 Logi
, 5:56{68,1940.[6℄ R. L. Constable et al. Implementing Mathemati
s with the Nuprl Proof Development System.Prenti
e-Hall, 1986.[7℄ T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Information and Computation,76(2/3):95{120, February/Mar
h 1988.[8℄ C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-Mohring, C. Mu~noz,C. Murthy, C. Parent, A. Sa��bi, and B. Werner. The Coq Proof Assistant referen
e manual.Te
hni
al report, INRIA, 1995. 36

[9℄ G. Dowek. D�emonstration Automatique dans le Cal
ul des Constru
tions. PhD thesis,Universit�e Paris VII, De
. 1991.[10℄ G. Dowek. A
omplete proof synthesis method for the
ube of type systems. Journal ofLogi
 and Computation, 3(3):287{315, 1993.[11℄ G. Dowek, T. Hardin, and C. Kir
hner. Higher-order uni�
ation via expli
it substitutions.In Tenth Annual Symposium on Logi
 in Computer S
ien
e, pages 366{374, 1995.[12℄ A. Felty. En
oding the
al
ulus of
onstru
tions in a higher-order logi
. In Eighth AnnualSymposium on Logi
 in Computer S
ien
e, pages 233{244, June 1993.[13℄ A. Felty. Implementing ta
ti
s and ta
ti
als in a higher-order logi
 programming language.Journal of Automated Reasoning, 11(1):43{81, Aug. 1993.[14℄ A. Felty. Proof sear
h with set variable instantiation in the
al
ulus of
onstru
tions. InThirteenth International Conferen
e on Automated Dedu
tion, pages 658{672. Springer-Verlag Le
ture Notes in Computer S
ien
e, July 1996.[15℄ M. J. C. Gordon and T. F. Melham. Introdu
tion to HOL|A Theorem Proving Environ-ment for Higher Order Logi
. Cambridge University Press, 1993.[16℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. Journal of theACM, 40(1):143{184, Jan. 1993.[17℄ W. A. Howard. The formulae-as-type notion of
onstru
tion, 1969. In To H. B. Curry:Essays in Combinatory Logi
, Lambda Cal
ulus, and Formalism, pages 479{490. A
ademi
Press, 1980.[18℄ G. Huet. A uniform approa
h to type theory. In G. Huet, editor, Logi
al Foundations ofFun
tional Programming. Addison Wesley, 1990.[19℄ L. Magnusson. The Implementation of ALF: A Proof Editor Based on Martin-L�of'sMonomorphi
 Type Theory with Expli
it Substitution. PhD thesis, Chalmers Universityof Te
hnology/G�oteborg University, Jan. 1995.[20℄ P. Martin-L�of. Intuitionisti
 Type Theory. Studies in Proof Theory Le
ture Notes. BIB-LIOPOLIS, Napoli, 1984.[21℄ D. Miller, G. Nadathur, F. Pfenning, and A. S
edrov. Uniform proofs as a foundation forlogi
 programming. Annals of Pure and Applied Logi
, 51:125{157, 1991.[22℄ C. Mu~noz. A Cal
ulus of Substitutions for In
omplete-Proof Representation in Type Theory.PhD thesis, Universit�e Paris 7, INRIA Resear
h Report RR-3309 (English version), 1997.[23℄ L. C. Paulson. Isabelle: A Generi
 Theorem Prover, volume 828 of Le
ture Notes in Com-puter S
ien
e. Springer-Verlag, 1994.
37

