
LFMTP 2007

Two-Level Hybrid: A System for Reasoning
Using Higher-Order Abstract Syntax

Alberto Momigliano,a Alan J. Martin,b Amy P. Feltyc,b

a LFCS, School of Informatics, University of Edinburgh, U.K.& DSI, University of Milan, Italy
Email: amomigl1@inf.ed.ac.uk

b Department of Mathematics and Statistics, University of Ottawa, Canada
Email: {amart045,afelty}@site.uottawa.ca

c School of Information Technology and Engineering (SITE), University of Ottawa, Canada

Abstract

Logical frameworks supporting higher-order abstract syntax (HOAS) allow a direct and concise specification
of a wide variety of languages and deductive systems. Reasoning about such systems within the same frame-
work is well-known to be problematic. We describe the new version of the Hybrid system, implemented on
top of Isabelle/HOL (as well as Coq), in which a de Bruijn representation of λ-terms provides a definitional
layer that allows the user to represent object languages in HOAS style, while offering tools for reasoning
about them at the higher level. We briefly describe how to carry out two-level reasoning in the style of
frameworks such as Linc, and briefly discuss our system’s capabilities for reasoning using tactical theorem
proving and principles of induction and coinduction.

Keywords: higher-order abstract syntax, interactive theorem proving, induction, variable binding,
Isabelle/HOL

1 Introduction

We give a system presentation of Hybrid [4] (http://hybrid.dsi.unimi.it/), in

coincidence with the release of its new and first official version, as well as with the

porting to Isar and Coq [2,1]. Hybrid is a package that introduces a binding operator

that (1) allows a direct expression of λ-abstraction in full higher-order abstract

syntax (HOAS) style, and (2) is defined in such a way that expanding its definition

results in the conversion of a term to its de Bruijn representation [8]. The latter

makes Hybrid’s specifications compatible with principles of (co)induction, available

in standard proof assistants. The basic idea is inspired by the work of Gordon [10],

where bound variables are presented to the user as strings. Instead of strings, we

use a binding operator (LAM) defined using λ-abstraction at the meta-level. Hybrid

provides a library of operations and lemmas to reason on the HOAS level, hiding the

details of the de Bruijn representation. Hybrid originated as a (meta)language on

top of Isabelle/HOL for reasoning over languages with bindings, aiming to enrich

a traditional inductive setting with a form of HOAS. It soon became apparent

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Momigliano, Martin, & Felty

that it could also provide definitional support for two-level reasoning as proposed

in our previous work [9]; the latter aimed to endow Coq (in that case) with the

style of reasoning of frameworks such as FOλ∆N [12], Linc [17], and, to a lesser

extent, Twelf [16]. Hybrid is defined as an Isabelle/HOL theory (approx. 150 lines

of functional definitions and 400 lines of statements and proofs). In contrast to

other approaches such as the Theory of Contexts [11], our Isabelle/HOL theory

does not contain any axioms, which would require external justification.

Previous work has described Hybrid applied to a variety of object languages

(OLs) and their (meta)properties, as detailed in Section 4. Here we concentrate on

describing some new features of the system infrastructure, as well as recalling the

two-level approach. We briefly mention some initial tactical support for reasoning

in this setting, and describe how we state the adequacy of Hybrid’s encodings.

The main improvement of this version is an overall reorganization of the infras-

tructure, based on the internalization of the set of proper terms: those are the subset

of de Bruijn terms that are well-formed (in the sense that all indices representing

bound variable occurrences in a term have a corresponding binder in the term),

eliminating the need for adding well-formedness annotations in OL judgments. We

recall that to represent syntax in the presence of binders, we use a predicate (abstr)

that recognizes the parametric part of the function space between OL expressions.

The crucial injectivity property of the Hybrid binder LAM:

abstr f =⇒ (LAMx. f x = LAM x. g x) = (f = g).

strengthens our previous version by requiring only one of f and g to satisfy this

condition (instead of both), thus simplifying the elimination rules for inductively

defined OL judgments.
Notation: An Isabelle/HOL type declaration has the form s : : [ t1, . . . tn ] ⇒ t. Free variables are im-

plicitly universally quantified. We use ≡ and
V

for equality by definition and universal meta-quantification.
We use the usual logical symbols for the connectives of Isabelle/HOL. A rule (a sequent) with premises
H1 . . . Hn and conclusion C will be represented as [[ H1; . . . ; Hn ]] =⇒ C. The keyword Inductive introduces
an inductive relation in Isabelle/HOL; similarly for datatype. We freely use infix notations, without explicit
declarations.

2 Using Hybrid

The objective of Hybrid is to provide support for HOAS via an approximation of

the following datatype definition, which is not well-formed in an inductive setting:

datatype α expr = CON α
∣

∣ VAR var
∣

∣ expr $ expr
∣

∣ LAM (expr ⇒ expr )

where var is a countably infinite set of free variables, and the type parameter α is

used to supply object-language-specific constants. (It will henceforth be omitted,

except where instantiated.) The problem is, of course, LAM, whose argument type

involves a negative occurrence (underlined) of expr . Since it is possible to formalize

Cantor’s diagonal argument in Isabelle/HOL, such a function cannot be injective,

and thus cannot be a constructor of a datatype.

However, for HOAS it is neither necessary nor desirable for LAM to be

used with arbitrary Isabelle/HOL functions as arguments: only those func-

tions that use their arguments generically are needed. These functions will be

called abstractions; in the Hybrid system, they are recognized by a predicate

abstr : : [ expr ⇒ expr ]⇒ bool . Functions that are not abstractions are called exotic,

2



Momigliano, Martin, & Felty

for example λx. if x = CON a then (x $ x) else x for some OL constant a. The pos-

sibility of introducing such functions would break the adequacy of any second-order

encoding.

As described in Section 3, Hybrid defines a type expr together with functions

of the appropriate types to replace the constructors of the problematic datatype

definition above. Distinctness of the constructors and injectivity of CON, VAR, and $

are proved. Two more properties would be needed for a datatype: injectivity of LAM

and an induction principle. In Hybrid, the former is weakened by the addition of an

abstr premise, while the latter uses a nonstandard LAM case to allow the induction

hypothesis to have the type expr ⇒ bool despite the presence of HOAS:

[[ . . . ;
∧

v. P (e (VAR v)) =⇒ P (LAM e) ]] =⇒ P (u : : expr )

Thus, the type expr is only a “quasi-datatype”, and it is necessary to impose

abstr conditions wherever LAM is used. Hybrid provides lemmas for proving the

resulting abstr subgoals, so that basic reasoning about expr is similar to a true

datatype. However, primitive recursion on expr is not (currently) available. Also,

induction involves the use of explicit free variables, which HOAS techniques nor-

mally seek to avoid, and this complicates the reasoning; thus, induction on OL

judgments is preferred.

From the user’s point of view Hybrid provides a form of HOAS where: object

level constants correspond to expressions of the form CON c; bound object-level

variables correspond to (bound) meta variables in expressions of the form LAM v. e;

subterms are combined with $; and free object-level variables may be represented

as VAR i (although typical examples will not use this feature).

2.1 Example

As a small example (space limitations), we consider the encoding of the types of

F<:, the subtyping language of the PoplMark challenge [6] as an OL. Types have

the form ⊤ (the maximum type), τ1 → τ2 (type of functions), or ∀x<:τ1.τ2 (bound

universal type). In the latter, x is a type variable possibly occurring in τ2, which

can be instantiated with subtypes of τ1. To represent the OL types, we define:

datatype con = cTOP
∣

∣ cARR
∣

∣ cUNI uexp = con expr

top ≡ CON cTOP

t1 arrow t2 ≡ CON cARR $ t1 $ t2

univ t1 (x. t2 x) ≡ CON cUNI $ t1 $ LAM x. t2 x.

Note that uexp is introduced to abbreviate an instantiated version of the “quasi-

datatype” expr , where α is replaced by the above type con that is introduced

specifically for this OL.

To illustrate the representation of judgments of an OL, we consider rules for

well-formed types, where Γ is a list of distinct type variables.

x ∈ Γ

Γ ⊢ x Γ ⊢ ⊤

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

Γ ⊢ τ1 Γ, x ⊢ τ2

Γ ⊢ ∀x<:τ1.τ2

The standard Twelf-style encoding of the right premise of the last rule would be
∧

x. isTy x =⇒ isTy (T2 x), where isTy is a meta-level predicate introduced to repre-

3



Momigliano, Martin, & Felty

sent this OL judgment. Note the negative occurrence (underlined) of the predicate

being defined (the same problem as before, but at the predicate level). Two-level

reasoning is introduced to address this problem. In particular, a specification logic

(SL) is defined inductively in Isabelle/HOL, which is in turn used to drive the en-

coding of the OL as an inductive set of Prolog-like clauses, avoiding any negative

occurrences at the meta-level.

A Hybrid user can specify his/her own SL, but we envision a library of such

logics that a user can choose from. Indeed, several such logics have been encoded

to date. We can view our realization of the two-level approach as a way of “fast

prototyping” HOAS logical frameworks. We can quickly implement and experiment

with a potentially interesting SL, without the need to develop all the building blocks

of a usable new framework, such as unification algorithms, type inference or proof

search; instead we rely on the ones provided by Isabelle/HOL.

To illustrate, we choose a simple SL, a sequent formulation of a fragment of

first-order minimal logic with backchaining, adapted from [12]. Its syntax can be

encoded directly with an Isabelle/HOL datatype:

datatype oo = tt
∣

∣ 〈atm〉
∣

∣ oo and oo
∣

∣ atm imp oo
∣

∣ all (uexp ⇒ oo)

where atm is a parameter used to represent atomic predicates of the OL and 〈 〉

coerces atoms into propositions. We use the symbol � for the sequent arrow of the

SL, in this case decorated with natural numbers to allow reasoning by (complete)

induction on the height of a proof. The inference rules of the SL are represented as

the following Isabelle/HOL inductive definition:

Inductive � : : [ atm set ,nat , oo ]⇒ bool

=⇒Γ �n tt

[[ Γ �n G1; Γ �n G2 ]] =⇒Γ �n+1 (G1 and G2)

[[ ∀x.Γ �n G x ]] =⇒Γ �n+1 (all x.G x)

[[ {A} ∪ Γ �n G ]] =⇒Γ �n+1 (A imp G)

[[ A ∈ Γ ]] =⇒Γ �n 〈A〉

[[ A←− G; Γ �n G ]] =⇒Γ �n+1 〈A〉

The backward arrow in A ←− G in the last rule is used to encode OL judgments

as logic programming style clauses. To reason about OLs, a small set of structural

rules of the SL is proved once and for all, such as weakening and cut elimination.

To complete our example OL, we define atm as a datatype with a single constructor

isTy uexp, thus representing the OL well-formedness judgment ‘⊢’ at the specifica-

tion level, and encode the OL inference rules as the following definition of ( ←− ):

Inductive ←− : : [ atm , oo ]⇒ bool

=⇒ isTy top←− tt

=⇒ isTy (T1 arrow T2)←− 〈isTy T1〉 and 〈isTy T2〉

[[ abstr T 2 ]] =⇒ isTy (univ T1 (x. T2 x))←−

〈isTy T1〉 and (all x. (isTy x) imp 〈isTy (T2 x)〉)

Note the negative occurrence of isTy now embedded in the SL. We remark that

Hybrid is (currently) untyped in the sense that OL syntax is encoded as terms of

4



Momigliano, Martin, & Felty

type uexp; i.e., there is no new type introduced to represent well-formed types of F<:.

For this reason, the isTy predicate is necessary to identify the required subset of uexp.

For any OL represented in Hybrid, it is important to show that both terms

and judgments are adequately encoded. For our example, this means showing that

there is a bijection between object-level types of F<: and the subset of terms of

type uexp formed from only variables, the constants top, arrow, and univ, and

Isabelle/HOL λ-abstractions (the latter of which can only appear as the second

argument of univ). We write εX for the encoding function from OL terms with

free variables in X to terms in uexp, and δX for its inverse decoding. We also

need to show that substitution commutes with the encoding. For OL judgments,

the proof obligation is that whenever x1, . . . , xn ⊢ t holds in the OL, then for

some i, (isTy x1, . . . , isTy xn) �i isTy (εx1,...,xn
(t)) is provable. Conversely, whenever

(isTy x1, . . . , isTy xn) �i isTy T is provable, then T is in the domain of δx1,...,xn
and

x1, . . . , xn ⊢ δx1,...,xn
(T ) holds in the OL. It is also important to show the adequacy

of SL encodings. For the SL presented here, we can adapt the proof from [12]. Since

our version is defined inductively, the inversion properties of this definition play a

central role in the proof.

2.2 Tactical support

We chose to develop Hybrid as a package, rather than a standalone system mainly

to exploit all the reasoning capabilities that a mature proof assistant can provide,

in particular support for tactical theorem proving. Contrast this with a system

such as Twelf, where proofs are coded as logic programs and post hoc checked for

correctness. At the same time, our aim is to try to retain some of the conciseness

of a language such as LF, which for us means hiding most of the administrative

reasoning concerning variable binding and contexts. Because of the “hybrid” na-

ture of our approach, this cannot be completely achieved, but some simple-minded

tactics go a long way into mechanizing most of boilerplate scripting. While in

the previous version of the system we employed specific tactics to recognize proper

terms and abstractions, now this is completely delegated to Isabelle’s simplification.

Thus, we can concentrate on assisting two-level reasoning, which would otherwise

be encumbered by the indirection in accessing OL specifications via the SL. Luck-

ily, Twelf-like reasoning consists, at a high-level, of three basic steps: inversion,

backchaining (filling, in Twelf’s terminology) and recursion. This corresponds to

highly stereotyped proof scripts that we have abstracted into:

(i) an inversion tactic defL tac, which goes through the SL and applies as an

elimination rule one of the OL clauses. This is complemented by the eager

application of other safe elimination rules (viz. invertible SL rules such as

conjunction elimination). This contributes to keeping the SL overhead to a

minimum;

(ii) a dual backchaining tactic defR tac; the latter is integrated into the tactic

2lprolog_tac, which performs automatic depth first search (or other searches

supported by Isabelle) on Prolog-like goals;

(iii) a complete induction tactic, to be fired when given the appropriate derivation

height by the user.

5



Momigliano, Martin, & Felty

These tactics have been tested most extensively on the minimal SL, while more

human intervention is required when using sub-structural logics (such as Olli [15]),

given the non-deterministic nature of their context management.

3 Definition of Hybrid in Isabelle/HOL

The Hybrid system defines the type expr in terms of an Isabelle/HOL datatype dB

that uses de Bruijn indices to represent bound variables:

datatype α dB = CON′α
∣

∣ VAR′ var
∣

∣ BND′ bnd
∣

∣ dB $′ dB
∣

∣ ABS′dB
∣

∣ ERR′

where the type bnd of de Bruijn indices is defined to be the natural numbers, and

the type parameter α is the same as for expr .

Each occurrence of BND′ i refers to the variable implicitly bound by the (i+1)th

enclosing ABS′ node. If there are not enough enclosing ABS′ nodes, then it is called

a dangling index. A term without dangling indices is called proper, and expr should

consist of the proper terms of type dB ; but since the subterms of a proper term are

not always proper, a more general notion of level is needed. Thus, Hybrid defines a

predicate level : : [nat , dB ]⇒ bool by primitive recursion; the meaning of level i s is

that the term s would have no dangling indices if enclosed in at least i ABS′ nodes.

Using Isabelle/HOL’s typedef mechanism, the type expr is defined as a bijective

image of the set { s : : dB | level 0 s }, with inverse bijections dB : : expr ⇒ dB

and expr : : dB ⇒ expr . In effect, typedef makes expr a subtype of dB , but since

Isabelle/HOL’s type system does not have subtyping, the conversion function dB

must be explicit. The notation psq = dB s and xsy = expr s will be used below,

although dB and expr will still be used when referring to them as functions 1 . At

this point three of the four constructors of expr can be defined:

CON a ≡ xCON′ ay VAR n ≡ xVAR′ny s $ t ≡ x
psq $′ ptqy

To define the predicate abstr and the remaining constructor LAM, it is helpful

first to explicitly represent the structure of abstractions. Thus, Hybrid defines a

polymorphic datatype dB fn:

datatype (β, α) dB fn = ATOM∗ (β ⇒ α dB)
∣

∣ CON∗α
∣

∣ VAR∗ var
∣

∣

BND∗ bnd
∣

∣ dB fn $∗ dB fn
∣

∣ ABS∗dB fn
∣

∣ ERR∗

(where the type parameter α will once again be left implicit), together with a func-

tion -⋆ : : β dB fn ⇒ (β ⇒ dB) that maps the constructors of β dB fn to corre-

sponding constructors of dB applied pointwise, e.g., (S $∗ T )⋆ = λx. (S⋆ x) $′ (T⋆ x),

except that (ATOM∗ f)⋆ = f .

A function is called ordinary if it is the image under -⋆ of a term whose root node

is not ATOM∗ , and a term of type β dB fn is called full if in all of its occurrences

of ATOM∗ f , the function f is not ordinary. Every function f : : β ⇒ dB can be

written uniquely in the form T⋆ for some full term T : : β dB fn: the non-ATOM∗

constructors represent the common structure of f x for all values of x, while the

1 The function expr in the Isabelle/HOL theory is actually modified from the one provided by typedef, to
produce a well-behaved result even when presented with a term of nonzero level. In particular, we will have
ps $ tq = psq $′ ptq without any level assumption.

6



Momigliano, Martin, & Felty

ATOM∗ constructors represent the places where f x depends on x. That is, -⋆ is

bijective on full terms; its inverse shall be denoted dB fn : : (β ⇒ dB)⇒ β dB fn.

Establishing this bijection is a significant part of the Isabelle/HOL theory, and

it allows functions on expr ⇒ dB to be defined by primitive recursion, and their

properties proved by induction, on expr dB fn 2 .

Now abstr is defined by abstr f ≡ Abstr f⋆, where f⋆ = dB fn (dB ◦ f) and

the auxiliary predicate Abstr is defined by primitive recursion on expr dB fn; the

essential case is Abstr (ATOM∗ f) = (f = dB). Note that ATOM∗dB = (λx. x)⋆ in

f⋆ stands in for the bound metavariable in f .

Similarly, LAM is defined by LAM f ≡ Lambda f⋆, where

Lambda S ≡ if Abstr S then xABS′ (Lbind 0 S)y else xERR′
y.

The conditional construction serves to distinguish LAM of an abstraction from LAM

of an exotic function. The function Lbind : : [ bnd , expr dB fn ]⇒ dB is defined by

primitive recursion:

Lbind i (ATOM∗ f) = BND′ i

Lbind i (S $∗ T ) = (Lbind i S) $′ (Lbind i T )

Lbind i (ABS∗S) = ABS′
(

Lbind (Suc i) S
)

where Lbind i S = S⋆ arbitrary in the remaining cases. Note that the Abstr condition

ensures that all occurrences of ATOM∗ f passed to Lbind have f = dB.

With these definitions, statements such as the following are provable:

LAM x.LAM y.CON c $ x $ y $ VAR 3 =

xABS′ (ABS′ (CON′ c $′ BND′ 1 $′ BND′ 0 $′ VAR′ 3))y

Indeed, application of dB or expr triggers simplification rules that convert between

HOAS and de Bruijn form.

4 Conclusion

Materials related to Hybrid, including source code, case studies and previous papers,

can be found at http://hybrid.dsi.unimi.it/. Ready-to-use SLs are minimal

and ordered linear logic. Several case studies have been carried out, only the first

three being one-level:

• Encodings and proofs of simple properties of quantified propositional formulae

(conversion to normal forms), and of the higher-order π-calculus (structural con-

gruence and reaction rules) [4].

• A Howe-style proof that applicative bisimulation in the lazy λ-calculus is a con-

gruence [13].

• A subject reduction theorem [5] for the intermediate language MIL-lite of the

MLj compiler.

• The two-level approach with Coq as the meta-language is first introduced in [9];

2 In previous versions of Hybrid [4], a related induction principle on dB ⇒ dB , called abstraction induct,
was used directly. A generalization of it is still used in establishing the bijection. Other instances of dB fn
may be useful in generalizing abstr to functions of more than one variable.

7



Momigliano, Martin, & Felty

subject reduction and uniqueness of typing of Mini-ML are re-proved and com-

pared to the proofs in McDowell’s thesis.

• In [14] we verified the correctness of a compiler for (a fragment) of Mini-ML into

an environment machine. To deal with recursion more succinctly, we enriched

the language with Milner & Tofte’s non-well-founded closures, and checked, via

coinduction, a type preservation result.

• Properties of continuation machines are investigated in [15] with an ordered linear

logic as SL, e.g. internalizing the instruction stack in the ordered context.

Future work will tackle the issue of formulating SLs capable of performing induc-

tion over open terms, required, for example, to complete the PoplMark challenge.

We also plan to add primitive recursion principles for defining functions directly on

the higher-order syntax, following on [5, 7]. On the practical side, we are looking

into presenting Hybrid as a “lightweight” HOAS package, as opposed to Urban’s

nominal package [18], which is more concerned with a machine assisted reconstruc-

tion of the informal “Barendregt” style of mathematical reasoning in presence of

binders. Our package would include some facilities that would automatically turn

a user signature into appropriate Hybrid-based Isabelle/HOL theories, in the spirit

of OTT [3]. The aim is to aid the user’s focus on the problem at hand by further

separating him from the machinery of defining an OL, such as CON instantiation,

simplifier setup and customization of the tactics we have discussed earlier.

Acknowledgement

Felty and Martin acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada and the University of Ottawa. Momigliano is partially supported by the European Project Mobius
within the frame of IST 6th Framework.

References

[1] The Coq proof assistant, v.8.0, http://coq.inria.fr/.

[2] Isabelle/Isar 2005, http://isabelle.in.tum.de/Isar.

[3] Ott, http://www.cl.cam.ac.uk/~pes20/ott/.

[4] Ambler, S., R. Crole and A. Momigliano, Combining higher order abstract syntax with tactical theorem
proving and (co)induction, in: Fifteenth International Conference on Theorem Proving in Higher-Order
Logics, Springer-Verlag LNCS 2342, 2002, pp. 13–30.

[5] Ambler, S. J., R. L. Crole and A. Momigliano, A definitional approach to primitive recursion over higher
order abstract syntax, in: ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding (2003), pp. 1–11.

[6] Aydemir, B. E. et al., Mechanized metatheory for the masses: the PoplMark challenge, in: Eighteenth
International Conference on Theorem Proving in Higher-Order Logics, Springer-Verlag LNCS 3605,
2005, pp. 50–65.

[7] Capretta, V. and A. Felty, Combining de Bruijn indices and higher-order abstract syntax in Coq, in:
Proceedings of TYPES 2006, Springer-Verlag LNCS 4502, 2007, pp. 63–77.

[8] de Bruijn, N. G., Lambda-calculus notation with nameless dummies: a tool for automatic formula
manipulation with application to the Church-Rosser theorem, Indagationes Mathematicæ 34 (1972),
pp. 381–392.

[9] Felty, A., Two-level meta-reasoning in Coq, in: Fifteenth International Conference on Theorem Proving
in Higher-Order Logics, Springer-Verlag LNCS 2342, 2002, pp. 198–213.

8



Momigliano, Martin, & Felty

[10] Gordon, A., A mechanisation of name-carrying syntax up to α-conversion, in: Higher Order Logic
Theorem Proving and its Applications, Springer-Verlag LNCS 780, 1993, pp. 414–426.

[11] Honsell, F., M. Miculan and I. Scagnetto, An axiomatic approach to metareasoning on nominal algebras
in HOAS, in: 28th International Colloquium on Automata, Languages and Programming, Springer-
Verlag LNCS 2076, 2001, pp. 963–978.

[12] McDowell, R. and D. Miller, Reasoning with higher-order abstract syntax in a logical framework, ACM
Transactions on Computational Logic 3 (2002), pp. 80–136.

[13] Momigliano, A., S. Ambler and R. Crole, A Hybrid encoding of Howe’s method for establishing
congruence of bisimilarity, Electronic Notes in Theoretical Computer Science 70 (2002), pp. 60–75.

[14] Momigliano, A. and S. J. Ambler, Multi-level meta-reasoning with higher order abstract syntax, in:
Sixth International Conference on Foundations of Software Science and Computational Structures,
Springer-Verlag LNCS 2620, 2003, pp. 375–391.

[15] Momigliano, A. and J. Polakow, A formalization of an ordered logical framework in Hybrid with
applications to continuation machines, in: ACM SIGPLAN Workshop on Mechanized Reasoning about
Languages with Variable Binding (2003), pp. 1–9.

[16] Pfenning, F. and C. Schürmann, System description: Twelf — a meta-logical framework for deductive
systems, in: Sixteenth International Conference on Automated Deduction, Springer-Verlag LNCS 1632,
1999, pp. 202–206.

[17] Tiu, A., “A Logical Framework for Reasoning about Logical Specifications,” Ph.D. thesis, Pennsylvania
State University (2004).

[18] Urban, C. and C. Tasson, Nominal techniques in Isabelle/HOL, in: Twentieth International Conference
on Automated Deduction, Springer-Verlag LNCS 3632, 2005, pp. 38–53.

9


