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Abstract. We develop a general tool to formalize and reason about languages ex-

pressed using higher-order abstract syntax in a proof-tool based on type theory (Coq). A

language is specified by its signature, which consists of sets of sort and operation names

and typing rules. These rules prescribe the sorts and bindings of each operation. An al-

gebra of terms is associated to a signature, using de Bruijn notation. Then a higher-order

notation is built on top of the de Bruijn level, so that the user can work with meta-variables

instead of de Bruijn indices. We also provide recursion and induction principles formu-

lated directly on the higher-order syntax. This generalizes work on the Hybrid approach to

higher-order syntax in Isabelle and our earlier work on a constructive extension to Hybrid

formalized in Coq. In particular, a large class of theorems that must be repeated for each

object language in Hybrid is done once in the present work and can be applied directly to

each object language.

§1. Introduction. We aim to use proof assistants (in our specific case Coq [9,
6]) to formally represent and reason about languages using higher-order syntax,
i.e. object languages where binding operators are expressed using binding at
the meta-level. This is an active and fertile field of research. Several methods
contend to become the most elegant, efficient, and easy to use. The differences
stem from the approach of the researchers and the characteristics of the proof
tool used.

Our starting point was the work on the Hybrid tool in Isabelle/HOL by Am-
bler, Crole, and Momigliano [2]. We began by replicating their development step
by step in Coq, but soon realized that the different underlying meta-theory (the
Calculus of Inductive Constructions [10, 38], as opposed to higher-order logic)
provided us with different tools and led us to diverge from a simple translation
of their work. The final result [8] exploits the computational content of the Coq
logic: we prove a recursion principle that can be used to program functions on
the object language. These functions can be directly computed inside Coq. In
the present work, we extend it and provide a general tool in which the user can
easily define a language by giving its signature, and a set of tools (higher-order
notation, recursion and induction principles) are automatically available.

Let us introduce the problem of representing languages with bindings in a
logical framework. While a first-order language contains operation symbols that
take just elements of the domain(s) as arguments, a second-order language may
have operations whose input consists of functions of arbitrary complexity. From
a syntactic point of view these operations bind some of the free variables in
their arguments. The simplest example of this phenomenon is the abstraction
operation in λ-calculus. We can see the operation λ, syntactically, as a binder;
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its use is: λx.t, where we indicate that the free occurrences of the variable x in
t are now bound. Alternatively, we can see it as taking a function as input; its
use is: λ(f), where f maps λ-terms to λ-terms.

Both outlooks have their strong and weak points. First-order approaches are
unproblematic from the logical point of view and most proof tools allow their for-
malization by direct inductive definitions. However, a series of problems arise.
Terms are purely syntactical objects and therefore are considered equal only
when they are syntactically the same; while terms that differ only by the name
of bound variables should be considered identical (α-conversion). Substitution
becomes problematic because binders may capture free variables, so we need to
use some renaming mechanism. These approaches implement object languages
by a first-order encoding with some bookkeeping mechanism to keep track of
bound variables and avoid problems of variable capture and renaming. In gen-
eral, many definitions and lemmas must be formalized for each implemented
object language.

The higher-order approach has the advantage that the implementation of the
meta-theory can be reused: In implementing the proof tool, the developers were
already faced with the decision of how to represent functions and operators on
functions. Higher-Order Abstract Syntax (HOAS) aims at reusing this imple-
mentation work by seeing arguments as functions at the meta-level, thus del-
egating the issues of α-conversion, substitution, and renaming to the logical
framework. The main disadvantage is that higher-order data-types are simply
not allowed in most systems. For example, a higher-order representation of the
λ-calculus would be an inductive data-type with two constructors:

Inductive Λ :=
abs : (Λ → Λ) → Λ
app : Λ → Λ → Λ

But the constructor for abstraction abs is not allowed in most systems, since it
contains a negative occurrence (underlined) of the defined type. Changing the
meta-theory to permit such definitions would just make the logic inconsistent.
Some constraint must be imposed on negative occurrences to avoid the kind of
circularity that results in inconsistency of the logical framework. Several ways
of doing this are documented in the literature.

Another drawback of HOAS is the appearance of exotic terms. A term is
called exotic if it results from the application of a binder to a function that is
not uniform in its argument. For example λ(X 7→ F |X| X), where F is any
term and | | is the length function on terms, is exotic: its body does not itself
represent a term, but only reduces to a term for every concrete input. Exotic
terms do not exist in the informal treatment of object languages and should be
precluded.

The Hybrid strategy (which we appropriated) is a combination of the two
approaches: It uses an internal first-order syntactic representation (de Bruijn
syntax [12]) combined with a higher-order user interface.

The original elements of the present work with respect to [2] and [8] are:
• Definition of a type of signatures for Universal Algebra with binding opera-

tions: The general shape of formalizations of various case studies in [2] and
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[8] was informally explained, but the low level work had to be repeated for
each new formal system. Our higher-order signatures generalize Plotkin’s
binding signatures [29, 15]. To our knowledge, there is no other formaliza-
tion of this notion.

• Automatic definition of the families of types of terms from every signature:
The user need not define explicitly the types of formal terms of the object
language anymore. It is enough to specify the construction rules for terms
and the higher-order syntax is automatically generated.

• Generation of typed terms: In [2] and [8] terms were generated in an untyped
way, any term could be applied to any other term. The set of correct terms
was defined by using a well-formedness predicate. This meant that proofs
needed to explicitly manipulate proofs of well-formedness. In the present
work, terms are well-formed from the start, thanks to the use of an inductive
family that directly implements the typing rules given in the signature.

• Generation of the recursion principle and proof of its correctness for every
signature: In our previous work we formalize recursion principles for specific
object languages. Now we have a parameterized version of it; it can be used
to define computable functions on the higher-order syntax of any signature.

• General proof of the induction principle for all signatures: This gives appro-
priate reasoning principles for every object language, derived automatically
by the system from the specification of the signature. In our previous work,
this principle had to be derived separately for every object language. Nei-
ther the recursion nor the induction principle were proved in the original
Hybrid system, neither for the general case nor for specific case studies.

• Higher-order recursive calls: In the recursion principle, the recursive call is
a function on all possible results on the bound variables, rather that just
the result on the body of the abstraction. This means, for example, that in
defining a recursive function f on the typed λ-calculus, in the abstraction
case f (λx.b) the recursive call isn’t just the value of f on b, but a function
mapping all possible results for the bound variable x to the corresponding
value for b.

In Section 2 we present our tool from the user point of view. We describe
how to define an object language by giving its signature and how to obtain
higher-order notation, recursion and induction principles on it. In Section 3 we
describe the implementation of our method in Coq and explain the main ideas
and problems involved. In Section 4, we discuss related work, and in Section 5,
after a review of our work, we state our goals for future research.

Prerequisites: We assume that the reader is familiar with Dependent Type
Theory and (Co)Inductive types. Good introductions are Barendregt [5] and the
books by Luo [21] and Sørensen and Urzyczyn [34]. An introduction to inductive
and coinductive types, as used here, is Part I of the first author’s PhD thesis [7].

More specifically, we formalized everything in the proof assistant Coq. A good
introduction to this system is the book by Bertot and Castéran [6]. A complete
formal description is in the Coq manual [9]. The Coq files of our development
are available at: http://www.cs.ru.nl/∼venanzio/Coq/HOUA.html.
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In this paper we avoid giving specific Coq code. Instead we have tried to
adopt notation and terminology accessible to people familiar with other versions
of dependent type theory and (co)inductive definitions. In addition, we have tried
to make our treatment comprehensible to users of other systems, like Lego [1],
HOL [19], and Isabelle [24].

In this paper, Prop is the type of logical propositions, whereas Set is the type
of data types. We use the standard logical connectives for formulas in Prop. We
write {A} + {B} for Coq’s constructive disjunction (in Set). We write := for
definitional equality.

We need several notations for lists and tuples. The standard type of lists of
elements of set A is list A and a typical element of it is [a1, . . . , an]. A Cartesian
product A1 × · · · ×An has as elements n-tuples of the form 〈t1, . . . , tn〉. Beside
these standard types, we need to use dependent lists, in which every element has
a different type belonging to a class of types called argument types: the type of
such a lists is denoted by {|A1, . . . , An|}, where the Ais belongs to the class of
argument types, and its elements are n-tuples of the form {a1, . . . , an}. Braces
in conjunction with :: denote the cons operator, e.g., if ~a = {a1, . . . , an}, then
{a0 :: ~a} = {a0, a1, . . . , an}. Finally, we have a different notation 〈〈t1, . . . , tn〉〉
for list of terms with bindings. These types of lists are defined rigorously at the
moment of their introduction in Section 3. The reader who is not interested in
their specific implementation may think of them as being equivalent to Cartesian
products.

The notation (fun x 7→ b) denotes λ-abstraction: variable x is bound in body
b. Abstraction over an n-tuple is often written (fun 〈x1, . . . , xn〉 7→ b). The key-
word Inductive introduces an inductive type; the keyword Record introduces
a record type and is syntactic sugar for a dependent tuple type. We freely use
infix notations, without explicit declarations. An underscore denotes an im-
plicit type parameter that can be inferred from context. Other notations are
described as they are introduced.

§2. Higher-order universal algebra. We describe our Coq development of
Universal Algebra with bindings from a user point of view. In the next section
we give the details of the implementation. We use the simply typed λ-calculus as
a running example. We use Coq as a logical framework. An object language is
specified by giving its signature, which is a tuple consisting of a set of names for
sorts, a set of names for operations, and an assignment of a typing rule to every
operation; in addition, we require equality on the sorts to be decidable. This
notion is a multisorted extension of Plotkin’s binding signatures [29, 15]. Our
tool automatically generates the family of types of terms for the object language
and provides programming and reasoning support for it.

Before describing the general development, let us illustrate how a user defines
the simply typed λ-calculus in our tool. As stated, the user must give a signature,
that is, a 4-tuple:

sigλ : Signature := signature typeλ decλ operationλ ruleλ.

Below we explain the meaning of the components of the signature sigλ.
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First we must give the set typeλ of sorts, that are, in our case, codes for
simple types: they are generated from the base type oλ by applying the arrow
constructor, if A and B are codes for types, then (arrowλ A B) is also a code for
a type. We call attention to the distinction between Coq types, like Signature
and typeλ themselves, that represent sets in the metalanguage, and elements of
typeλ, like oλ and (arrowλ oλ oλ), that are codes for types of the object language.

Then we define the set operationλ of names of operations: abstraction and ap-
plication are parameterized over types, so there are operations names (absλ A B)
and (appλ A B) for every pair of type codes A and B.

In type theory, the sets of codes for types and names of operations are defined
by the following inductive declarations:

Inductive typeλ : Set :=
oλ : typeλ

arrowλ : typeλ → typeλ → typeλ

Inductive operationλ : Set :=
absλ : typeλ → typeλ → operationλ

appλ : typeλ → typeλ → operationλ.

It is necessary, in order to prove some of the results of the formal language, that
the set of sorts, typeλ in the example, has a decidable equality. This requirement
is expressed in type theory by:

decλ : ∀t1, t2 : typeλ, {t1 = t2}+ {t1 6= t2}.
Precisely, decλ is a computable function that maps every pair of codes for types
t1 and t2 to either a proof that they are equal or a proof that they are distinct.

The last component of the signature is a specification of the typing rules for
the operations. Every sort code A will be associated to a set of terms Term A and
every operation name f will be associated to a (possibly higher-order) function
Opr f on terms. Every operation name is associated to a rule specifying the sorts
and bindings of its arguments and the sort of its result. In our case, our goal is
to obtain the following typing rules for abstraction and application:

[x : Term A]
...

b : Term B

Opr (absλ A B) {fun x 7→ b} : Term (arrowλ A B)
;

f : Term (arrowλ A B) a : Term A

Opr (appλ A B) {f, a} : Term B
.

Technically, rules are themselves formal objects, that is, they are codes specifying
the intended use of the operation names. We define the exact form of rules later;
here we just show how the user specifies the two previous informal rules for the
operations of the simply typed λ-calculus:

ruleλ : operationλ → operation type typeλ

ruleλ (absλ A B) = [[A] ` B] // (arrowλ A B);
ruleλ (appλ A B) = [[] ` (arrowλ A B), [] ` A] // B.

Informally, ruleλ states that: (absλ A B) is the name of an operation taking as
argument a term of type B, binding a variable of type A, giving a result of type
(arrowλ A B); (appλ A B) is the name of an operation taking two arguments of
type (arrowλ A B) and A, without any binding, giving a result of type B.
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Thus, signatures are defined as records:

Record Signature := signature
{ sig sort : Set;

sig dec : ∀s1, s2 : sig sort, {s1 = s2}+ {s1 6= s2};
sig operation : Set;
sig rule : sig operation → operation type sig sort }

Let a signature σ : Signature be fixed from now on, and take sort := sig sort σ,
operation := sig operationσ, and rule := sig rule σ. The function rule maps every
operation f to an element of (operation type sort), whose general form is:

(rule f) = [[A11, . . . , A1k1 ] ` B1, . . . , [An1, . . . , Ankn ] ` Bn] // C

where the Aijs, Bis, and C are sorts.
Let us explain informally the meaning of this rule. It is comprised of a list of

argument specifications and a result sort; each argument has a list of bindings
and a sort. This states that f is an operation that takes n arguments. The ith
argument is a function from the sorts Ai1, . . . , Aiki to Bi; or, in more syntactical
terms, it is a term of sort Bi with bindings of variables of sorts Ai1, . . . , Aiki .
Formally we define (arg type sort) as the set of argument types: its elements are
pairs 〈[A1, . . . , Ak], B〉 consisting of a list of sorts (the types of bindings) and
and sort (the type of the argument); we use the symbol ` as a pairing operator.
Then (rule f) is a pair 〈[T1, . . . , Tn], C〉 consisting of a list of argument types and
a result sort; we use // as a pairing operator. We use the square bracket notation
exclusively for lists of elements of sort and of (arg type sort), to distinguish them
from other kinds of lists. The various components of the rule can be extracted
by the following functions:

op arguments (rule f) = [T1, . . . , Tn] : list (arg type sort)
op result (rule f) = C : sort
arg bindings Ti = [Ai1, . . . , Aiki ] : list sort
arg result Ti = Bi : sort.

Therefore, the specification of f is equivalent to the following higher-order
introduction rule for the type (Term C) of terms of sort C, where Opr is the
higher-order application operator:

[x1j : Term A1j ]k1
j=1

...
b1 : Term B1

· · ·
[xnj : Term Anj ]kn

j=1
...

bn : Term Bn

Opr f {fun 〈x11, . . . , x1k1〉 7→ b1, · · · , fun 〈xn1, . . . , xnkn〉 7→ bn} : Term C
.

We can exploit Coq’s type inference mechanism to define, straightforwardly,
a compact notation that reflects the informal way of writing (Church style [5])
λ-terms. In the case of the simply typed λ-calculus, we defined the following
notations:

informal formal compact formal long
(λx : A.b) (Lambdax inA gives b) (Opr (absλ A B) (fun x 7→ b))
(f a) (f of a) (Opr (appλ A B) f a).
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Once the user declares the signature σ, the system automatically generates,
for each sort A : sort, the set of terms Term A. The user-accessible notation
for these terms is higher-order syntax, generated starting from free and bound
variables using the binding operators of the form Opr f for f : operation. The
user never needs to see the internal de Bruijn syntax representation of the term.
It will be explained in the next section.

There are two distinct sets of variables, free and bound. Each is indexed on the
sorts and the natural numbers. Free variables, in the form vA

i for A a sort and i a
natural number, are treated as parameters whose interpretation is arbitrary but
fixed. Bound variables, in the form xA

j , are internally represented as de Bruijn
indices, and their interpretation may change.

The argument functions (fun 〈xi1, . . . , xiki
〉 7→ bi) in the introduction rule for

operations are not restricted. The user may exploit every construction allowed
in the logical framework to define such functions, opening the door to exotic
terms. We want to prevent this from happening: bi should be uniform in the
variables, that is, it should be a term constructed solely by the given rules,
other operators and recursors from the logical framework should be banned.
Two options are available. First, we could simply add to the rule for Opr some
conditions requiring the uniformity of the arguments. This has the disadvantage
that even in the case when the uniformity is trivial (always in practice) a proof
must be provided, cluttering the syntax. Furthermore, in an intensional system
like Coq, terms would depend on the proof of uniformity and we may have that
two terms differing only by the proofs of uniformity cannot be proven equal. The
second solution, which we adopt, is to perform an automatic normalization of
the functions. As an example, let’s consider the following non-uniform function
allowable in our encoding of the simply typed λ-calculus:

h : Term A → Term B
h x = if x = xA

0 then vB
0 else vB

1 .

The function h maps the term xA
0 to vB

0 and all other terms to vB
1 . In a naive

implementation of higher-order syntax, the abstraction λ(h) would be an exotic
term: Inside the formal language of the simply typed λ-calculus, it is not possible
to make a case distinction on the syntactic form of a term in this way. In our
implementation, the higher-order term Opr (absλ A B) h performs an automatic
uniformization of h by choosing a fresh variable, vA

0 will do in this case, and
forcing h to behave on every argument in the same way as it behaves on the
fresh variable:

h ; h = (fun x 7→ (h vA
0 )[vA

0 := x]) = (fun x 7→ vB
1 [vA

0 := x]) = (fun x 7→ vB
1 ).

It is important to keep in mind here that x is a metavariable, i.e. a Coq variable,
of type Term A, while xA

0 and vA
0 are object variables of sort A. The notation

[v := x] expresses a defined substitution operation that replaces occurrences of
free variable v with x; in its general form it allows simultaneous substitution of
multiple variables. In our tool the function h is transformed into h behind the
scene, so Opr (absλ A B) h is actually equivalent to Opr (absλ A B) h. Since h is
uniform, the exotic term has disappeared.
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Now for the general case: Given a function h = fun 〈xi1, . . . , xiki〉 7→ bi, we
define its uniformization h by simply taking arbitrary fresh variables vi1, . . . , viki ,
applying h to them and then stating that h acts on every input in the same way
that h acts on these variables. In symbols:

h 〈xi1, . . . , xiki〉 = (h 〈vi1, . . . , viki〉)[vi1 := xi1, . . . , viki := xiki ].

Given a list of functions ~h = {fun ~x1 7→ b1, · · · , fun ~xn 7→ bn}, before applying
Opr f to it, we normalize it to ~h. See Subsection 3.3 for a rigorous definition of
uniformization.

The system automatically generates recursion and induction principles on the
higher-order syntax. The (non-dependent) recursion principle also provides lem-
mas validating the recursion equations.

When defining a recursive function on the object language, we want to map
each term to a result in a certain type. In general, it is possible that terms of
different sorts are mapped to results with different types. Therefore the general
type of a recursive function is ∀A : sort,TermA → F A, where F is a family of
sets indexed on sorts, F : sort → Set.

Let us give a couple of examples on the simply typed λ-calculus.
As a first example, suppose that we want to define a size function on terms

that counts the number of operations occurring in them. In this case every term
is mapped to a natural number, so F = fun s 7→ N and size : ∀A : typeλ,TermA →
N.

For the second example, we consider the definition of a set-theoretic model of
the λ-calculus. In this case, every sort (that is, every simple type) is mapped to
a set and every term is mapped to an element of the corresponding set. Given a
fixed set X to interpret the base type oλ, we define a family of sets ModelX by
recursion on typeλ:

ModelX : typeλ → Set
ModelX oλ = X
ModelX (arrowλ A B) = (ModelX A) → (ModelX B).

Then an interpretation of the typed λ-calculus can be defined by recursion with
F = ModelX , as a map interpretX : ∀A : sort,TermA → ModelX A. To be precise,
we need also an extra argument giving the assignment of a value in the model
for all dangling variables. See the formal definition at the end of this section.

Before formulating the recursion principle, we need to introduce some notation.
Given a family of sets indexed on the sorts, F : sort → Set, we define a type of
dependent lists of elements of F indexed on lists of sorts:

sort list F [A1, . . . , Ak] ∼= (F A1)× · · · × (F Ak).

We use ∼= to denote provable equivalence; we omit the exact definition of sort list.
An element of this type has the form 〈a1, . . . , ak〉, with ai : F Ai. Functions
within the family F can be specified by an argument type. To an argument type
[A1, . . . , Ak] ` B we associate the type of functions from (F A1)× . . .× (F Ak)
to F B:

arg mapF : arg type → Set
arg mapF T = sort list F (arg bindings T ) → F (arg result T ).
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In other words, the arg mapF ([A1, . . . , Ak] ` B) is the type of functions (F A1)×
· · · × (F Ak) → F B. We extend it to lists of argument types:

args mapF : list arg type → Set
args mapF [T1, . . . , Tn] = {|arg mapF T1, . . . , arg mapF Tn|}.

The notation means that an element of this type is a dependent list {g1, . . . , gn},
where gi has type (sort list F ~Ai → F Bi) if Ti = ~Ai ` Bi, for 1 ≤ i ≤ n.

If we instantiate the previous definitions using the family Term for F , we
obtain the representation of higher-order arguments as functions on dependent
lists of terms. We call Term arg and Term args the instantiations of arg map and
args map for F := Term. An argument with specification [A1, . . . , Ak] ` B will
have the type:

Term arg ([A1, . . . , Ak] ` B) := arg mapTerm ([A1, . . . , Ak] ` B)
= sort list Term [A1, . . . , Ak] → Term B
∼= (Term A1)× · · · × (Term Ak) → Term B.

And a list of arguments will have the following type:

Term args : list arg type → Set

Term args [ ~A1 ` B1, . . . , ~An ` Bn]
:= args mapTerm [ ~A1 ` B1, . . . , ~An ` Bn]
= {|sort list Term ~A1 → Term B1, . . . , sort list Term ~An → Term Bn|}.

When defining a recursive function on terms, the results associated to bound
variables are stored in an assignment. Formally assignments are defined using
streams: a stream s : Stream X is an infinite sequence of elements of X. An
assignment is a family of streams.

Definition 1. An assignment is a family of streams of the family F indexed
on the sorts: Assignment F = ∀A : sort,Stream (F A). We use the symbol α to
denote a generic assignment.

This definition means that for every sort name A, we have an infinite sequence
αA = a0, a1, a2, . . . of elements of F A.

Assignments are used to give interpretations for the de Bruijn variables during
the definition of a function by recursion. So the variable xA

j will be interpreted as
(α A)i, the ith element of the stream associated with the sort A. Representing
assignments as streams harmonizes nicely with the use of de Bruijn indices:
whenever we go under a binder, the interpretations of the new bound variables
can be simply appended in front of the stream; the old variables will be shifted
to the right, automatically performing the required index increment. If ~a :
sort list F ~A, then we denote by [~a]α the assignment obtained by appending the
elements of ~a in front of the streams in α.

With these notions we are ready to formulate the recursion principle.
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Theorem 1. Given the step functions Fvar for free variables and FOpr for
operation application, of the following types:

Fvar : ∀A : sort, N → F A
FOpr : ∀f : operation,

Term args (op arguments (rule f)) →
args mapF (op arguments (rule f)) →
F (op result (rule f)).

we can construct recursive functions φ and ~φ of the following types:

φ : Assignment → ∀A : sort,Term A → F A
~φ : Assignment → ∀~T : list arg type,Term args ~T → args mapF ~T

satisfying the reduction behaviour given by the equations:

φα A vA
i = Fvar A i

φα A xA
j = (α A)j

φα C (Opr f ~h) = FOpr f ~h (~φα ~h)

~φα [] {} = {}
~φα ( ~A ` B :: ~T ) {h :: ~h} = {(fun~a 7→ φ [~a]α (bind h)) :: ~φα ~T ~h}.

Proof. See Subsection 3.4. a
The operation bind takes a higher-order (functional) argument h and flattens

it by replacing the binding meta-variables with de Bruijn indices:

h : Term arg ([A1, . . . , Ak] ` B) ∼= (Term A1)× · · · × (Term Ak) → (Term B)
(bind h) : Term B := compute h(x1, . . . , xk) and then replace

metavariable xi with a de Bruijn variable xAi

i′ .

This intuitive definition is enough to follow the discussion in this section. In
Section 3, we give a formal definition.

At the higher level, the user does not need to know how de Bruijn indices work.
To understand the last recursion equation, it is enough to know that the function
(fun~a 7→ φ [~a]α (bind h)) maps a list ~a = {a1, . . . , ak} : sort list F [A1, . . . , Ak]
to the result of the recursive call of φ on h where the occurrences of the meta-
variables of type Term A1, . . . , Term Ak are mapped to a1, . . . , ak, respectively.

We also get an induction principle on the higher-order abstract syntax. Let
P : ∀A : sort,Term A → Prop be a predicate on terms. We can extend it to lists
of higher-order arguments in the following way:

If {g1, . . . , gn} : Term args [[A11, . . . , A1k1 ] ` B1, . . . , [An1, . . . , Ankn ] ` Bn],
then ~P {g1, . . . , gn} = (P (bind g1)) ∧ · · · ∧ (P (bind gn)).

Theorem 2. If the following hypotheses are true:

∀(A : sort)(i : N), P A vA
i

∀(A : sort)(i : N), P A xA
i

∀(f : operation)(~g : Term args (op arguments (rule f))),
~P ~g → P (Opr f ~g);

then, for every sort A and term t : Term A, P A t is true.
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Proof. See Subsection 3.5. a
Theorem 2 instantiates directly to an induction principle for our running ex-

ample. For use in practice, it is convenient if the inductive hypothesis for Opr
is formulated as two separate hypotheses for absλ and appλ. In the case of absλ

we also define the body of a function F : Term A → Term B to be:

body h = bind ([A] ` B) (fun 〈x〉 7→ h x) : Term B.

Then we can easily convert the general induction principle to one for the typed
λ-calculus.

Theorem 3. Let P : ∀A : typeλ,Term A → Prop be a predicate on terms. If
the following hypotheses are true:

∀(A : typeλ)(i : N), P A vA
i

∀(A : typeλ)(i : N), P A xA
i

∀(A,B : typeλ)(h : Term A → TermB),
P B (body h) → P (arrowλ A B) (Lambdax inA gives (h x))

∀(A,B : typeλ)(f : Term (arrowλ A B))(a : Term A),
P (arrowλ A B) f → P Aa → P B (f of a)

Then, for every A : typeλ and λ-term t : Term A, P A t is true.

In a similar way we can adapt the recursion principle to our specific object
language. Here is its instantiation for the simply typed λ-calculus.

Theorem 4. Given the step functions Fvar for free variables, Fabs for ab-
stractions, and Fapp for application, of the following types:

Fvar : ∀A : typeλ, N → F A
Fabs : ∀A,B : typeλ, (Term A → Term B)

→ (F A → F B) → F (arrowλ A B)
Fapp : ∀A,B : typeλ, (Term (arrowλ A B)× Term B)

→ (F (arrowλ A B)× F B) → F B

we can construct a recursive function φ of the following type:

φ : Assignment → ∀A : typeλ,Term A → F A

satisfying the reduction behaviour given by the equations:

φα A vA
i = Fvar A i

φα A xA
j = (α A)j

φα (arrowλ A B) (Lambdax inA gives (h x))
= Fabs A B h (fun a 7→ φ [a]α (body h))

φα B (f of a) = FappA B 〈f, a〉 〈φ α (arrowλ A B) f, φ α Aa〉

We omitted the extension ~φ of φ to higher-order arguments, and instead di-
rectly unfolded its occurrence in the reduction rule for (Lambdax inA gives (h x)).

Notice the true higher-order nature of this recursion principle: in the recursion
step Fabs, the recursive argument is not just the result on the body of the
function, but a mapping giving the result for all possible assignments to the
abstracted variable.
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For example, the function size mentioned earlier is defined by the following
step functions:

Fvar A i = 1
Fabs A B h g = (g 1) + 1
FappA B 〈f, a〉 〈nf , na〉 = nf + na + 1.

In this case we want to give to every bound variable the size 1, so we define
size = φ~1, where ~1 is the constant stream where all elements are 1, resulting in
the following reduction behaviour:

size A vA
j = 1

size A xA
j = 1

size (arrowλ A B) (Lambdax inA gives (h x)) = (size (body h)) + 1
size B (f of a) = (size (arrowλ A B) f) + (size A a) + 1

as desired.
The size example is quite simple in that we didn’t use the higher-order power of

the recursion principle and the assignment argument. The second order recursive
call g in the abstraction case was used only with constant argument 1, and the
assignment is constantly equal to ~1 during reduction.

To illustrate what a truly higher-order application of the recursion principle
is, let us show the definition of the model construction interpretX mentioned
earlier. We assume as parameter a fixed interpretation of the free variables:
Fvar A i : ∀A : typeλ, N → ModelX A. The step functions are the following:

Fabs A B h g = g
FappA B 〈f, a〉 〈g, x〉 = g x

Setting interpretX = φ, we obtain the following reduction rules:

interpretX α A vA
i = Fvar A i

interpretX α A xA
j = (α A)j

interpretX α (arrowλ A B) (Lambdax inA gives (h x))
= fun a 7→ interpretX [a]α (body h)

interpretXα B (f of a) = (interpretX α (arrowλ A B) f) (interpretX α A a).

Notice how the usual interpretation of abstraction in a set-theoretic model, as
the function mapping an argument to the interpretation of the body under a
modified assignment, is automatically validated by the recursion principle from
the simple definition of Fabs.

§3. Technical details. Let us explain some details of our Coq implementa-
tion. Under the higher-order syntax described in the previous section, we have
a de Bruijn syntax defined as a standard Coq inductive type.

3.1. De Bruijn syntax. To define terms over the signature σ, we need to
define the type of terms simultaneously with the type of term lists with bindings.
A list of terms with bindings is an object of the form:

〈〈[xA11
11 , . . . , x

A1k1
1k1

]t1, . . . , [xAn1
n1 , . . . , x

Ankn

nkn
]tn〉〉.

It is the list of the terms t1, . . . , tn, each binding a list of variables: the term ti
binds the variables xi1, . . . , xiki , where the variable xij has sort Aij . In keeping
with the de Bruijn convention, we don’t actually need to specify the names of
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the abstracted variables, but they will automatically be determined as indices,
starting with index 0 for the rightmost variable.

Informally, terms and term lists are defined by the following rules (in the
operation rule, assume that (rule f) = [ ~A1 ` B1, . . . , ~An ` Bn] // C):

Term : sort → Set
TermList : list (arg type sort) → Set

A : sort i : N
vA
i : Term A

(free variable)
A : sort i : N
xA
i : Term A

(bound variable)

f : operation 〈〈t1, . . . , tn〉〉 : TermList [ ~A1 ` B1, . . . , ~An ` Bn]
(opr f 〈〈t1, . . . , tn〉〉) : Term C

t1 : Term B1 · · · tn : Term Bn

〈〈[xA1j

1j ]k1
j=1t1, . . . , [xAnj

nj ]kn
j=1tn〉〉 : TermList [ ~A1 ` B1, . . . , ~An ` Bn]

.

In the formal definition, as mentioned, we don’t need to explicitly mention the
names of the variables. Also, in the last rule the list of bound sorts for each term
in the list is specified by the type of the list. Therefore, we need to put explicitly
in the list just the terms. The formal definition of terms and term lists is the
following:

Inductive Term : sort → Set
TermList : list (arg type sort) → Set

var : ∀A : sort, N → Term A
bnd : ∀A : sort, N → Term A
opr : ∀f : operation,

TermList (op arguments (rule f)) → Term (op result (rule f))

nil term : TermList []
cons term : ∀T : arg type sort,∀~T : list (arg type sort),

Term (arg result T ) → TermList ~T → TermList (T :: ~T ).

So cons term doesn’t explicitly mention the bound variables in the term t :
Term (arg result T ). The binding list is implicitly given by the argument type T
using the de Bruijn convention for indexing. For example, if T = [A,A′, A, A,A′] `
B, then the bound variables are xA

2 , xA′

1 , xA
1 , xA

0 , xA′

0 . Bound variables are num-
bered from right to left starting from 0; each sort has an independent indexing.

We must translate the higher-order notation of the previous section into this de
Bruijn syntax. The fundamental point is to establish a correspondence between
the two ways to apply an operation:

Opr f {g1, . . . gn} ! opr f 〈〈a1, . . . , an〉〉.

This transformation is performed by the mentioned bind operation. Before defin-
ing it, we need some definitions and results about variables and substitution.
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3.2. Variables and binding. The operator newvar finds a new free variable
of a specific sort with respect to a term. If t : Term A is a term and A′ is a
sort, then (newvar A′ t) gives an index i such that vA′

i does not occur in t. More
precisely, all free variables of sort A′ occurring in t have indices smaller that i.
It is defined by recursion on the structure of t.

The identity of bound variables is determined by the number of bindings of
their sort above them. If we have a term with bindings of sorts [A1, . . . , Ak], we
want to know what index the variable xA′

i will have under the bindings:

· · · xA′

i · · · (opr f 〈〈· · · , . . . xA′

j . . . , · · ·〉〉) · · ·

In this expression xA′

i and xA′

j are meant to represent occurrences of the same
de Bruijn variable. The indices of the bound variables are determined by the de
Bruijn convention. The value of j depends on the number of occurrences of A′

in the binding list of the argument of f where xA′

j occurs. Suppose there are h

occurrences of A′ in it; then they bind the variables xA′

h−1, . . . , xA′

0 . Therefore,
the indices of all other variables of sort A′ are shifted by h, so we must have
j = i + h.

This shifting is performed by the function bind inc: (bind inc [A1, . . . , Ak]A′ i)
gives the value j = i + h. It is defined by recursion on [A1, . . . , Ak], the binding
list of the argument of f . It uses the decidability of equality of sorts to check
whether A′ is equal to the Ajs. Here is where the assumption sig dec is used.

Given a term t : Term B, a free variable vA
i and a de Bruijn variable xA

j , we
can define the operation of swapping the two variables in t: t[vA

i ↔ xA
j ]. It is

defined by recursion on the structure of t, taking care to increment the index of
xA
j with bind inc every time we go under a binding operation.
Note: We could have chosen to have only one indexing for the variables,

regardless of their sorts. This would have avoided the need for decidability.
However, it would have required carrying around an assignment of sorts to the
indices everywhere, so we opted for independent indexing of every sort.

Now we have the machinery to bind meta-variables to de Bruijn indices. We
start with the simple example of a single variable. We keep track of variables
already bound with an argument ~A : list sort.

The index of the new bound variable of sort A must be j = (bind inc ~A A 0):

one arg bind A B ~A : (Term A → Term B) → Term B

one arg bind A B ~A g = (g vA
i )[vA

i ↔ xA
j ]

where i = newvar A (g xA
0 )

j = bind inc ~A A 0

Note: We must require that vA
i is a new variable for g. Since g is a function,

it is not immediately clear what this means. It does not mean that vA
i is new

for every instance of g (for example, if g is the identity, no variable is new for
all instances). We are mainly interested in the case where g is uniform, that
is, g is of the form fun X : Term A 7→ C[X] where C[ ] is a term build up
using only variables and operations of the signature. We want that vA

i doesn’t
occur in C. So it is enough to apply g to a dummy argument that doesn’t add



HIGHER-ORDER ABSTRACT SYNTAX IN TYPE THEORY 15

new free variables and find a new variable for that term. That is why we use
i = (newvar A (g xA

0 )).
For bindings of several variables, we use the same process simultaneously on

all the variables. Similarly to the definition of swapping for a single variable,
we can swap several variables simultaneously. We use the notation N[A1,... ,Ak]

(Coq notation: (indices [A1,... ,Ak])) for the type (sort list (fun A : sort 7→
N) [A1, . . . , Ak]). Its elements are lists of indices 〈i1, . . . , ik〉 denoting either free
or de Bruijn variables; let us use the notation v〈i1,... ,ik〉 (Coq: vars As is) for
〈vA1

i1
, . . . , vAk

ik
〉. We use the similar notation x〈i1,... ,ik〉 (Coq: bnds As is) for de

Bruijn variables.
Let now 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 be two elements of N[A1,... ,Ak], denoting

a list of indices for free variables and a list of indices for de Bruijn variables,
respectively. We then define the operation of simultaneously swapping each free
variable with the corresponding de Bruijn variable:

vars swap [A1, . . . , Ak] 〈i1, . . . , ik〉 〈j1, . . . , jk〉

which we also denote by the notation

t[vA1
i1

↔ xA1
j1

, . . . , vAk
ik

↔ xAk
jk

] or t[v〈i1,... ,ik〉 ↔ x〈j1,... ,jk〉].

As mentioned earlier, given a list of sorts [A1, . . . , Ak], the indices of the
corresponding bound variables are determined by the de Bruijn convention. This
is formalized by the following operator bind vars [A1, . . . , Ak] : N[A1,... ,Ak] for
which we use the notation x[A1,... ,Ak]. For example x[A,A′,A,A,A′] = 〈2, 1, 1, 0, 0〉.

We also have an operator that defines a list of new variables of specified sorts
with respect to a given term: (newvars [A1, . . . , Ak] t) = 〈i1, . . . , ik〉 such that
the variables vA1

i1
, . . . , vAk

ik
do not occur in t.

We define the operation of binding meta-variables to de Bruijn variables in a
similar way to what we have done for a single variable:

bind args [A1, . . . , Ak]B : (sort list Term [A1, . . . , Ak] → Term B) → Term B
bind args [A1, . . . , Ak]B g = (g v〈i1,... ,ik〉)[v〈i1,... ,ik〉 ↔ x〈j1,... ,jk〉]

where 〈i1, . . . , ik〉 = newvars [A1, . . . , Ak] (g x〈j1,... ,jk〉)
〈j1, . . . , jk〉 = x[A1,... ,Ak].

If we apply this binding operator directly to meta-arguments, we obtain the bind
operation that we mentioned before:

bind : ∀T : arg type, (Term arg T ) → Term (arg result T )
bind T = bind args (arg bindings T ) (arg result T ).

We extend it to lists of argument types, so we can simultaneously bind different
variables in different arguments.

binds ~T : Term args ~T → TermList ~T
binds [T1, . . . , Tn] {g1, . . . , gn} = 〈〈bind T1 g1, . . . , bind Tn gn〉〉.

We have now all the tools needed to define the higher-order application oper-
ator:

Opr f : Term args (op arguments (rule f)) → Term (op result (rule f))
Opr f ~g = opr f (binds (op arguments (rule f))~g).
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Assume that the operation f has the rule [ ~A1 ` B1, . . . , ~An ` Bn] // C. Then:

Opr f : {|sort list Term ~A1 → B1, . . . , sort list Term ~An → Bn|} → Term C

Opr f {g1, . . . , gn} = opr f 〈〈bind ( ~A1 ` B1) g1, . . . , bind ( ~An ` Bn) gn〉〉.

3.3. Application. The inverse operation of binding is application of a de
Bruijn term with bindings to a list of arguments. This is the same as substi-
tution of a de Bruijn variable with terms, keeping track of the increase of the
variable index under abstraction. We want to do this simultaneously for several
variables. We use the notation t[x~i/~a] (Coq: sub t As is al) for the simulta-
neous substitution of the list of de Bruijn variables x~i with the list of terms ~a of
the correct sort. It is defined by recursion on t, mutually with its extension subs
to lists of terms with bindings.

Application is just the substitution of the abstracted variables: t[x ~A/•], where
~A is the list of the variables abstracted in t. The bullet • indicates that the
substituted terms are meta-abstracted: t[x ~A/•] := (fun ~x 7→ t[x ~A/~x]). We define
application directly on lists of terms with bindings:

aps ~T : TermList ~T → Term args ~T
aps [] 〈〈〉〉 = {}
aps (T :: ~T ) 〈〈t :: ~t〉〉 = {t[xarg bindings T /•] :: (aps ~T ~t)}.

Theorem 5. Application is a right inverse of binding:

∀(~T : list arg type)(~t : TermList ~T ),~t = binds ~T (aps ~T ~t).

Proof. We have that:

binds [T1 . . . , Tn] (aps [T1 . . . , Tn] 〈〈t1, . . . tn〉〉)
= 〈〈bind T1 (t1[xarg bindings T1/•]), . . . , bind Tn (tn[xarg bindings Tn/•])〉〉

So it is sufficient to prove that for every T : arg type and t : Term (op result T )
we have t = bind T (t[xarg bindings T /•]). Assume that T = ~A ` B, then:

bind T (t[xarg bindings T /•]) = bind args ~A B (t[x ~A/•]) = t[x ~A/v~i][v~i ↔ x~j ]

where x~j = x ~A and v~i = newvars ~A t[x ~A/x~j ] = newvars ~A t. Since the variables

v~i are fresh for t, we have t[x ~A/v~i][v~i ↔ x~j ] = t as desired. a
Note that in general aps is not the left inverse of binds. In fact, if we start

with a list of functions, bind their meta-arguments, and then lift the result again
to the meta-level; we won’t in general get back the original functions. If some
of them were not uniform, we will instead obtain their uniformization, that is,
the system will choose one instance of the function and generalize it to all other
arguments.

Definition 2. The uniformization of a list of functions ~h : Term args ~T is
defined as the list of functions: ~h = aps ~T (binds ~T ~h).

We expect lists of functions used as arguments of operations in higher-order
syntax to be extensionally equal to their uniformization. If they are not, then
we have exotic terms.



HIGHER-ORDER ABSTRACT SYNTAX IN TYPE THEORY 17

3.4. The Recursion Principle. The higher-order recursion principle is trans-
lated internally into the structural recursion principle on de Bruijn notation.
This is a standard principle that can easily be derived in Coq.

Let H : sort → Set be a family of types indexed on the sorts. The recursion
principle on the de Bruijn notation is the standard structural recursion in Coq
(but it has to be explicitly given by a Fixpoint definition, because the automatic
recursor does not perform mutual recursion).

Let the following step functions be given:

Hvar : ∀A : sort, N → H A
Hbnd : ∀A : sort, N → H A
Hopr : ∀(f : operation),

TermList (op arguments (rule f)) →
sort list H (op arguments (rule f)) → H (op result (rule f)).

(The actual principle is a bit more general in that you can use any family on
term lists in place of sort list H and have recursion steps on it for lists; but we
only need the case with sort list H.) We obtain two recursive functions on Term
and TermList:

debruijn term recursionH Hvar HbndHopr :
∀A : sort,Term A → H A

debruijn term list recursionH Hvar HbndHopr :
∀~T : list arg type,TermList ~T → sort list H ~T .

For brevity, let us denote them by θ and ~θ, respectively. They satisfy the recursive
equations:

θ A vA
i = Hvar A i

θ A vA
j = HbndA j

θ (opr f ~t) = Hopr f ~t (~θ ~t)

~θ [] 〈〈〉〉 = 〈〉
~θ ( ~A ` B :: ~T ) 〈〈t :: ~t〉〉 = 〈(θ B t) :: (~θ ~T ~t)〉

So in conclusion we have that:

θ (opr f 〈〈t1, . . . , tn〉〉) = Hopr f 〈〈t1, . . . , tn〉〉 〈θ t1, . . . , θ tn〉

Notice that this is a purely syntactic recursion principle; the bindings in the term
lists are completely ignored. In particular, the results on de Bruijn variables are
computed by Hbnd, which may give different outputs for different de Bruijn
indices, even if they happen to correspond to the same bound variable.

We must show how the higher-order function φ can be defined in terms of θ.
First of all, let us define an appropriate H in terms of F . We take: H A =
Assignment → F A. Then we need to define Hvar, Hbnd, and Hopr in terms of
Fvar and FOpr:

Hvar A i = fun α 7→ Fvar A i
HbndA i = fun α 7→ (α A)i

Hopr f ~t~r = fun α 7→ FOpr f (aps ~t) (~r • α).
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where ~g = ~r • α is the list of functions defined in the following way, assum-
ing (rule f) = [[A11, . . . , A1k1 ] ` B1, . . . , [An1, . . . , Ankn ] ` Bn] // C and ~r =
〈r1, . . . , rn〉:

~g : args mapF [[A11, . . . , A1k1 ] ` B1, . . . , [An1, . . . , Ankn ] ` Bn]
~g = 〈g1, . . . , gn〉
gi = fun~ai : sort list F [Ai1, . . . , Aiki

] 7→ ri [~ai]α

Having defined θ using these parameters, we define φ and ~φ as:

φ α A t = θ A tα
~φα ~T ~h = (~θ ~T (binds ~T ~h)) • α

We have to prove that they satisfy the higher-order recursion relations of Theo-
rem 1. The equations for free and bound variables are immediate. The proof of
the equation for operation application follows from Theorem 5 in the following
way:

φα C (Opr f ~h) = θ C (Opr f ~h) α

= θ C (opr f (binds ~h))α

= Hopr f (binds ~h) (~θ (binds ~h))α

= FOpr f (aps (binds ~h)) ((~θ (binds ~h)) • α)
= FOpr f ~h (~φα ~h).

The equations for ~φ can easily be proved by noticing that they are equivalent
to the single equation ~φα ~T ~h = ~r • α, with ri = fun α′ 7→ φα′ (bind hi).

3.5. The Induction Principle. The proof of the induction principle is very
similar to that of the recursion principle. Therefore, we only point out two
differences.

In one respect the proof is easier, because we don’t need to use an assignment
for de Bruijn variables: It is enough that the predicate P is true for the variables,
we are not interested in changing those proofs when going under an abstraction.
We also don’t need to prove reduction equations.

In another respect the proof is slightly more difficult: The conclusion (P A t)
depends on the term t, while in the recursion principle the conclusion (F A) only
depended on the sort A. As a consequence, when we apply structural induction
on the de Bruijn syntax, the inductive case for operation application requires
a proof of (P (opr f ~t)) for any operation f and argument list ~t. We cannot
directly apply the induction hypothesis given by the statement of Theorem 2,
because its conclusion is (P (Opr f ~g)). We must first convert (opr f ~t) to the
form (Opr f ~g). We do this by applying Theorem 5 and the definition of Opr:

opr f ~t = opr f (binds (op arguments (rule f)) (aps ~t))
= Opr f (aps ~t)

We can then apply the hypothesis with ~g = (aps ~t) and the proof goes through
without problems.
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3.6. Adequacy. It is important to show that our encodings of de Bruijn
terms and object languages are adequate, i.e., that there is a bijection between
the language we are encoding and its encoded form such that substitution com-
mutes with the encoding. The first adequacy result for the original Hybrid [2]
appears in [11], and since we use a standard de Bruijn encoding, the adequacy of
our representation should follow directly. Adequacy for object languages such as
the simply-typed λ-calculus should also follow similarly from adequacy results
for Hybrid. The main difference here is that when descending through binders
via the bind operator, a meta-variable becomes a dangling index, i.e., an index
representing a bound variable that does not have a corresponding binder in the
term. Establishing adequacy in this case requires mapping free variables of the
object language to two kinds of variables in the formalization: free variables and
dangling indices.

§4. Related work. The slides of a recent talk by Randy Pollack [30] give
a good summary of the literature on approaches to the implementation of lan-
guages with binders. We discuss here some that are most closely related to
ours.

One of the basic ideas used in this work is the notion of translation between a
high-level notation and a lower-level de Bruijn representation. This idea appears
in the work of Gordon [17], where bound variables are presented to the user as
strings. The idea of replacing strings with a binding operator was introduced by
Ambler et. al. [2], and adopted directly here. Gordon and Melham [18] used the
name-as-strings syntax approach and developed a general theory of untyped λ-
terms up to α-conversion, including induction and recursion principles. Norrish
building on this work, improves the recursion principles [25], allowing greater
flexibility in defining recursive functions on this syntax. Schürmann et. al. have
also worked on designing a new calculus for defining recursive functions directly
on higher-order syntax [33]. Built-in primitives are provided for the reduction
equations for the higher-order case, in contrast to our approach where we define
the recursion principle on top of the base level de Bruijn encoding, and prove
the reduction equations as lemmas.

Multi-level approaches [14, 23] in Coq and Isabelle, respectively, have been
adopted to facilitate reasoning by induction on object-level judgments. We
should be able to directly adopt these ideas to create a multi-level version of
our system. This kind of approach is inspired by logics such as FOλ∆IN [22],
which was developed specifically to reason using higher-order syntax. In such log-
ics, one can encode an intermediate “specification logic” between the meta-logic
and the object language. Negative occurrences in inductive types representing
object-level judgments are avoided by using the specification logic instead.

The Twelf system [26], which implements the Logical Framework (LF) has
also been used as a framework for reasoning using higher-order syntax. In par-
ticular, support for meta-reasoning about object logics expressed in LF has been
added [27, 32]. The design of the component for reasoning by induction does not
include induction principles for higher-order encodings. Instead, it is based on
a realizability interpretation of proof terms. The Twelf implementation of this
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approach includes powerful automated support for inductive proofs such as as
termination and coverage checkers.

Weak Higher-Order Abstract Syntax (WHOAS) tries to solve the problems of
HOAS by turning the negative occurrences of the type of terms in the definition
of a data-type into a parameter. In the case of the λ-calculus, the abstraction
operator has type:

abs : (Var → Λ) → Λ.

where Var is a type parameter. This approach was introduced by Despeyroux,
Felty, and Hirschowitz [13]. Exotic terms were discussed and a predicate was
defined to factor them out. Honsell, Miculan, and Scagnetto [20] use a WHOAS
approach; they have considered a variety of examples and developed a Theory of
Contexts to aid reasoning about variables. A drawback of this approach is that
it needs to assume axiomatically several properties of Var.

Gabbay and Pitts [16, 28] define a variant of classical set theory that includes
primitives for variable renaming and variable freshness, and a new “freshness
quantifier.” Using this set theory, it is possible to prove properties by structural
induction and also to define functions by recursion over syntax. This approach
has been used by Urban and others to solve unification problems [36] and to
formalize results on the λ-calculus in Isabelle/HOL [37].

Every object of a nominal set is associated with a support , a set of atoms
(variable names) which generalizes the notion of the set of free variables of a
term. There is a notion of swapping of atoms: (a b) · t intuitively interchanges
the free occurrences of the atoms a and b in t. This notion can be extended to
standard type constructors like pairs and functions. In particular, if we have a
notion of swapping for nominal sets A and B, we can define swapping for the
type of functions A → B: (a b) · f = λx.(a b) · (f (a b) · x). Once swapping is
defined, the support of an object (its free variables) can be defined as:

support t = {a | {b | (a b) · t 6= t} is infinite}.

Therefore it is possible to define a notion of free variable also for functions. The
freshness relation a # t expresses the fact that a /∈ support t (a is a fresh variable
for t). The fact that these definitions generalize to function and product types
allows the authors to impose freshness conditions on the recursive definition of
functions on the syntax, thus guaranteeing the preservation of α-equality. The
possibility of defining a set of free variables for a function is of interest for our
work. However, this method is not constructive and cannot be used to generate
effectively a fresh variable for a function. For this reason we are forced, in
our formalization, to adopt a different, less elegant but computable solution.
The nominal approach has been implemented to give representations of object
languages with easy recursion principles on α-equivalence classes in Isabelle/HOL
[35] and in Coq [3].

Schürmann, Despeyroux, and Pfenning [31] develop a modal meta-theory that
allows the formalization of higher-order abstract syntax with a primitive recur-
sive principle. They introduce a modal operator 2. Intuitively, for every type A
there is a type 2A of closed objects of type A. Besides the regular function type
A → B, there is a more restricted type A ⇒ B = 2A → B of uniform functions.
Functions used as arguments for higher-order constructors are of this kind. For
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example, in formalizing the pure λ-calculus, the abstraction operator has type

abs : (Λ ⇒ Λ) → Λ.

A structural recursion principle is provided. It can be used to define functions
of the regular type Λ → B. On the other hand, we are not allowed to use
structural recursion to define a function of type 2Λ → B. This avoids the usual
paradoxes associated with recursion for types with non-positive occurrences in
their definition. Intuitively, we can explain the method as follows: While defining
a type A, we cannot assume knowledge of the type as a whole. Think of 2A as
a non-completed version of A, that is, a type that contains some elements of A
but may still be extended in the future. Since 2A is not complete, we are not
allowed to do recursion on it. If a constructor requires an argument that is a
function of A, we must use 2A, because the function should be compatible with
future extensions.

§5. Conclusion. We have developed an approach to reasoning using higher-
order abstract syntax which is built on a formalization of a higher-order universal
algebra with bindings. This approach generalizes the Hybrid approach where
an underlying de Bruijn notation is used. Higher-order syntax encodings are
defined in such a way that expanding definitions results in the low-level de Bruijn
representation of terms. Reasoning, however, is carried out at the level of higher-
order syntax, allowing details of the lower-level implementation to be hidden.
In our generalized version, an object language is defined by simply giving its
signature, and the resulting tools for reasoning about the object language, such
as a higher-order notation, induction principles, and recursion principles are
directly available by simply instantiating the general theorems.

Future work includes considering a variety of object languages and complet-
ing more extensive proofs. In our earlier work [8], we expressed induction and
recursion principles more directly for each object language, but proving them
was not just simple instantiation and instead required some proof effort. In that
setting, we illustrated the approach with examples showing that reasoning about
object languages was direct and simple. In the new setting, after instantiating
our general induction and recursion theorems, we expect the reasoning to be
equally direct and simple. We also plan to apply our approach to more complex
examples such as the PoplMark challenge [4].
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