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Abstract
Hybrid is a system developed to specify and reason about logics,
programming languages, and other formal systems expressed in
higher-order abstract syntax (HOAS). An important goal of Hybrid
is to exploit the advantages of HOAS within the well-understood
setting of higher-order logic as implemented by systems such as
Isabelle and Coq. In this paper, we add new capabilities for reason-
ing by induction on encodings of object-level inference rules. El-
egant and succinct specifications of such inference rules can often
be given using hypothetical and parametric judgments, which are
represented by embedded implication and universal quantification.
Induction over such judgments is well-known to be problematic. In
previous work, we showed how to express this kind of judgment us-
ing a two-level approach, but reasoning by induction on such judg-
ments was restricted to closed terms. The new capabilities we add
include techniques for adding arbitrary “new” variables to contexts
and inductively reasoning about open terms. Very little overhead is
required, namely a small library of definitions and lemmas, yet the
reasoning power of the system and the class of properties that can
be proved is significantly increased. We illustrate the approach us-
ing PCF, a simple programming language that serves as the core of
a variety of functional languages. We encode the typing judgment,
and prove by induction on this judgment that well-typed PCF terms
have unique types.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal definitions and theory—semantics; F.4.1 [Mathe-
matical Logic]: Lambda Calculus and Related Systems—Mechanical
theorem proving, Proof theory; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving—Deduction, Inference engines,
logic programming, meta theory

General Terms Languages, Verification

Keywords higher-order abstract syntax, logical frameworks, name-
binding, induction, interactive theorem proving

1. Introduction
Higher-order abstract syntax (HOAS) is a representation technique
that allows direct and concise specifications of a wide variety of
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formal systems. This technique is often used within a typed logi-
cal framework that supports reasoning about such encodings. One
of the main uses of these logical frameworks is to represent and
prove properties about the semantic foundations of declarative pro-
gramming languages. Using HOAS, binding constructs in the rep-
resented language (the object logic or OL) are encoded using the
binding constructs provided by an underlying λ-calculus or func-
tion space of the logical framework (the meta-language). For ex-
ample, consider the untyped λ-calculus as an OL. Its terms can
be encoded, for instance, by introducing a type tm and two con-
structors: abs of type (tm → tm) → tm , and app of type
tm → tm → tm . Using such a representation allows us to delegate
to the meta-language α-conversion and capture-avoiding substitu-
tion. Further, object logic substitution can be rendered as meta-level
β-conversion.

In addition, in such logical frameworks, embedded implication
and universal quantification are often used to represent hypothetical
and parametric judgments—following [Miller and Tiu 2005], we
will also call them generic—which allow elegant and succinct
specifications of OL inference rules. For instance, if our example
OL includes rules for adding types to untyped terms, the following
rule for the abstraction case:

(x : τ1)
...

M : τ2

λx.M : τ1 ⇒ τ2

can be expressed using the typeof predicate in the following for-
mula:

∀M : tm→ tm.∀τ1, τ2 : tp.
(∀x : tm.(typeof x τ1) −→ (typeof (M x) τ2))
−→ (typeof (abs M) (τ1 ⇒ τ2)).

Hybrid [Momigliano et al. 2008] is a system developed to sup-
port HOAS encoding and reasoning. It is implemented in both Is-
abelle/HOL [Nipkow et al. 2002] and Coq [Bertot and Castéran
2004]. Implementing Hybrid as a tool within such systems allows
users wishing to reason with HOAS encodings to draw on the pow-
erful deduction capabilities enjoyed by these systems: rich princi-
ples of (co)induction and tactic-style automation, not to mention
general rewriting, decision procedures, model checking, interface
to automated theorem provers, code generation etc. Hybrid pro-
vides additional tool support within this setting to automate tasks
specific to reasoning with HOAS.

One of the main challenges in developing Hybrid came from the
presence of negative occurrences in the definitions of the types and
predicates introduced in HOAS encodings of OL terms and judg-
ments (e.g., the underlined occurrences of tm in the type of abs



and of typeof in the formula expressing the typing rule above).
In systems such as Coq and Isabelle/HOL, such encodings cannot
be defined directly using inductive definitions of the metalanguage.
Set-theoretically, these definitions do not yield monotone operators
and cannot be constructed as a least fixed point [Gunter 1992, Paul-
son 1994]. Type-theoretically, they infringe on the strict positivity
requirement [Paulin-Mohring 1993] used to obtain strong normal-
ization, and thus are not inductive in any ordinary sense. To over-
come the problem of negative occurrences in types such as tm , we
introduced a de Bruijn representation of λ-terms that provides a
definitional layer [Ambler et al. 2002]. Higher-order syntax encod-
ings are defined on top of this layer so that they expand to de Bruijn
terms. To overcome the problem of negative occurrences in predi-
cates such as typeof , Hybrid adopts the two-level approach first in-
troduced in the FOλ∆IN logic [McDowell and Miller 2002], later
adapted to Coq [Felty 2002], now applied within a variety of log-
ics [Miller and Tiu 2005, Tiu 2007, Gacek et al. 2008], and imple-
mented in the Abella system [Gacek 2008]. In a two-level system,
the specification and (inductive) meta-reasoning are done within a
single system but at different levels. An intermediate level is intro-
duced by inductively defining a specification logic (SL), and OL
judgments (including hypothetical and parametric judgments) are
encoded in the SL.

Previous work on Hybrid involved a variety of case studies,
some of them quite large. In [Felty and Momigliano 2008], for
example, formal proofs of type soundness (subject reduction) for
two example OLs and SLs are given, one for a small language to
illustrate the methodology, and another for a more complex one,
driven by a sub-structural SL, to illustrate that the approach scales
well on both sides. Induction over OL judgments is required in such
proofs, but in this case induction was on the evaluation judgment,
whose encoding does not use hypothetical or parametric judgments.
In other words, although generic judgments (e.g., typing) were
crucial for these proofs, namely to provide inversion principles,
induction over these judgments was not.

Induction over hypothetical and parametric judgments intro-
duces new challenges, which is the central issue that we address
in this paper. Statements have to be generalized to non-empty con-
texts, and these contexts have to be of a certain form, which must
enforce the property in question. To try to motivate these chal-
lenges, consider a proof by induction over the typeof predicate.1

If the case for abstraction is defined as above, the induction hy-
pothesis takes on a similar form, roughly:

∀x : tm.(P (typeof x τ1)) −→ (P (typeof (M x) τ2)).

Using this induction hypothesis in a proof requires finding an ap-
propriate instantiation term for x. Note that the universal quantifier
can be instantiated with any term, which provides the required flex-
ibility in doing proofs using this form of HOAS. On the other hand,
using the induction hypothesis for the abstraction case in an infor-
mal proof means reasoning about an arbitrary x such that x : τ1,
and a term M : τ2 that possibly contains free occurrences of x.
Thus x is a variable and M is an open term. In a variety of ap-
proaches to HOAS that allow definitions in the form of our exam-
ple typeof clause above, M is akin to a second-order logic vari-
able, possibly depending on a parameter x. There is no notion of
free variables or open terms, so one is required to find some closed
term as the instantiation term for x. (We remark that the induction
hypothesis takes on a slightly different form in a two-level system,
but the issues discussed here remain the same.) The contribution of
the work presented in this paper is a methodology that keeps the
advantages of this form of HOAS, but adds a very small number

1 We ask the reader to indulge us, while talking about an induction principle,
which is not inductive in the standard sense [Schürmann 2001].

of definitions and lemmas that allow reasoning about “arbitrary”
variables in such a way that keeps the formal proof close to the
informal one, and adds only a surprisingly minimal amount of ad-
ditional infrastructure. In fact, Hybrid has a built in VAR construc-
tor to allow one to encode free variables of OLs, and a definition
(newvar) that provides the capability of creating a variable which
is new, in particular w.r.t. a context. Our approach to induction over
predicates with hypothetical judgments makes essential and novel
use of this built-in constructor and definition. In Hybrid’s underly-
ing language, free variables are essentially represented by natural
numbers (VAR takes a natural number argument). One of the main
operations involving such variables is to introduce new ones into a
proof, such as x in the above example. To do so, we simply add 1
to the maximum of the free variables used so far. Reasoning about
such “fresh” variables is factored into a small number of lemmas.
The lemmas are relatively simple; no reasoning about substitution
or α-conversion is needed as in first-order approaches. In a sense,
newvar is the “poor man” version of the freshness predicate ( # )
of nominal logic [Pitts 2003].

We introduce the approach by formally proving that well-typed
terms in PCF [Scott 1993] have unique types (type unicity). The in-
formal proof is a straightforward induction over the typing deriva-
tion that assigns a type to a PCF term. We use this simple exam-
ple to illustrate the methodology, though the techniques are gen-
eral and should scale to larger case studies. The inductive case for
the abstraction operator—and this applies to other binding term
constructors—which uses a rule similar to the one discussed ear-
lier, is the challenging case. We express the induction hypothesis
as a “context invariant,” which is a property that must be preserved
when adding a “fresh” variable to the context, as is required in this
case. The general infrastructure we build is designed so that it is
straightforward to express context invariants and prove that they
are preserved when adding a “fresh” variable.

The paper starts with Section 2 recalling some basic notions
of the implementation of Hybrid. Section 3 introduces the SL, a
fragment of second-order minimal logic. Section 4 introduces the
example OL, in particular, presenting the encodings of the syntax
and typing rules of PCF, and briefly discussing the adequacy of
these encodings. In Section 5, we present the formal proof of type
unicity for PCF. We discuss related work in Section 6 and conclude
in Section 7.

Hybrid was first developed in Isabelle/HOL [Ambler et al.
2002] and for the sake of this paper, we use a pretty-printed version
of Isabelle/HOL concrete syntax. Note, however, that the proof of
the main result and all the code mentioned in Section 5 were (so
far) conducted only in Coq, due to some backward compatibility
issues with the current release of Isabelle/HOL. In particular, a type
declaration has the form s :: [ t1, . . . tn ]⇒ t. We stick to the usual
logical symbols for connectives and quantifiers (¬, ∧, ∨, −→, ∀,
∃). Free variables (upper-case) are implicitly universally quantified
(from the outside) as in logic programming. The sign == (Isabelle
meta-equality) is used for equality by definition, and

V

for Isabelle
universal meta-quantification. A rule (a sequent) of the schematic
form H1...Hn

C
is represented as [[ H1; . . . ; Hn ]] =⇒ C. The key-

word inductive introduces an inductive relation in Isabelle/HOL,
datatype introduces a new datatype, and primrec a primitive recur-
sive function. We use the same notation for Coq, though in Coq all
the arrows map to the same operator, and there is only one univer-
sal quantifier. In addition both inductive and datatype map to Coq’s
Inductive keyword, and primrec maps to Fixpoint.

Every theorem, lemma, and corollary is machine-checked.
Source files for the code can be found at:

hybrid.dsi.unimi.it/ppdp09 [Hybrid Group 2009].



2. An Introduction to Hybrid
At the base level, we start with an inductive definition of de Bruijn
expressions:

datatype expr =
CON con | VAR var | BND bnd | expr $ expr | ABS expr

In our setting, bnd and var are defined to be the natural numbers,
and con is used to represent the constants of an OL. Thus at
this level, con is a parameter to this type, and given a particular
instantiation, we will later use a type abbreviation, such as uexp =
= con expr .

Central to our approach is the introduction of a binding operator
called lambda that (1) allows a direct expression of λ-abstraction,
and (2) is defined in such a way that expanding its definition results
in the conversion of a term to its de Bruijn representation. Hybrid
does not contain any axioms requiring external justification as in
the Theory of Contexts [Honsell et al. 2001].

As an example, consider the λ-calculus as an OL and the sample
term ΛV1.(ΛV2.V1V2)V1V3, where we use upper case letters for
variables and a capital Λ for abstraction. This term is represented
in Hybrid as:

lambda λv1.(((lambda λv2.(v1 $ v2)) $ v1) $ VAR 3)

and expanding definitions results in the de Bruijn term:

ABS (((ABS (BND 1 $ BND 0)) $ BND 0) $ VAR 3).

In the above, all the variable occurrences bound by the first ABS,
which corresponds to the bound variable V1 in the object-level
term, are underlined. Note that the definition of the lambda op-
erator must expand to a term with ABS at the head. Furthermore,
we must include a definition of a function f such that (lambda e)
is (ABS (f e)) where f replaces occurrences of the bound variable
in e with de Bruijn index 0, taking care to increment the index as
it descends through inner abstractions. We first define a function
lbind of two arguments such that formally:

(lambda e) == ABS (lbind 0 e)

and (lbind i e) replaces occurrences of the bound variable in e with
de Bruijn index i, where recursive calls on inner abstractions will
increase the index.

We express lbind as a total function operating on all functions
of type (expr ⇒ expr ), even exotic ones, i.e., those that do not
encode honest-to-goodness λ-terms. For example, we could have
e = (λx.count x) where (count x) counts the total number of
variables and constants occurring in x. Only functions that behave
uniformly on their arguments represent λ-terms, e.g., those func-
tions that hereditarily abstract only over the constructors of the
expr datatype. We refer the reader to [Despeyroux et al. 1995] for
an analysis of this phenomenon. We define lbind so that it maps
non-uniform subterms to a default value. The subterms we target
are those that do not satisfy the predicate ordinary :: [ expr ⇒
expr ]⇒ bool , defined as follows:

ordinary e == (∃a. e = (λ v. CON a) ∨
e = (λv. v) ∨
∃n. e = (λv. VAR n) ∨
∃j. e = (λv. BND j) ∨
∃f g. e = (λv. f v $ g v) ∨
∃f. e = (λ v. ABS (f v)))

We do not define lbind directly, but instead define a relation
lbnd :: [ bnd , expr ⇒ expr , expr ]⇒ bool and prove that this re-
lation defines a function, mapping the first two arguments to the
third.

inductive lbnd :: [ bnd , expr ⇒ expr , expr ]⇒ bool
=⇒ lbnd i (λv. CON a) (CON a)
=⇒ lbnd i (λv. v) (BND i)
=⇒ lbnd i (λv. VAR n) (VAR n)
=⇒ lbnd i (λv. BND j) (BND j)

[[ lbnd i f s;
lbnd i g t ]] =⇒ lbnd i (λv. f v $ g v) (s $ t)

lbnd (i + 1) f s =⇒ lbnd i (λv. ABS (f v)) (ABS s)
¬(ordinary e) =⇒ lbnd i e (BND 0)

We now define lbind :: [ bnd, expr ⇒ expr ] ⇒ expr as
follows, thus completing the definition of lambda:

lbind i e == THE s. lbnd i e s

where THE is Isabelle’s notation for the definite description opera-
tor ι. Note that this operator is not available in Coq. The use of this
operator is the main reason for the differences in the two libraries.
The Coq version instead uses a definite description axiom available
in Coq’s classical reasoning library.

Ruling out non-uniform functions, which was mentioned be-
fore, is important for a variety of reasons. For example, it is nec-
essary for proving that our encoding adequately represents the λ-
calculus. To prove adequacy, we identify a subset of the terms of
type expr such that there is a bijection between this subset and
the λ-terms that we are encoding. There are two aspects we must
consider in defining a predicate to identify this subset. First, recall
that BND i corresponds to a bound variable in the λ-calculus, and
VAR i to a free variable; we refer to bound and free indices respec-
tively. We call a bound index i dangling if i or less ABS labels oc-
cur between the index i and the root of the expression tree. We must
rule out terms with dangling indices. Second, in the presence of the
lambda operator, we may have functions of type (expr ⇒ expr )
that do not behave uniformly on their arguments. We must rule out
such functions. We define a predicate proper, which rules out dan-
gling indices from terms of type expr , and a predicate abstr, which
rules out dangling indices and exotic terms in functions of type
(expr ⇒ expr ).

To define proper we first define level. Expression e is said to be
at level l ≥ 0, if enclosing e inside l ABS nodes ensures that the
resulting expression has no dangling indices.

inductive level :: [ bnd , expr ]⇒ bool
=⇒ level i (CON a)
=⇒ level i (VAR n)

j < i =⇒ level i (BND j)
[[ level i s; level i t ]] =⇒ level i (s $ t)

level (i + 1) s =⇒ level i (ABS s)

Then, proper :: expr ⇒ bool is defined simply as:

proper e == level 0 e.

We actually take this a step further and use the typedef mechanism
of Isabelle/HOL to define a type of proper terms [Momigliano
et al. 2008], eliminating the need for the proper predicate. The
Coq version, which was used for the development in the rest of this
paper, does not (yet) have an analogous improvement, so proper
annotations will continue to appear in this paper.

To define abstr, we first define abst as follows:
inductive abst :: [ bnd , expr ⇒ expr ]⇒ bool

=⇒ abst i (λv. CON a)
=⇒ abst i (λv. v)
=⇒ abst i (λv. VAR n)

j < i =⇒ abst i (λv. BND j)
[[ abst i f ; abst i g ]] =⇒ abst i (λv. f v $ g v)

abst (i + 1) f =⇒ abst i (λv. ABS (f v))



Given abstr :: [ expr ⇒ expr ]⇒ bool , we set:

abstr e == abst 0 e.

Equality in Isabelle/HOL is extensional, contrary to Coq. This
difference affects definitions like abst and lbnd that have an ar-
gument of functional type (expr ⇒ expr ). In the Coq version,
we define extensional equality on type expr explicitly. Formally,
(f =ext g) == ∀x.(fx = gx). This equality appears in the def-
inition of abst, for example. We first define an auxiliary predicate
abst aux defined exactly as abst above, and then define abst as:

abst i e == ∃e′. e′ =ext e ∧ abst aux i e′.

It follows directly from the inductive definition of de Bruijn
expressions that the functions CON, VAR, $, and ABS are injective,
with disjoint images. With the introduction of abstr, we can now
also prove the following fundamental theorem:

THEOREM 1.

[[ abstr e; abstr f ]] =⇒ (lambda e = lambda f) = (e = f)

which says that lambda is injective on the set of abstractions.
Hybrid also includes a definition newvar :: expr ⇒ var used

to generate fresh variables.
primrec newvar :: expr ⇒ var
newvar (CON a) = 0
newvar (VAR n) = n + 1
newvar (BND i) = 0
newvar (s $ t) = max (newvar s) (newvar t)
newvar (ABS s) = newvar s

In particular (newvar e) returns a variable whose index is 1 greater
than the maximum value of the free variables occurring in e. Since
all of our previous case studies (see [Momigliano et al. 2008])
entailed induction on closed terms or didn’t require reasoning over
contexts if not for substitution purposes (realized via the crucial
use of cut in two-level proofs of subject reduction), we had no use
for this definition, although it is central to the development of the
reasoning techniques explained in this paper.

3. The Specification Logic
We use a simple SL, a sequent formulation of a fragment of second-
order minimal logic with backchaining, adapted from [McDowell
and Miller 2002]. The formalization presented here is taken fairly
directly from [Momigliano et al. 2008]. Its syntax can be encoded
directly as the datatype:

datatype oo =
tt | 〈atm〉 | oo and oo | atm imp oo | all (uexp ⇒ oo)

where atm is a parameter used to represent atomic predicates of
the OL and 〈 〉 coerces atoms into propositions of type oo . We
use the symbol B for the sequent arrow of the SL, in this case
decorated with natural numbers to allow reasoning by (complete)
induction on the height of a proof. The inference rules of the SL are
represented as the inductive definition in Figure 1. For convenience
we write Γ B G if there exists an n such that Γ Bn G, and
furthermore we simply write B G when ∅BG. The first four clauses
of the definition directly encode the introduction rules of a sequent
calculus for this logic. In the last two rules, atoms are provable
either by assumption or via backchaining over a set of Prolog-like
rules, which encode the properties of the OL in question. They are
encoded as an inductive definition of the predicate prog of type
[ atm, oo ] ⇒ bool , which will be instantiated in the next section.
The notation A←− G represents an instance of one of the clauses

inductive B :: [ atm list , nat , oo ]⇒ bool
=⇒ Γ Bn tt

[[ Γ Bn G1; Γ Bn G2 ]] =⇒ Γ Bn+1 (G1 and G2)
[[ (∀x. proper x −→ Γ Bn G x) ]] =⇒ Γ Bn+1 (all x. G x)

[[ {A} ∪ Γ Bn G ]] =⇒ Γ Bn+1 (A imp G)
[[ A ∈ Γ ]] =⇒ Γ Bn 〈A〉

[[ A←− G; Γ Bn G ]] =⇒ Γ Bn+1 〈A〉

Figure 1. Encoding of Specification Logic

of this inductive definition. The sequent calculus is parametric in
those clauses and so are its meta-theoretical properties.

To reason about OLs, a small set of structural rules of the SL is
proved once and for all.
THEOREM 2.

1. Height weakening: [[ Γ Bn G; n < m ]] =⇒ Γ Bm G
2. Context weakening: [[ Γ Bn G; Γ ⊆ Γ′ ]] =⇒ Γ′

Bn G.
3. Atomic cut: [[ A, Γ B G; Γ B 〈A〉 ]] =⇒ Γ B G.

4. The Object Logic
The types of PCF include natural numbers, booleans, and function
types. They are encoded directly as a standard datatype:

datatype tp = num | bl | tp ⇒ tp

To define the terms of PCF, we first declare the constants that
belong to the enumerated datatype con:

datatype con = cZERO | cTRUE | cFALSE
| cSUCC | cPRED | cIS ZERO | cIF
| cAPP | cABS | cREC | cTP tp

This is the instantiation of con that we consider in the rest of the
paper. Note that cTP is used to coerce an OL type to a constant
in order to allow types to appear inside terms. After all, without
those annotations type unicity would not hold. Recall that uexp =
= con expr . We add the following definitions:

0, t, f :: uexp
suc, pred, is0? :: uexp ⇒ uexp

if :: [ uexp, uexp, uexp ]⇒ uexp
@ :: [ uexp, uexp ]⇒ uexp

abs, rec :: [ tp, uexp ⇒ uexp ]⇒ uexp

0 == CON cZERO
t == CON cTRUE
f == CON cFALSE

succ E == CON cSUCC $ E
pred E == CON cPRED $ E
is0? E == CON cIS ZERO $ E

if E1 E2 E3 == CON cIF $ E1 $ E2 $ E3

E1 @ E2 == CON cAPP $ E1 $ E2

abs xT . E x == CON cABS $
CON (cTP T ) $ (lambda (λx. E x))

rec xT . E x == CON cREC $
CON (cTP T ) $ (lambda (λx. E x))

where abs and rec are meta-level binders and (abs xT . E x) is an
abbreviation for (abs T (λx.E x)), and similarly for rec.

Note again that the above are only definitions and by themselves
would not inherit any of the properties of the constructors of a
datatype. However, thanks to our package it is now possible to



prove the freeness properties of those definitions as if they were
the constructors of what Isabelle/HOL would ordinarily consider
an “impossible” datatype as discussed earlier. In particular, all
constructors have distinct images, e.g.:

abs x. T E x 6= (E1 @ E2)

and every binding constructor is injective on abstractions:
[[ abstr E; abstr E′ ]] =⇒

(rec xT . E x = rec xT . E′ x) = (E = E′)

Encoding an OL involves introducing a specific type for con (as
was just done), instantiating the type atm , and defining the prog
predicate. The atomic formulas of the OL include for this case
study the PCF typing judgment and a well-formedness judgment
for PCF terms. The latter is used for adequacy as discussed further
below.

datatype atm = uexp : tp | isterm uexp

The clauses for PCF typing and selected clauses for well-formedness
of PCF terms are given as rules of the prog (recall the notation
←− ) inductive definition in Figure 2. (The omitted well-

formedness clauses are similar to those that are there.) The types of
0, t, and f are axioms, and thus they only have, for the sake of uni-
formity, the trivial subgoal tt on the right of the arrow. The types
of terms constructed from succ, pred, is0?, if , and @ depend on
the types of the arguments, which are expressed as straightforward
typing subgoals on the right of the arrow. The clause for abs has
a similar form to the one for the untyped λ-calculus discussed in
Section 1, except that the type of the bound variable is included as
an argument and the encoding uses quantifiers of the SL. In addi-
tion, an abstr assumption is required for the functional argument
E. The clause for rec has similar form to the clause for abs, and
expresses the usual typing rule for the recursive function construc-
tor. In Section 2, we discussed the adequacy of the encoding of
λ-terms as terms of type expr . As discussed in [Momigliano et al.
2008, Felty and Momigliano 2008], it is also important to show
that both terms and judgments of an OL are adequately encoded,
and in a two-level system that the SL is adequately encoded. We
refer the reader to the results discussed there, some of which can
be directly applied here. The isterm predicate is an important part
of adequacy for our OL. In particular, we can show that there is a
bijection between closed object-level terms and terms of type uexp
for which the judgment B 〈isterm 〉 is provable. In addition, the
following lemmas are an important part of showing the adequacy
of the OL typing judgment.
LEMMA 3.

1. B 〈E : T 〉 =⇒ proper E
2. B 〈E : T 〉 =⇒ B 〈isterm E〉

5. Formal Proof of Type Unicity
In this section, we prove that types assigned to PCF terms are
unique. In particular, if B 〈E : T 〉 and B 〈E : T ′〉, then T and
T ′ are the same type. As is quite common in formal proofs about
semantics of programming languages, we need to consider a more
general statement involving a non-empty context. This kind of
generalization is needed particularly when the induction is on a
deduction judgment in which some rules (such as the typing rules
for the abs and rec operators) involve adding a new assumption to
the context.2 We start by formulating the induction hypothesis or

2 Although both adequacy lemmas above seem to follow this pattern, they
are in fact non-examples of the techniques that we are discussing here. In
the first case, in the critical abs rule the induction is not needed as it is a

“context invariant” used in this proof. In particular, we introduce
cxtInv :: atm list ⇒ bool , and define:

cxtInv Γ ==
(e : t) ∈ Γ =⇒
∃v. e = VAR v ∧ (∀n t′. Γ Bn 〈VAR v : t′〉 =⇒ t = t′)

This invariant expresses that every term occurring in a typing judg-
ment in the context is a variable, and if a variable occurs more than
once associated with more than one type, then these types must all
be the same. Note that this definition is just a restatement of type
unicity specific to variables inside the context.

One of the key insights of our case study is that using this con-
text invariant requires reasoning about a new variable that does not
already occur in the context. We start by building up the definitions
and lemmas that we need for such reasoning. First, we extend the
definition of newvar to atoms and contexts.

primrec nvA :: atm ⇒ var
nvA (e : t) = newvar e

nvA (isterm e) = newvar e

primrec nvC :: atm list ⇒ var
nvC [] = 0

nvC (a :: l) = max (nvA a) (nvC l)

The nvC function simply folds max over a context. The lemmas
below follow from these definitions.
LEMMA 4.

1. nvC (((VAR v) : T ) :: Γ) > v
2. ((VAR v) : T ) ∈ Γ =⇒ (nvC Γ) > v

The first one states that the natural number associated with a new
context variable (generated by newvar) is greater than the variable
occuring in the typing judgment at the head of the context. Its proof
follows fairly directly from definitions. Part (2) states that a newly
generated context variable has a value greater than any variables
already occurring in the context. Its proof follows from (1), an
induction on lists, and arithmetic on natural numbers. The main
result we need in the rest of the development is a direct corollary
of (2): that a new variable is distinct from any already occurring in
the context, i.e., ((VAR v) : T ) ∈ Γ =⇒ (nvC Γ) 6= v.

Note that the definition of nvA depends on the OL, and this
dependence comes from the instantiation of atm . For a certain class
of OLs, we can describe a general way to define nvA: consider all
arguments e1, . . . , en of type uexp in atom a; define (nvA a) to
be the maximum of (newvar e1), . . . , (newvar en). This definition
works for OLs where every argument of an atomic predicate is
either of type uexp (and involved in the calculation) or of some type
independent of uexp (and not involved in the calculation, e.g., tp in
our example). For such OLs, the proof of the lemma corresponding
to Lemma 4 should be easy to automate.

The main lemma in the proof of type unicity expresses that the
context invariant is preserved when adding a new (fresh) variable
(and its type) to the context.
LEMMA 5. cxtInv Γ =⇒ cxtInv ((VAR (nvC Γ)) : T ) :: Γ.

It is easy to see why this lemma holds; if the invariant holds of Γ
and we add a typing assumption about a new variable, we guarantee
that there is no other typing assumption about this variable already
in Γ. The only way to build a deduction that assigns a type to this
new variable is to use the SL’s axiom rule, namely the second to

simple (non-inductive) fact that abstr E =⇒ proper (abs x
T

. E x). The
second lemma does require generalization, but this does not offer any new
insight since the isterm predicate is just the typing judgment minus the
types.



inductive ←− :: [ atm, oo ]⇒ bool

=⇒ 0 : num ←− tt

=⇒ t : bl ←− tt

=⇒ f : bl ←− tt

=⇒ (succ E) : num ←− 〈E : num〉

=⇒ (pred E) : num ←− 〈E : num〉

=⇒ (is0? E) : bl ←− 〈E : num〉

=⇒ (if E1 E2 E3) : T ←− 〈E1 : bl〉 and 〈E2 : T 〉 and 〈E3 : T 〉

=⇒ (E1 @ E2) : T ←− 〈E1 : (T ′ ⇒ T )〉 and 〈E2 : T ′〉

[[ abstr E ]] =⇒ (abs xT . E x) : (T ⇒ T ′)←− all x. (x : T ) imp 〈(E x) : T ′〉

[[ abstr E ]] =⇒ (rec xT . E x) : T ←− all x. (x : T ) imp 〈(E x) : T 〉

=⇒ isterm 0←− tt

=⇒ isterm (succ E)←− 〈isterm E〉

=⇒ isterm (if E1 E2 E3)←− 〈isterm E1〉 and 〈isterm E2〉 and 〈isterm E3〉

=⇒ isterm (E1 @ E2)←− 〈isterm E1〉 and 〈isterm E2〉

[[ abstr E ]] =⇒ isterm (abs xT . E x)←− all x. (isterm x) imp 〈isterm (E x)〉

...

Figure 2. OL clauses encoding typing and well-formedness of PCF terms

last clause in Figure 1, and thus the new variable must have unique
type T .

The generalized form of type unicity is expressed in the follow-
ing theorem.

THEOREM 6.

[[ cxtInv Γ; Γ Bn 〈E : T 〉; Γ Bn′ 〈E : T ′〉 ]] =⇒ T = T ′.

Proof The proof is by complete induction on n, the height of the
first typing derivation. The induction hypothesis IH is:

∀m < n, n′, Γ, E, T, T ′.
cxtInv Γ −→ Γ Bm 〈E : T 〉 −→ Γ Bn′ 〈E : T ′〉 −→ T = T ′.

A derivation of Γ Bn 〈E : T 〉 must end with the atom rules, i.e.,
one of the last two rules of Figure 1. Applying (standard) inversion
breaks the proof into the following two cases.

[[ IH[i + 1/n]; cxtInv Γ; Γ Bi+1 〈E : T 〉;

(E : T )←− G; Γ Bn′ 〈E : T ′〉 ]] =⇒ T = T ′

[[ IH; cxtInv Γ; (E : T ) ∈ Γ;

Γ Bn′ 〈E : T ′〉 ]] =⇒ T = T ′

The second follows from the context invariant. In the first, by
applying inversion to (E : T ) ←− G, the proof is further broken
down into 10 cases, one for each of the typing clauses of Figure 2.

The 8 cases for the clauses that do not involve generic judg-
ments follow fairly directly from the context invariant and the in-
duction hypothesis. We show the application case:

[[ IH[i + 1/n]; cxtInv Γ; Γ Bi+1 〈(E1@ E2) : T 〉;

Γ Bi 〈E1 : (U ⇒ T )〉 and 〈E2 : U〉;

Γ Bn′ 〈(E1@E2) : T ′〉 ]] =⇒ T = T ′

Inversion on the second to last premise, followed by inversion on
the last premise gives us two subgoals:

[[ IH[i′ + 2/n]; cxtInv Γ; Γ Bi′+2 〈(E1@ E2) : T 〉;

Γ Bi′ 〈E1 : (U ⇒ T )〉; Γ Bi′ 〈E2 : U〉;

Γ Bj 〈E1 : (U ′ ⇒ T ′)〉; Γ Bj 〈E2 : U ′〉 ]] =⇒ T = T ′

[[ IH[i′ + 2/n]; cxtInv Γ;

Γ Bi′+2 〈(E1@ E2) : T 〉; . . . ;

((E1@E2) : T ′) ∈ Γ ]] =⇒ T = T ′

The first one follows by the induction hypothesis applied to

Γ Bi′ 〈E1 : (U ⇒ T )〉 and Γ Bj 〈E1 : (U ′ ⇒ T ′)〉,

and the second one is proved by contradiction because the last
premise violates the context invariant, which states that only vari-
ables occur in Γ with their types.

The case for typing an abstraction is:

[[ IH[i + 1/n]; cxtInv Γ; abstr E;

Γ Bi+1 〈(abs xT1 . E x) : (T1 ⇒ T2)〉;

Γ Bi all x. (x : T1 imp 〈(E x) : T2〉);

Γ Bn′ 〈(abs xT1 . E x) : T ′〉 ]] =⇒ (T1 ⇒ T2) = T ′

Again applying inversion on the second to last premise, followed
by inversion on the last gives us two subgoals, where the second
one violates the context invariant just as in the application case.
The remaining goal is:

[[ IH[i′ + 2/n]; cxtInv Γ; abstr E;

abstr E′; (lambda E = lambda E′);

Γ Bi′+2 〈(abs xT1 . E x) : (T1 ⇒ T2)〉;

∀x. proper x −→ Γ Bi′ x : T1 imp 〈(E x) : T2〉;

∀x. proper x −→ Γ Bj x : T1 imp 〈(E′ x) : T3〉 ]]

=⇒ (T1 ⇒ T2) = (T1 ⇒ T3)



Using Theorem 1, we can conclude that E = E′, reducing the
above goal to:

[[ IH[i′ + 2/n]; cxtInv Γ; abstr E; . . . ;

∀x. proper x −→ Γ Bi′ x : T1 imp 〈(E x) : T2〉;

∀x. proper x −→ Γ Bj x : T1 imp 〈(E x) : T3〉 ]]

=⇒ (T1 ⇒ T2) = (T1 ⇒ T3)

It is at this point that we introduce a new variable that does not
occur in Γ. Let Y be (VAR (nvC Γ)). By definition variables are
proper, and so we can conclude (proper Y ). Instantiating x with
this new variable gives us:

[[ IH[i′ + 2/n]; cxtInv Γ; abstr E; . . . ;

Γ Bi′ Y : T1 imp 〈(E Y ) : T2〉;

Γ Bj Y : T1 imp 〈(E Y ) : T3〉 ]]

=⇒ (T1 ⇒ T2) = (T1 ⇒ T3)

Applying inversion once more on these instantiated hypotheses, the
above goal reduces to:

[[ IH[i′′ + 3/n]; cxtInv Γ; abstr E; . . . ;

(Y : T1), Γ Bi′′ 〈(E Y ) : T2〉;

(Y : T1), Γ Bj′ 〈(E Y ) : T3〉 ]]

=⇒ (T1 ⇒ T2) = (T1 ⇒ T3)

We can apply Lemma 5 to premise (cxtInv Γ) to conclude
cxtInv (Y : T1) :: Γ.

It is now possible to apply the induction hypothesis, instantiating Γ
with ((Y : T1) :: Γ) and using hypotheses:
(Y : T1), Γ Bi′′ 〈(E Y ) : T2〉 and (Y : T1), Γ Bj′ 〈(E Y ) : T3〉

to conclude that T2 = T3, from which the desired result follows
immediately.

The case for typing recursion is simple and doesn’t involve
reasoning about an extended context:

[[ IH[i + 1/n]; cxtInv Γ; abstr E;

Γ Bi+1 〈(rec xT . E x) : T 〉;

Γ Bi all x. (x : T imp 〈(E x) : T 〉);

Γ Bn′ 〈(rec xT . E x) : T ′〉 ]] =⇒ T = T ′

In this case, inversion on the last premise gives two subgoals.
The one that corresponds to the axiom rule results in the premise
((rec xT . E x) : T ′) ∈ Γ, which, similar to the other cases,
contradicts the context invariant. The other one corresponds to
backchaining, and a further inversion on the typing clause for rec
in Figure 2 directly gives T = T ′. This completes the proof.

The main type unicity result, expressed as the corollary below,
follows immediately.
COROLLARY 7. [[ B 〈E : T 〉; B 〈E : T ′〉 ]] =⇒ T = T ′.

6. Related Work
In this section, we only discuss proofs of type unicity (TU) in the
literature that use full HOAS. Approaches we neglect here include,
among others, those based on a nameless representation [McK-
inna and Pollack 1999] or based on nominal techniques [Pitts
2003]. For a fuller discussion of related work please see [Felty
and Momigliano 2008]. We acknowledge that our notion of newvar
has an obvious nominal flavor and we plan to study this connec-
tion in the future and possibly learn much in view of automa-
tion from the nominal datatype package developed on top of Is-
abelle/HOL [Nominal Methods Group 2009].

TU in FOλ∆IN . One of the early formal TU proofs that involves
representing and reasoning with HOAS was done in FOλ∆IN [Mc-
Dowell 1997] with the Pi proof editor [Eriksson 1994]. This proof
is far from satisfactory as we will see in a second, but we were able
to port it fairly directly to Hybrid. It uses the following context in-
variant:

cxtInv1 Γ == (e : t) ∈ Γ =⇒ B 〈e : t′〉 =⇒ t = t′.

Compare the above definition to the one we used in Section 5:
cxtInv Γ ==
(e : t) ∈ Γ =⇒
∃v. e = VAR v ∧ (∀n t′. Γ Bn 〈VAR v : t′〉 =⇒ t = t′).

The invariant in the FOλ∆IN proof expresses the same thing, ex-
cept that it does not restrict terms appearing in Γ to be variables.
In fact, the FOλ∆IN encoding of PCF that was used for this proof
did not have object-level variables and so reasoning was restricted
to closed terms. In the case for typing an abstraction, instead of in-
troducing a new variable that does not appear in Γ to instantiate x,
as we did in the proof of Theorem 6, the completely ad hoc closed
term (rec xT . x) of type T was used. Note that adding this term to
Γ does preserve the invariant, i.e., cxtInv1 ((rec xT . x) : T ) :: Γ
is provable. Note also that this proof does not work unless the rec
operator is part of the object language. This proof technique, sim-
ply put, does not solve the issue of reasoning with open terms in
any generality; its main use was to motivate the need for a more
general way to handle contexts, which led to the so-called eigen-
variable representation, introduced in FOλ∆IN [McDowell 1997,
Miller and Tiu 2002], one of the early techniques developed for
handling variable contexts in HOAS. The idea consists of consider-
ing the whole sequent as bound by the list of the current eigenvari-
ables. It included a higher-order representation of lists of variables
and machinery to manipulate them. This syntax gets very heavy
very quickly and its internalization in the proof-theory of the ∇
quantifier was a major accomplishment, soon adopted in succes-
sors to FOλ∆IN and in the Abella system (see below).

In our earlier work on two-level reasoning [Felty 2002], the type
unicity theorem from FOλ∆IN is mentioned and in fact proven in
Coq, but no proof is given in that paper. For the sake of complete-
ness we ported this proof to Hybrid as well; it uses a context invari-
ant whose content is captured by the following definition:

cxtInv2 Γ == (e : t) ∈ Γ =⇒ ∃E. e = (rec xt. (E x)).

Note that this proof builds the dependence on rec right into the
context invariant. In fact, this invariant is stronger than the previous
one—we can prove (cxtInv2 Γ) =⇒ (cxtInv1 Γ)—and therefore
at least as unsatisfactory.

TU in Abella. Because of the adoption of a common two-level
architecture, it is enlightening to compare our proof with what one
can do in the Abella system [Gacek 2008]. As a matter of fact,
Abella supports two different meta-logics, LGω [Tiu 2007] and a
superset, G [Gacek et al. 2008]. Both support (co)inductive partial
definitions [Momigliano and Tiu 2003] and the ∇ quantifier, in
the stronger (w.r.t. FOλ∆∇ [Miller and Tiu 2005]) “nominal-ish”
version. G extends LGω by allowing∇’s in the head of definitions,
a feature that simplifies context invariants needed in generic proofs.
In both logics, the TU proof goes through by:
1. defining (in the fixed point sense, concrete syntax “:=”) a no-

tion of well-formed context;
2. proving the “regularity” of the context, i.e., showing that for

every atom e : τ occurring in the context, e must only be a
variable/nominal constant/fresh name;

3. proving TU for the elements of the context;



4. using the latter, as we do, as a helper lemma to establish the
main result by taking care of the axiom case in the induction on
the SL derivation.

Note of course that in both encodings, the SL universal quantifica-
tion is mapped to∇.

In Abella’s concrete syntax, provability in the SL is denoted
by brackets and the numerical information about the height of the
derivation is kept symbolically, a user-interface that Hybrid should
adopt. For the sake of conciseness we restrict ourselves to the
abstraction/application part of PCF. In particular a well-formed
context is defined in LGω as follows, where “of” denotes OL
typability:

Def ctx nil.
Def ctx (of X T :: L) :=
(forall M N, X = M @ N -> false) /\
(forall T R, X = abs T R -> false) /\
(forall T’, member (of X T’) L -> false) /\
ctx L.

Hence a context is forced to be a list of distinct atoms (of X T)
with unique types by ruling out all other possibilities.3 Having done
that, the user still needs to prove that these impossibilities hold for
every constructor, e.g.:

Thm: ctx L -> member (of (M @ N) T) L -> false.

Clearly this does not scale too well even to a small language such
as PCF. Note also that, in our proof, this is handled directly by
the invariant; see for example the contradiction subcase in the
application case of Theorem 6. Another arguably rather ad hoc fact
about the non-occurrence of nominal constants with a particular
kind of scope in a list is needed.

Thm nominal_absurd:
nabla x, member (of x (T x)) L -> false.

In fact, G allows the user to escape from some of this boilerplate.
As it is possible to define very simple yet powerful notions of being
a name and of freshness; thanks to the possibility of ∇ in the head
of definitions, a simple lemma proved once and for all subsumes
some of the aforementioned required results in LGω:

Def nabla x, name x.

Def nabla x, fresh x E.

Thm: member E L -> fresh X L -> fresh X E.

Now a context can be defined more succinctly; the fresh X L
condition could even be removed to show the cunning resemblance
with our Lemma 5.

Def ctx nil.
Def ctx (of X T :: L) := fresh X L /\ ctx L.

Only one technical lemma is required, connected to point 2. of the
above methodology:

Thm: ctx L -> member (of E T) L -> name E.

In both proofs, a final lemma states TU for the element of the well-
formed context:

Thm: ctx L -> member (of E T1) L ->
member (of E T2) L -> T1 = T2.

Finally, the statement corresponding to Theorem 6:

3 Note that, in additional contrast, our invariant lets the context contain more
than one occurrence of a variable as long as all are assigned the same type.

Thm: ctx L -> {L |- of E T1} ->
{L |- of E T2} -> T1 = T2.

Even a superficial comparison of proof scripts shows that
Abella’s proofs are shorter and neater than in Hybrid. This is no
surprise as Abella is a small dedicated system, tailored to HOAS
encodings with a very simple, though effective, tactic language.
The flip side is that everything else needs to be encoded directly,
while we have the luxury to rely on Isabelle/HOL and Coq. For
example instead of a call to the arithmetic tactic, the Abella user
needs to encode Peano axioms as logic programs and establish a
large library of the required lemmas. Note also that while G is based
on (monomorphic) simple types, judgments in Abella are untyped,
hence adequacy has to be enforced by predicates, as we do.

TU in Twelf. As well-known, in the Twelf methodology [Pfen-
ning and Schürmann 1999] the LF type theory is used to encode
OLs as judgments and to specify meta-theorems as relations (type
families) among them; a logic programming-like interpretation pro-
vides an operational semantics to those relations, so that an exter-
nal check for totality (incorporating termination, well-modedness,
and coverage checking [Schürmann and Pfenning 2003, Pientka
2005]) verifies that the given relation is indeed a realizer for that
(meta)theorem.

The encoding of the typing relation is analogous to ours (and
Abella’s), yet, as Twelf is an intentionally weak framework, does
not need to be encapsulated in a SL layer. We recall that curly
brackets denote the dependent product and that Twelf’s type re-
construction allows the user to omit many arguments.

tp_abs : of (abs E) (T1 => T2)
<- ({x:exp} of x T1 -> of (E x) T2).

tp_app : of (E1 @ E2) T1
<- of E1 (T2 => T1)
<- of E2 T2.

%block tp_var : some {T:tp}
block {x:exp} {u:of x T}.

%worlds (tp_var) (of E T).

The difference between reasoning on open or closed terms emerges
here with the notion of regular worlds: in fact every time the clause
tp_abs is invoked, it introduces a new parameter x:exp and a
new assumption u: of x T for some T. This regularity is declared
with blocks and worlds and the totality checker will use this
information in proofs with non-empty contexts.

Because type equality is, in this case study, simply the identity,
we choose a “shallow” encoding of it as an identity type family
over OL types.

eq : tp -> tp -> type.
refl: eq T T.

We then need some lemmas about equality, such as congruence and
inversion w.r.t. the type constructor(s). Although these proofs are
immediate, they cannot be delegated to the system, in contrast with
Abella and Hybrid.

id_arr_cong: eq T1 S1 -> eq T2 S2 ->
eq (T1 => T2) (S1 => S2) -> type.

id1 : id_arr_cong refl refl refl.

id_arr_inv: eq (T1 => T2) (S1 => S2) ->
eq T1 S1 -> eq T2 S2 -> type.

id2 : id_arr_inv refl refl refl.



Now we can declare the higher-order type family corresponding to
TU and specify every case in the proof as an inhabitant of such a
family. We also add directives for totality checking:
tp_uniq: {E:exp} {T1:tp} {T2:tp}

of E T1 -> of E T2 -> eq T1 T2 -> type.

%mode tp_uniq +E +P1 +P2 -R

tu_var: tp_uniq _ P P refl.

tu_abs: tp_uniq _ (tp_abs P1) (tp_abs P2) EqAbs
<- ({x:exp} {u:of x T1}

tp_uniq _ (P1 x u) (P2 x u) Eq)
<- id_arr_cong refl Eq EqAbs.

tu_app: tp_uniq _ (tp_app P1 P2) (tp_app P3 P4) Eq@
<- tp_uniq _ P2 P4 EE2
<- tp_uniq _ P1 P3 EE1
<- id_arr_inv EE2 EE1 Eq@.

%worlds (tp_var) (tp_uniq _ _ _ _).
%terminates P1 (tp_uniq _ P1 _ _).
%covers tp_uniq +E +P1 +P2 -R.

Note that although OL variables have no independent represen-
tation, we still have to find an inhabitant (tu var) correspond-
ing to the case in the informal proof when the two given deriva-
tion are simply the variable axiom. By construction they must be
the same and so we return the identity, i.e., refl: eq T T. In
the abs case P1 and P2 are higher-order functions parametric in
the eigenvariable x and hypothetical in u:of x T1. Congruence
combines the derivation obtained by IH to obtain a derivation of
EqAbs: eq (T1 => T2)(T1 =>T3)). The case for application is
similar but uses inversion to build the required identity proof. Since
the abs case extends the context, it requires a world declaration. Fi-
nally, the relation is proved to be a total function by termination and
coverage checking.

This is extremely elegant and terse. However, world checking is
far from simple as worlds have some delicate structural properties
(weakening, no exchange, strengthening) [Harper and Licata 2007].
It may also be noted that worlds are in a sense extra-logical w.r.t.
the LF type theory.4 Further, as coverage checking is undecidable,
the algorithm approximates it, yielding sometimes false positives,
whose error messages are tricky to understand. It is difficult (and
an object of current work) to compare in a meaningful way a tra-
ditional tactic-based system such as Hybrid with a proof-checker
plus static analysis system such as Twelf. One has to appreciate
the succinctness of Twelf encodings and the automation of totality
checking. Still, an idea such as newvar is arguably easy to under-
stand for anyone familiar with the problem of bound variable names
and renaming.

7. Conclusion and Future Work
We have presented an approach to reasoning inductively on generic
judgments with the Hybrid system, which provides additional sup-
port for reasoning about objects encoded using HOAS. Since our
architecture is based on a very small set of theories that definition-
ally builds an HOAS meta-language on top of a standard proof-
assistant, this allows us to do without any axiomatic assumptions, in
particular freeness of HOAS constructors and extensionality prop-
erties at higher types, which in our setting are theorems. The ad-
ditional support we provide for inductive reasoning with generic

4 We are aware that they can be justified in terms of meta-logics over LF,
see the seminal [Schürmann 2000].

judgments adds a significant amount of new reasoning power with a
small amount of new definitions and lemmas. Arguably, these defi-
nitions and lemmas are fairly simple. Furthermore, various forms of
automated support available in such proof assistants, such as tactic-
style reasoning and decision procedures, are readily available and
can be augmented with support specific to reasoning about HOAS
specifications.

Note that by using a well-understood logic and system, and
working in a purely definitional way, we avoid the need to jus-
tify consistency by syntactic or semantic means. For example, we
do not need to show a cut-elimination theorem for a new logic as
in [Gacek et al. 2008],5 nor prove results such as strong normal-
ization of calculi of the Mω family or about the coverage theory
behind Twelf [Harper and Licata 2007, Schürmann and Pfenning
2003]. Hence our proofs are easier to trust, as far as one trusts Is-
abelle/HOL and Coq.

Future work must include more extended case studies to demon-
strate that the new infrastructure applies to a large class of proofs.
For example, we hope to show that the techniques described here
can be used fairly directly to complete a formal proof of the
POPLMARK challenge [Aydemir et al. 2005]. The proof of reflex-
ivity of subtyping for System F with subtypes involves induction
on a (sub)typing relation that is similar to the one used here. Transi-
tivity is definitely harder. One further issue is investigating whether
we can approximate the extraordinarily elegant encoding offered in
[Pientka 2007]. Indeed, another thread we are planning to pursue is
the use of our framework to aid in gaining a better understanding
and “popularization” of Twelf proofs, where Hybrid would work
as as the target of a sort of “compilation” of such proofs into the
well-understood higher-order logic of Isabelle/HOL.

More in-depth comparisons with nominal logic ideas such as
freshness and the Gabbay-Pitts quantifier are in order. On the prac-
tical side, we envision developing a package similar in spirit to
the nominal datatype package for Isabelle/HOL [Nominal Meth-
ods Group 2009]. For Hybrid, such a package would automatically
supply a variety of support from a user specification of an OL, such
as validity predicates like isterm, a series of theorems expressing
freeness of the constructors of such a “type”, namely injectivity
and distinctness theorems, and automated generation of the defini-
tions and lemmas related to newvar. To work at two levels, such
a package would include a number of pre-compiled SLs (includ-
ing cut-elimination proofs and other properties) as well as some
lightweight tactics to help with two-level inference.
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