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Abstract

The concept of computable functions (as developed by Gödel, Church, Turing, and Kleene in the 1930’s)
has been extensively studied, leading to the modern subject of recursive function theory. However recent
work by category theorists has led to a more conceptual and abstract foundation of computability theory—
Turing categories. A Turing category models the notion of partial map as well as recursive computation,
using methods of categorical algebra to formalize these concepts. The goal of this work is to provide a
formal framework for analyzing this categorical model of computation. We use the Coq Proof Assistant,
which implements the Calculus of (co)Inductive Constructions (CIC), and we build on an existing Coq
library for general category theory. We focus on both formalizing Turing categories and on building a
general framework in the form of a well-structured Coq library that can be further extended. We begin by
formalizing definitions, propositions, and proofs pertaining to Turing categories, and then instantiate the
more general Turing category formalism with a CIC description of the category which explicitly models the
language of partial recursive functions.

Keywords: Category theory, Turing categories, Computability, Formalization, Calculus of Inductive
Constructions (CIC), Coq proof assistant

1 Introduction

Traditional computation theory (Gödel, Turing, Kleene) originally aimed at cap-

turing the informal notion of computable functions over the natural numbers and

computable theories of real numbers (e.g., [25,15]). Even before Turing, Church’s

introduction of lambda calculus [4] attempted to capture certain properties of com-

putation in a broader sense, through manipulation of strings of symbols representing

function application and abstraction. It was subsequently shown that the numerical

(partial) functions computable by these various abstract formalisms for computation
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coincided, thus suggesting the so-called Church-Turing thesis. Later independent

formalisms for defining numerical computation (e.g., Register Machines, Markov’s

algorithms, etc.) were shown to again lead to the same class of computable nu-

merical partial functions, lending yet more credence to the Church-Turing thesis.

Nevertheless, practical as well as theoretical computer science requires more than

just numerical computation: one has increasingly abstract theories of computation

over various data types, higher-order computation, computation based on various

programming language paradigms, newer paradigms of computation (parallel, prob-

abilistic, quantum), etc. Category theory appears to be both general and expressive

enough to be the tool of choice for modeling computation in these newer senses.

Many concepts of traditional partiality, recursion and computation theory have

begun to be effectively analyzed categorically. Some early work on expressing par-

tiality in terms of category theory includes papers of Robinson and Rosolini [23]

as well as Mulry [20]. More recent studies on partiality, relevant to our work on

Turing categories, are mentioned below. Categorical analysis of computation and

recursion ranges from early fundamental work of Elgot on flowchart semantics, and

its connections with denotational semantics (cf. Manes and Arbib [19]), to analysis

of Church’s theories of lambda calculi (both typed and untyped) in cartesian closed

categories, associated higher-order categorical logics and domain theory [16,1]. In a

series of works of increasing categorical generality, beginning with Longo and Moggi

[18], Di Paola and Heller [22] and culminating in recent work of Cockett and Hof-

stra [9], we see the beginnings of a new and direct categorical development of the

foundations of recursion theory

This paper is based on the thesis of the first author [28]. The model we study is

the category-theoretic formalism of Turing Categories, introduced by Cockett and

Hofstra [9]. Turing categories are a very general computational model, built from

a categorical analysis of partial maps (Restriction Categories) by Cockett and Lack

[10]. The partial maps of a Turing category arise as the computable maps of a

partial combinatory algebra (PCA) [17]. Moreover, recent work establishes criteria

for determining when various complexity classes of total maps can be made into a

Turing category [5]. Thus the notion of Turing category provides a robust, abstract

framework for discussing computation over a wide range of settings.

Our study of the Turing category computation model takes the form of building

a type-theoretic formal language description (formalization) of the relevant con-

cepts. The concepts we have selected to formalize lay the groundwork for (for-

mally) proving abstract interpretations of standard theorems in recursion theory.

The key motivation behind this approach is the level of organization, consistency,

and guaranteed correctness it provides in working with proofs and definitions for

which unformalized presentations may omit important and interesting details.

Turing category theory can be viewed as an (up until recently) non-formalized

mathematical framework that describes a precise model of computation. As compu-

tation on a physical computer is a precise procedure, it seems natural to verify that

a formal description of this framework exactly fits the selected categorical model.

This is the motivating idea and the main objective of this work. There is not a huge
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amount of work done in this direction of research; specifically, in formalizing a cate-

gory as an instance of an abstract computational model. Furthermore, we choose to

work in the Coq Proof Assistant, with the Calculus of (co)Inductive Constructions

(CIC) as its underlying formal language. Thus, we are using intuitionistic logic to

build the proofs and definitions in this formalization. This further differentiates this

development from traditional recursion theory, and adds interesting constructivist

information to our proofs. For example, to verify if f : A → B is a function, we

must confirm that for each proof that x ∈ A, we can prove f(x) ∈ B.

There have been previous attempts to formalize certain aspects of computation,

both as categorically abstracted concepts and as direct formalizations of partial or

total computation. Our project, in fact, builds on an existing constructive formal-

ization of partial recursive functions in Coq [30], and makes use of the Sm
n theorem

proved within the resulting language. There are other formalizations of traditional

computation, such as primitive recursion in [21], a weak call-by-value lambda calcu-

lus as a model of computation in Coq [13], a formalization of computable functions

done directly using lambda abstractions (rather than a specific proof assistant,

although the project was motivated by considerations of NuPRL) [11], and formal-

izations of computability theory done in different proof assistants such as HOL [29].

(The latter formalization is done using non-constructive logic). But we stress that

our formalization (in Coq) is based on the novel structure of Turing categories, and

an associated theory of partial maps in categories.

As far as formalization of categorical abstractions of computational structures

goes, a formalization (using Coq) of cartesian closed categories, which have been

previously used to model total computation, is found in [24]. Furthermore, a for-

malization of a categorical partiality structure which represents the same notion

that we use as the partiality structure in Turing categories has also previously been

done using the Agda proof assistant [3].

We start from a library for general category theory developed by Timany and

Jacobs [24], designed to take advantage of advanced features in Coq 8.5 such as

type classes and universe polymorphism. This library successfully develops many

of the basic concepts, and thus we chose to adopt the style of definitions and for-

malization strategy used in this library. With this library as a starting point, we

specify the mathematical definitions found in the framework of the Turing Cate-

gory computation model, as well as abstract versions of other types of structures

naturally occurring in the traditional computation model. We then formally prove

(the abstract versions of) a number of results from traditional recursion theory.

In addition to formalizing the categorical concepts, we formalize several exam-

ples of categories. These examples provide validation of our formalization approach

and formalized results. They also provide a mechanism to formally study these

specific example categories. Our main example is the formalization of traditional

computation on the natural numbers and the categorical interpretation of all the

structure found therein, illustrating that these indeed conform to the Turing cat-

egory model formalism. We base our formalization of traditional recursion theory

on a formalization due to Zammit [30].
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Our Coq scripts, compilation instructions, and a link to the library we build on is

available at: https://github.com/polinavino/Turing-Category-Formalization.

2 Our Formalization

We divide our explanation of the formalization according to the Coq files we have

built. The section corresponding to each file discusses definitions and their formal

encoding as well as the challenges of reconciling the differences between them. We

show only small examples of Coq code. The reader is referred to the online reposi-

tory for the full code. For an expository introduction to the Restriction and Turing

Categories below, the reader is referred to R. Cockett’s notes and slides: [6,7] as

well as the original papers [10,9].

2.1 Cartesian Restriction Categories and their Formalization

In order to model partial recursive functions in the framework of Turing categories,

we use a particular characterization of categories of partial maps. These were in-

troduced in Cockett and Lack [10], under the name restriction categories.

Restriction categories are based on the idea of a restriction combinator. The

latter associates to a map f : A → B an idempotent (its restriction) f : A → A

whose axioms categorically capture key aspects of the “domain” of f (sufficient for

characterizing categories of partial maps.)

R1 ff = f

R2 fg = gf whenever dom(f) = dom(g)

R3 gf = gf whenever dom(f) = dom(g)

R4 gf = fgf whenever cod(f) = dom(g)

We can also capture totality in this context, by defining a morphism f : A → B to

be a total map if f = 1A.

Examples of restriction categories include familiar categories of partial functions

(formalized in Sections 2.5 and 2.6 below) as well as the category of topological

spaces and partial continuous functions with open domains. Continuous functions

which preserve open sets, called open maps, have also been axiomatized abstractly

and play an influential role in computer science [14]. This allows topological no-

tions to be lifted to other categories and forms an important part of the theory of

restriction categories [8] (see also Section 2.4 below).

In addition to such partial map structure, a category in which we wish to ax-

iomatize computation requires a version of cartesian products which interact in a

meaningful way with the restriction structure. These partial versions of products

and terminal objects are called restriction (or partial) products and restriction-

terminal objects, respectively. A category which admits these structures is called a

cartesian restriction category ([10]), and may be considered as a partial map version

of cartesian categories, i.e. categories with finite cartesian products and a terminal

object, as in [16].
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Class Category: Type :=
{
(* Type of Objects *)
Obj: Type;

(* Type of morphism beween two objects *)
Hom: Obj -> Obj -> Type;

(* composition of morphisms: *)
compose: forall {a b c: Obj}, Hom a b -> Hom b c -> Hom a c

where "f o g" := (compose g f);

(* associativity of composition: *)
assoc: forall {a b c d: Obj} (f: Hom a b) (g: Hom b c) (h: Hom c d),

((h o g) o f) = (h o (g o f));

(* symmetric form of associativity: *)
assoc_sym: forall {a b c d: Obj} (f: Hom a b) (g: Hom b c) (h: Hom c d),

((h o (g o f) = (h o g) o f));

(* identity morphisms: *)
id: forall {a: Obj}, Hom a a;

(* id left unit: *)
id_unit_left: forall (a b: Obj) (h: Hom a b), id o h = h;

(* id right unit: *)
id_unit_right: forall (a b: Obj) (h: Hom a b), h o id = h

}.

Fig. 1. The Coq definition of the Category type class

Following the style of the Coq category theory library we have selected, we

use type classes to formalize categorical notions. Type classes are a versatile and

convenient way to encapsulate terms and propositions about them into a single term

representing its informal counterpart, with a number of features particularly useful

for reasoning about category theory.

To illustrate the general approach, Figure 1 contains the definition of Category,

which comes from the library, and is defined as a type class, while Figure 2 contains

some of our code that uses it. The first two type declarations in Figure 1 define

Coq identifiers for objects and morphisms of a category, along with their types,

while the third defines the composition operator with its (dependent) type, along

with some notation for it. Thus terms of type Obj correspond to the objects of a

category, and given a and b of type Obj, terms of type Hom a b are arrows between

the corresponding objects. The curly brackets in the definition of compose indicate

that the first three arguments can be omitted because they can be inferred from

the types of the last two arguments, i.e, (compose a b c g f) can be written (f o g).

The next two declarations state two forms of associativity of composition. These

become proof obligations when defining a new category and instantiating it with

particular values for Obj, Hom, and compose. Similarly an identity morphism is

declared with its type, followed by two proof obligations about it.

In Figure 2, the first declaration provides the type of the restriction combinator;

it takes a map in a given category, and returns another map from the source object

of the original map to itself. It is used in the definition of the restriction combinator,

which declares rc to be an operator of this type. In addition, in the body of this

class, there are also terms rc1, . . . , rc4, the types of which correspond to the axioms

that rc must satisfy. These axioms are formalized versions of the axioms R1, . . . ,R4

discussed above. The lemma that follows (proof omitted) states a property that
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Definition rcType (C: Category): Type := forall a b: C, @Hom C a b -> @Hom C a a.

Class RestrictionComb (C: Category): Type :=
{
rc: rcType C;
rc1: forall (a b: Obj) (f: Hom a b), f o (rc a b f) = f;
rc2: forall (a b c: Obj) (f: Hom a b) (g: Hom a c),

(rc a c g) o (rc a b f) = (rc a b f) o (rc a c g);
rc3: forall (a b c: Obj) (f: Hom a b) (g: Hom a c),

rc a c (g o (rc a b f)) = (rc a c g) o (rc a b f);
rc4: forall (a b c: Obj) (f: Hom a b) (g: Hom b c),

(rc b c g) o f = f o (rc a c (g o f))
}.

Lemma rc_d_pf: forall (C: Category) (RC: RestrictionComb C) (a b c: Obj)
(f: Hom a b) (g: Hom b c),

rc a c (g o f) = rc a b ((rc b c g) o f).

Class RestrictionCat (C: Category) (rc: RestrictionComb C): Type :=
{
RCat_RC: RestrictionComb C := rc;
rc_d := rc_d_pf C RCat_RC

}.

Fig. 2. Some Coq code for restriction categories

follows from these axioms. Next, RestrictionCat is defined as a type class whose

structure combines its two arguments—a category and a restriction combinator

defined in that category—where rc d represents the proof of the lemma for these

arguments.

A similar approach is used to define the notions of a total subcategory, trivial

restriction structure, etc. [9]. For cartesian restriction structure, we formalize re-

striction products and restriction-terminal objects, which are similar in structure to

true products and true terminal objects. We have formalized restriction products

and the restriction terminal object following closely the example of how the true

products and the true terminal object are defined in the category theory library we

are using. In order to define a cartesian restriction category, we build a class that

takes as parameters a category, a restriction combinator in this category, partial

products for all pairs of objects in the category, and the partial terminal object.

We note a key fact, related to the constructive viewpoint taken here. Subcate-

gories in the library we have selected are made up of objects and arrows which are

distinct from those in the larger category. Indeed, the objects and arrows in a sub-

category are pairs consisting of the object (or arrow) in the larger category together

with a proof that the given object (or arrow) is indeed a member of the subcate-

gory. So in order to define a subcategory, predicates that are true for objects (or

arrows) that are to be included in the subcategory must first be defined. Following

that, a proof that this selection of objects and arrows indeed forms a subcategory

is required to complete the subcategory definition.

We have formalized and proved a number of standard results about the cartesian

restriction structure we built, including the following (all of which come from the

original papers [10,9]):

(i) The total maps in a restriction category form a subcategory, called the total

subcategory (more precisely, the subcategory of total maps);

(ii) A restriction terminal object in a cartesian restriction category is a (true)

terminal object in its total subcategory;
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(iii) Restriction products in a cartesian restriction category are (true) products in

its total subcategory;

(iv) In an embedding-retraction pair (m, r), m is a total map.

We will not go into details discussing the finer points in the above list, but we will

elaborate on (i) to give the reader the flavour of the process of formalizing these

kinds of category theory proofs. We will define a total subcategory term Tot which

takes an existing restriction category as a parameter and outputs a total subcategory

structure on the given category. This means we must obtain a subcategory which

contains all the objects of the larger category and only those arrows for which the

restriction is equal to the identity, i.e., those maps f : A → B such that f = 1A.

To define such a subcategory Tot using the terms in the category theory library

(over which we are building our formalization), we must first define a predicate

TotMaps having the following type:

forall (rc: RestrictionComb) (RC: RestrictionCat)

(a b: Obj), Hom a b -> Prop.

It is defined so that (TotMaps rc a b f) holds when rc f = id a, where id a is the

identity map on a. Next, we define the desired (total) subcategory to be the term

obtained by applying Wide SubCategory (a library-defined term for constructing

wide subcategories: these are subcategories which contain all objects of the larger

category and a subcollection of the maps) to two arguments: the original restriction

category and the predicate TotMaps rc RC.

To complete the instantiation of the total subcategory, we must prove that for

every object a : Obj, the identity id a is indeed contained in the resulting wide

subcategory, and also that it contains the composition of any two total maps. The

idea of the formal proofs of these claims is to use the proof part of the dependent

types representing maps in this category, as well as Coq rewriting tactics to fulfill

the proof obligations.

2.2 Turing Categories and their Formalization

A Turing category is a cartesian restriction category that contains a special kind of

structure that models computation. We say a category T is Turing if it contains an

object A ∈ T, called a Turing object, and a family of “application” morphisms for

A, {τX,Y : A × X → Y | X,Y ∈ T} with the weak universal property that every

morphism Z ×X → Y factors through τX,Y via some total “curried” map Z → A.

This is similar to the factorization of maps in a cartesian closed category (CCC)

(see [16]), if we think of A (by analogy) as a kind of (partial) function space Y X .

One can prove that a Turing object A in a Turing category is a universal object, in

the sense that every object in the category is a retract of it.

An alternative, equivalent presentation of Turing categories is to consider a

cartesian restriction category with a universal object A, as above, together with a

single distinguished self-application map • : A×A → A, called a Turing morphism

satisfying a similar weak universal property to above.
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We have formalized Turing structure along with a number of standard results

(taken from [9]), including:

(i) Every object in a Turing category is a retract of a Turing object (i.e. the

Turing object is a universal object);

(ii) A CCC with trivial restriction structure and an object A of which every object

is a retract is a Turing category;

(iii) An object B in a Turing category with Turing object A is Turing if and only

if it is a retract of A;

(iv) The halting domain is m-complete;

(v) The equivalent characterization of Turing categories in terms of a Turing mor-

phism and object embeddings.

2.3 Partial Combinatory Algebras and Related Categories

The underlying computational mechanism of a Turing category is given by a fun-

damental structure arising in combinatory logic and untyped lambda calculus: a

combinatory algebra [1,17]. Following Cockett and Hofstra [9], we work in the gen-

eral setting of cartesian restriction categories. Let C be such a category. A partial

combinatory algebra (PCA) in C is a pair A = (A, •) consisting of an object A ∈ C
and a map • : A×A → A satisfying a partial version of combinatory (or functional)

completeness [1,17].

We have formalized the definition of a PCA, which also required formalizing n-

fold products of A, as well as isomorphisms between equal powers of A. We assume

that whenever n1 +m1 = n2 +m2, A
n1 ×Am1 ∼= An2 ×Am2 . 4

Consider a PCA A. Following [9], we consider the category Comp(A), the small-

est cartesian restriction subcategory of C on the objects 1, A,A2, · · · containing every
total map 1 → A, as well as the application •. Any morphism f : An → Am in this

subcategory is called a polynomial map. If A is combinatory complete, such poly-

nomial maps coincide with a class of maps called A-computable maps An → Am.

An A-computable map f is essentially given by a total constant (code) cf : 1 → A

acting by iterated •. A key result of [9] is that Comp(A) is a Turing Category, with

Turing morphism •.
We have formalized Comp(A) and Split(Comp(A)) (the Karoubi envelope of

Comp(A), i.e. the idempotent-splitting completion of the category Comp(A) [16])

as cartesian restriction categories. The resulting terms can be instantiated to give

specific instances of Comp(A) and Split(Comp(A)) when supplied with arguments

including the base category C, the object A : C, as well as cartesian restriction struc-

ture in C (which, by our construction, will be inherited by both of the resulting

categories). In the process of building these terms, we have discovered additional

4 We have not fully formalized the proof of this isomorphism. Note that the A0 = 1 case cannot be treated
as a term of the same type as An with n > 0. A formalization of these properties of cartesian products is
not critical for the project discussed here. From our progress so far, it is clear that it is straightforward to
do so, although it requires a tedious and detailed recursive proof, where the boundary cases are especially
hard to negotiate.
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conditions required to show intuitionistically that Split(Comp(A)) is a cartesian

restriction category. In addition, we have formalized the relationship between a

Turing category T with a Turing object A and the related categories Comp(A) and

Split(Comp(A)), as well as the proofs of the following result: there are inclusions

(fully faithful embeddings) Comp(A) ↪→ T ↪→ Split(Comp(A)). 5

2.4 Range Categories and their Formalization

A key notion in traditional computability theory is the study of recursively enu-

merable (r.e.) sets of numbers. Such sets arise as the range of a total recursive

function. We will be interested in adding range structure to restriction categories.

Ranges can be expressed in terms of another type of combinator which (whenever

it exists) is in a sense dual to the restriction combinator [8]. A range combinator is

an operator ̂(−) that takes a map f : A → B to a map ̂f : B → B, satisfying the

following axioms:

RR.1 ̂f = f̂

RR.2 ̂ff = f

RR.3 ̂gf = g ̂f for all maps f, g with cod(f) = dom(g)

RR.4
̂

g ̂f = ̂gf for all maps f, g with cod(f) = dom(g)

The maps ̂f are obviously idempotent. Open maps as presented in [14] allow an

abstract characterization of ranges. For example, it is shown in [8] that a restriction

category C is a range category if and only if every map is open.

We have chosen to formalize this particular abstraction because in the process

of formalizing the motivating examples, it became apparent that representing par-

tiality using a total formal language presented one of the biggest challenges as well

as one of the greatest curiosities. We have formalized a number of results regarding

the interactions between range structure and embedding-retraction pairs, as well as

a criterion for a Turing category to admit cartesian range structure, coming from

[27].

For instance, we have formalized the key conditions under which range structure

interacts well with Turing structure:

(i) For every idempotent, there exists an equivalent idempotent (i.e., has the same

splitting) which is equal to its own range;

(ii) Applying the range combinator over a (partial) product of two maps is a dis-

tributive operation (the Beck-Chevalley condition).

Note that without existing range structure in a category, one cannot express

the above conditions in terms of a range combinator. However, in light of the

above-mentioned connection of range categories with open maps, it turns out we

can express these conditions in terms of open maps instead. In particular, the key

formal results (among other things) must be expressed strictly in terms of openness

5 The reader is referred to [28], p.28 for a summary, and Section 5.5.3, pp. 100-103 for its formalization.

P. Vinogradova et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 203–218 211



Instance Par_Cat : Category :=
{
Obj := Set;
Hom := fun (A B : Set) => {P:A -> Prop & (forall x:A, P x -> B )};
compose := fun (A B C : Set) (F : Hom A B) (G: Hom B C) =>

existT ...
id := fun (A:Set) => existT ... (fun _ => True) (fun (x:A) (_:True) => x).

}.

Fig. 3. Outline of Coq code defining Par Cat

of point maps 1 → A and the • map, in a given Turing category T. This fact was

overlooked in the original informal proof, and the proof had to be restructured via

open maps in order to be formalized. This is an example of the types of challenges

and insights that we have encountered during the process of formalizing categorical

definitions and proofs.

Continuing the use of open maps, the final result of Section 2.3 can be extended

to range categories as follows. Suppose T is a Turing category with Turing object

A. Suppose the universal application • : A × A → A as well as every point 1 →
A are open and the Beck-Chevalley condition holds. Then Comp(A) , T, and

Split(Comp(A)) are range categories, and Comp(A) ↪→ T ↪→ Split(Comp(A)) are

range-preserving inclusions. 6

Next, we discuss formalizing the motivating examples of these categorical struc-

tures.

2.5 Formalizing the Category of Sets and Partial Maps

The category Par (of Sets and partial maps) is the motivating example for the

categorical structure discussed above, including cartesian restriction and cartesian

range structure, but not including Turing or PCA structure. We define the formal

version of Par, which we call Par Cat, as an instance of the Category type class from

the original Coq library (i.e., we must define the required objects, morphisms, proofs

of associativity, etc.). Figure 3 contains an outline of the structure of this category

in Coq. As usual, we must fill in the type of objects, which in this case is simply

Set, followed by the type of morphisms. Due to the total nature of computation in

CIC, it is impossible to directly represent a partial map. For this reason, we must

define the type of the set of all partial maps from A to B quite differently from

the type of all total maps from A to B in the category Set. This latter category is

formalized by the Set category type class instance defined in the original library,

Set Cat. As an aside, we also formally define and prove that there is an equivalence

of categories between Set and the total subcategory Tot(Par). However, a partial

map from A to B is a dependent pair consisting of a domain predicate P : A → Prop

together with a map of type forall x : A, P x → B, which takes two arguments: an

“element” x of the set A, and a proof of the proposition P x.

In the definition of the identity function id, the dependent pair constructor sigT

is used to pair the always true proposition (the identity is total) with the function

mapping both an element x of A and a proof that x satisfies this trivial proposition

6 The above has been formalized and proved in [28], Section 5.6.2. This transits through a direct translation
of range structure in terms of combinators, contained in [27].
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to x. An underscore ( ) is used to elide the names of parameters when they are

not used in the body of the definition. We write ... where we omit some typing

information. The type of the compose operator is also shown in the figure, but the

definition is omitted except to show the use of the dependent pair constructor. Its

definition involves correctly composing both the function applications and the two

proofs that the domain predicates are satisfied. Immediately following the code in

the figure the required properties about compose and id must be proved.

After the definition of this category and its required proofs, we can instantiate

the restriction combinator. The restriction of a given map f : Hom a b has the same

domain predicate P as the map f itself, but has the restriction of f evaluated at

x : A and a proof pf : P x. Note that once we have defined the restriction combina-

tor mapping, we must also prove that it satisfies the required axioms in order to

complete the instantiation.

More specifically, we are not using the language to represent a specific (explicitly

defined) map, but rather we must be able to compare two arbitrary maps, presenting

a proof of an equality judgment. To implement such equality proofs for partial maps

in Par and its subcategories, one must formalize such notions as Kleene equality (and

compare it with Leibnitz equality), as well as various aspects of proof irrelevance

and functional extensionality (see [28], pp. 116-119). To simplify such proofs, an

axiomatic presentation was adopted in [28].

Following a similar format, we have also instantiated Par as a cartesian restriction

category and a cartesian range category (i.e., defined all the required maps, objects,

and completed the accompanying proofs).

2.6 Formalizing the Category of Partial Recursive Maps

The category Par contains a subcategory of maps that are partial recursive, i.e., com-

putable by a map which can be expressed in terms of the partial recursive construc-

tors (zero, successor, projection, recursion, substitution and minimalization [12]). 7

We use this definition of formal computation as the basis for our formalization of

the category of computable maps. The motivating example is Comp(N). We build

our subcategory using an existing formalization of this presentation of computation

as well as the proof of the Sm
n theorem completed using this definition [30].

This formalization gives the definition and the semantics of the language of par-

tial recursive maps separately. We define the language constructors as an inductive

type called prf, defined as follows in Coq:

Inductive prf : Type :=

| Zero : prf

| Succ : prf

| Proj : nat -> prf

| Sub : prf -> prf -> nat -> nat -> prf

| Rec : prf -> prf -> prf

7 Although the results in this subsection are formally proved, they depend on a collection of appropriate
axioms. These should be straightforward to prove in a more detailed analysis, which may involve clarification
of the axioms of equality used in this work.
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| Min : prf -> prf.

The semantics are given as an inductively-defined relation, whose header is:

Inductive converges_to : prf -> list nat -> nat -> Prop

where (converges to f prf ln n) is provable whenever, informally, the partial re-

cursive function f prf applied to the list of natural numbers ln outputs n. Note

that this “output” is unique, so we are able to build a partial map in the Par Cat

sense, described above, which corresponds to a given prf term.

In order to build a map that is Kleene-equal to the computation that a particular

f prf : prf represents, we use the converges to relation to give the domain predi-

cate, and add a special case of an axiom of choice to select, given a list ln : list nat,

a natural number as output in the case when there is a proof that this output nec-

essarily exists (i.e., a proof pf : exists n, converges to f prf ln n).

Now, we formally consider a partial map withm components as a map in the cat-

egory of partial recursive maps whenever there is a proof that each of its components

is Kleene-equal to a prf computation. This category inherits cartesian restriction

structure defined in the larger category, Par Cat. In order to demonstrate Turing

structure in this category, we take the natural numbers to be the Turing object,

and (given a Gödel enumeration {φn} of all computable functions) the application

map • : N × N → N defined by •(n, x) = φn(x) to be the Turing map. We express

this map formally in terms of the constructors in the prf language. This is a formal

analog of the so-called Kleene PCA (N, •).
Next, we must prove two more results to show that we have built a Turing

structure in the category of computable maps. First, we show the resulting map

bullet : prf does in fact constitute Turing structure, i.e., prove that for all n : nat

and x : nat, this map satisfies the •(n, x) = φn(x) equation expressed in terms of

the converges to predicate.

Second, it is required that the bullet map is itself computable by a map that

exists in the prf language (which corresponds to the universal application in tradi-

tional recursion theory). Formally completing this proof is a key part of formalizing

the category of computable maps because a map in this subcategory N
n → N

m is,

like a map in any subcategory in our formalization, a pair of a map in the larger

category and a proof that it is indeed contained in the subcategory. In this case,

after defining bullet, we must show its computability explicitly.

We have formally proved that the necessary categorical diagrams commute (as

maps in the larger Par Cat category), thus demonstrating that we have indeed built

a Turing category.

3 Discussion and Future Work

In this project, we have accomplished our two primary goals:

(i) building a Coq library which formalizes Turing categories as well as some key

concepts useful for studying abstract computation using this formal categorical

framework;
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(ii) formalizing the motivating examples for each of the categorical concepts we

have formalized as instances of the corresponding type classes within the frame-

work we have built.

The categorical concepts on which the tools we developed in (i) are based provide

us with the advantage of allowing us to model both partial and total computation

constructively. The tool framework itself is integrated into an existing comprehen-

sive category theory Coq library, and it conforms to the structure existing therein.

Such a formal development enhances the traditional study of abstract compu-

tation by introducing structural and hierarchical integrity and making precise all

definitions. Furthermore, building our tools as an extension of an existing library

facilitates future research on the topic by using and building on the categorical

structure and results of the library.

As with most proofs in category theory, proving results about Turing, restriction

and range categorical structure do not require reasoning using the law of excluded

middle, or any other application specifically of classical logic. Thus, proofs of the

category-theoretic results we chose to formalize hold in a constructive setting. We

note that we did use several specific versions of the Axiom of Choice in our formal-

ization to help structure our definitions and make them compatible with the Coq

library that we have used. They are used in limited sections of the library. While

in general, in impredicative intuitionist type theory (higher-order logic), the Axiom

of Choice implies the Law of Excluded Middle ([16], pp. 160-164), the versions con-

sidered here are much weaker. They are closer in spirit to either Russell’s theory of

definite descriptions or the existence property.

While most of the formal results we have proved confirm what has already been

shown in the literature, formalization also gives us the ability to find omissions in

the definitions, proofs and propositions. For example, in the process of formalizing

a result about ranges in Turing categories, we saw that we were not able to directly

express the result in terms of range structure, and had to instead formulate and

prove a very closely related result in terms of open maps (see Section 2.4).

In (ii), we formalize partial maps and partial recursion using (strongly normal-

izing and intuitionistic) CIC, and study how the resulting formalisms can be forced

to conform to the categorical framework we have built. It is in this part of the

project that we really see the advantages of formally representing partial maps and

recursion abstractly, such as not having to model partial maps using total functions

or relations (or total functions built using relations).

In the formalization of the category of sets and partial maps (as well as its

subcategories), it is not always the case that we can build definitions (and therefore

proofs) directly following the strategies in the documents we are working from. For

example, because of the way formalized partial maps are structured, in order to

prove equality between partial maps formally, we require a stronger version of the

(dependent) functional extensionality axiom as well as the proof irrelevance axiom

(to identify all proofs of the same proposition as equal). In general, the formalization

of concepts related to partiality, such as the range of a partial map, expressed both

categorically and extensionally (in terms of sets and maps), was one of the most
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interesting aspects of our formal study. For this reason, we chose to focus our

formalization work more heavily on the study of partiality.

The most noteworthy result we have formalized is the constructive version of the

category of sets of the form N
n and partial recursive maps between them, which is

meant to categorically represent traditional computation. This has not previously

been done. Through our work, we have gained an understanding (as well as formal

constructions) of the additional results, concepts and machinery that are needed to

build such a category. In the process of building this category in the formal sense,

we have also encountered several proofs whose completion necessitated the use of

specific versions of the Axiom of Choice, as mentioned earlier.

Here, again, there are certain repercussions of not being able to use the law

of excluded middle, such as constructing partial maps out of a language of partial

recursive maps prf (discussed in the previous section), the semantics of which can

most directly be expressed as a relation. Some of the key recursion theory results

have already been demonstrated using this language directly (such as the Sm
n theo-

rem) [30], and therefore hold in the (cartesian restriction) Turing category we have

built out of this language. However, the purpose of Turing categories is, in part,

to be able to do as much recursion outside of the extensional reasoning of set the-

ory as possible. That is, we wish to get away from studying recursion in terms of

points, i.e. maps of the form 1 → A, for an object A in some category. It would be

interesting to extend the scope of our formal framework to include other categori-

cal structures, for example equalizers, (co)monads, and higher-order structure, and

formalize their role in abstract categorical recursion theory (e.g. [16,17]).

There are a number of other promising directions for further applying this frame-

work. The most natural, perhaps, is the formalization of the Turing category-

formulated abstraction of Rice’s theorem. This will require the formalization of

a number of general categorical concepts such joins and meets, as emphasized in

Cockett’s lectures [7]. Such general concepts are widely applicable to other results

as well.

Applying our framework in another direction, it would be an interesting and

innovative pursuit to use it to formalize computational complexity classes of total

maps in Turing categories, as presented in [5]. Other potentially interesting options

for building on this framework include formalizing monoidal Turing categories (with

differential structure) and conducting a formal study more focused on the PCA’s

(which, recall, are computation-modeling structures at the core of every Turing

category) as well as relationships between them.

As an alternative to formalizing computation in the mainstream Coq develop-

ment, one could also explore formalization of Turing categories and extensional ex-

amples thereof using the version of Coq that implements homotopy type theory [2].

This development of the Coq system eliminates the need for explicitly adding equal-

ity axioms due to reformulating the concept of equality in the underlying theory,

thus promising much more natural ways to identify equal functions in a category.

There do exist other proof assistant systems implementing the mathematical ideas

underlying homotopy type theory, such as Lean [26], which does so in a more in-
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tegrated way than the Coq development. The Lean system has two modes, the

proof irrelevant mode (which is incompatible with homotopy type theory), and the

homotopy type theory mode. This system is another option to consider for future

work on formalizing categorical examples of abstract computation.
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