

On Designing Migrating Agents: From Autonomous Virtual Agents to
Intelligent Robotic Systems

Kaveh Hassani* and Won-Sook Lee†
School of Electrical Engineering and Computer Science, University of Ottawa

Abstract

In the realm of multi-agent systems, migration refers to the ability

of an agent to transfer itself from one embodiment such as a

graphical avatar into different embodiments such as a robotic

android. Embodied agents usually function in a dynamic,

uncertain, and uncontrolled environment, and exploiting them is a

chaotic and error-prone task which demands high-level behavioral

controllers to be able to adapt to failure at lower levels of the

system. The conditions in which space robotic systems such as

spacecraft and rovers operate, inspire by necessity, the

development of robust and adaptive control software. In this

paper, we propose a generic architecture for migrating and

autonomous agents inspired by onboard autonomy which enables

the developers to tailor the agent’s embodiment by defining a set

of feasible actions and perceptions associated with the new body.

Evaluation results suggest that the architecture supports migration

by performing consistent deliberative and reactive behaviors.

CR Categories: I.2.0 [Artificial Intelligence]: General–Cognitive

simulation; I.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence–Intelligent agents; I.2.4 [Artificial Intelligence]:

Problem Solving, Control Methods, and Search–Plan execution,

formation, and generation; Scheduling; I.2.9 [Artificial

Intelligence]: Robotics– Autonomous vehicles;

Keywords: Migrating Agents, Intelligent Virtual Agents,

Autonomous Systems, Cognitive Architectures.

1 Introduction

Embodied intelligence is a prominent topic in multi-agent systems

and refers to a coupled mind-body loop in which high level

deliberative processes working with symbolic representation of

the world within the mind decide the behavior of the agent based

on a collection of physical or virtual sensors and actuators within

the body. Mostly, embodied intelligence follows a dualist

perspective which decomposes the agent to a mind and a body.

Mind as an abstract layer provides the agent with cognitive

functionalities. It receives perceptions from the body, makes

decisions, and sends the decisions in terms of abstract actions to

the body. The body as an embodied layer performs the received

actions within the environment and provides the mind with

perceptions acquired from its sensors. Continues interaction

between mind and body forms a closed perception-cognition-

action loop. However, embodied cognition strongly suggests that

in humans, mind and body are coupled and cannot be separated. A

few agent architectures challenge the strict separation between

mind and body [Ribeiro et al. 2013]. As an example, embodied

cognition model embeds a secondary control loop, subconscious

mind, into the body layer [Vala et al. 2012]. Furthermore, in

situated agents, embodiment is considered as a situational

coupling between an agent and its environment [Steels and Brooks

1993].

Embodied agents have been extensively investigated in both

physical world as robots and in virtual environments as intelligent

virtual agents (IVA). These embodiments have been progressed

later by embedding social context and human interactions to the

social robotics [Fong et al. 2002] and embodied conversational

agents (ECA) [Hassani et al. 2013 (b)], respectively. Regardless

of uncanny valley effect [Mori 2012], believability is an important

characteristic of an embodied agent in the social context and can

be augmented by surface realization and intelligent behavior.

Although advances in computer graphics have led to realistic

surface realization in animated agents, yet physical constraints

and limitation on robotic systems necessitates much more

scientific effort. In terms of intelligent behavior, generally the

embodied agents’ behavior is monotonous due to its scripted

nature. Intelligent behavior emerges from cognitive characteristics

such as recognition, decision making, perception, situation

assessment, prediction, problem solving, planning, reasoning,

belief maintenance, execution, interaction and communication,

reflection, and learning [Langley et al. 2009].

In robotics literature, embodied agents can be classified into

cognitive, behavioral and hybrid agents [Siegwart et al. 2011].

Wooldridge [2002] categorized intelligent agents to logic-based,

reactive, belief-desire-intention (BDI) and layered agents. Logic-

based agents exploit symbolic logic deductions and cannot handle

uncertainties. Cognitive agents such as BDI provide deliberative

decision making capabilities for long temporal horizons.

However, they cannot react to the situations which need

immediate responses. Furthermore, knowledge representation is a

main challenge in these architectures. Reactive agents (i.e.

behavior-based agents in robotics literature) couple the control

and decision making mechanisms to the current local sensory

information to provide real-time reactions. Although this approach

minimizes the complexity of the representational structures and

provides quick responses to dynamic environments, it is not

scalable and suffers from the lack of reasoning capabilities and

task-oriented behaviors. Hybrid agents have a layered structure.

Layers function in different abstraction and operational frequency

levels, and thus let the agent to combine reactive and deliberative

behaviors. Russell and Norving [2010] utilized the notation of

rational agents and categorized them into simple reflex, model-

based reflex, goal-based, and utility-based agents.

A new paradigm in embodied agents that is introduced recently is

migrating agents. Migration refers to the ability of an abstract

 * kaveh.hassani@uottawa.ca

 † wslee@uottawa.ca

entity to morph from one embodiment into a different

embodiment and control the new body, accordingly. A more

specific definition of migration is introduced based on social

companions regardless of the body they reside in. In this

definition, the intrinsic problem of migration is how to preserve

the identity of one companion inhabiting different embodiments

from the user perspective [Arent and Kreczmer 2013], or basically

find out what exactly migrates. In order to answer this

fundamental question Kriegel et al. [2011] define the companion’s

identity as those features that persist and make it unique and

recognizable from the user’s perspective. These features include a

set of goals, a set of emotional reaction rules, the companion’s

action tendencies, emotional thresholds and decay rates for each

of the emotions types, the set of definitions of responses to orders

from the mind and competencies styles of action, and

functionalities parameters. Migrating companions requires by

necessity sufficient level of abstraction, modularity, flexible

definition of identity, and multiple platforms.

Embodied agents usually function in a dynamic, uncertain, and

uncontrolled environment, and exploiting them is a chaotic and

error-prone task which demands high-level behavioral controllers

to be able to adapt to failure at lower levels of the system (e.g.

when a navigation system fails to direct a walking agent to a

desired waypoint). The conditions, in which space robotic systems

such as satellites, spacecraft and rovers operate, inspire by

necessity, the development of robust and adaptive control

software. These autonomous systems which have been

successfully employed by NASA and ESA can achieve mission

goals and handle unpredicted situations, autonomously [Hassani

and Lee 2013]. Challenges of developing agent architectures for

onboard autonomy in space missions are driven by four major

characteristics of the spacecraft as follows. First, the spacecraft

must perform autonomous operations for long periods of time

without human guidance. Second, the performed operations must

guarantee success, given tight deadlines and resource constraints.

Third, due to high cost of the spacecraft, its operations require

high reliability. Fourth, spacecraft operation involves concurrent

activities among a set of tightly coupled subsystems [Muscettola

et al. 1998].

In this paper, we define migrating agents in more general sense.

We define a migrating agent as an agent that is able to move its

mind and mind-body interface among different embodiments and

for that purpose only requires high level knowledge of actions and

perceptions that new body is able to perform and percept,

respectively. Thus, our goal is to design a generic autonomous

architecture that can reside in different bodies without requiring

customization. To do so, we propose a generic embodied agent

architecture inspired by remote agent (RA) (i.e. developed by

NASA to autonomously control the DS-1 spacecraft as part of

New Millennium Deep Space Mission-1 to flyby an asteroid)

[Muscettola et al. 1998] and intelligent distributed execution

architecture (IDEA) [Muscettola et al. 2002] agent architectures.

Furthermore, we utilize a fuzzy ontology as the agent’s

knowledge representation scheme. Adopting RA and IDEA

architectures reinforces the architecture by a reliable and

intelligent platform that has already proven to be successful in

complex inter-planetary missions. Moreover, embedded fuzzy

ontology lets the agent to acquire knowledge from environmental

uncertainties and construct a proper belief model. Furthermore,

the embodiment of the proposed architecture can be tailored by

defining set of possible actions and perceptions associated with

the new body.

The paper is organized as follows: in section 2 an overview of

related works is presented. In section 3, we describe our proposed

architecture. In section 4, experimental results and evaluations are

discussed. Finally, section 5 concludes the paper.

2 Related Work

Migrating agents have been investigated in literature in the

context of social companions and human-robot interactions. In

this context, agent’s high level characteristics such as its emotions

and behaviors, and its low level identities such as its voice transfer

among different embodiments in a way that users can recognize

the agent in different embodiments. The CMION architecture

designed for the migrating companions of the LIREC project is an

open source architecture for coordinating the sensors and effectors

of such an agent with its mind. The architecture is designed to

work with virtual graphical agents, including those on mobile

devices, as well as robots. The ultimate goal of LIREC project is

to move beyond the novelty effect of both social robots and ECAs

towards social companions that can play an acceptable long term

role. It is reported that user studies suggest the success of this

architecture [Kriegel et al. 2011; Aylett et al. 2013]. Sarah is a

LIREC-based companion that can be embodied in a robot, on a

large graphical screen or in a handheld device. [Segura et al. 2012].

In [Gomes et al. 2011] an artificial pet with two robotic and graphical

embodiments is proposed. In both embodiments behavior is driven by

needs that are used to maintain coherence and motivate user

interaction. In [Arent and Kreczmer 2013] indirect migration as a type

of migration that lets the user to recognize the identity of companion

in the new embodiment is introduced. It refers to the migration that

goes through a third embodiment that has common components with

the previous two. The user studies suggest that user can properly

recognize the identity of this companion with a certain level of

confidence, in some context.

In order to design a body-independent generic architecture, one

should investigate cognitive architectures which specify the

underlying infrastructure for an intelligent system [Langley et al.

2009]. Several well-known cognitive architectures have been

introduced in the literature during the last decades. Soar [Laird et

al. 1987] is a rule-based cognitive architecture that formulates the

tasks as attempts to achieve goals. ACT-R [Anderson et al. 2004]

cognitive framework emphasizes human psychological

verisimilitude. ICARUS [Langley and Choi 2006] model designed

for embodied agents emphasizes perception and action over

abstract problem solving. SASE [Weng 2004] is based on Markov

decision processes and utilizes the concept of autonomous mental

development. PRODIGY [Carbonell et al. 1991], DUAL

[Kokinov 1994] and Polyscheme [Cassimatis and Nicholas 2002]

are other examples of cognitive architectures. Probably, BDI [Rao

and Georgeff 1995] is the most representative model of cognitive

agents. It triggers behaviors driven by conceptual models of

intentions and goals in complex dynamic scenarios. BBSOAA

[Liu and Lu 2006] is an extension of BDI architecture that

enhances the knowledge representation and inference capabilities,

and is suitable for simulating virtual humans. Although BDI-

inspired architectures such as IRMA [Bratman et al. 1998] support

long term behaviors, their current implementations are whether

hardware-based or logic-based. More information regarding

cognitive architectures can be found in [Langley et al. 2009].

A few agent architectures concern with software engineering

issues. As an instance, CAA [Kim 2005] is a generic object-

oriented architecture that supports context-sensitive behaviors.

Moreover, some research works emphasize on machine learning

techniques to enhance the robustness. Reinforcement learning for

behavioral animation [Conde et al. 2003] and FALCON-X [Kang

and Tan 2013], an IVA learning architecture that utilizes self-

organizing neural model are examples of these studies. OML

[Wibner 2012] is an agent architecture for virtual environments

equipped with neural network-based learning mechanism. In this

model, a sensory neuron represents an object, and a motor neuron

represents an action. An alternative paradigm for developing

graphical agents is to employ a middleware to integrate existing

multi-agent systems such as 2APL [Dastani 2008], GOAL

[Hindriks 2009], Jadex [Pokahr et al. 2005] and Jason [Bordini et

al. 2007] with existing game engines. This systematic approach

benefits from reusability and rapid prototyping characteristics. As

an example, CIGA [Oijen et al. 2012] is a middleware that

amalgamates an arbitrary multi-agent system with a game engine

by employing domain ontology.

A few IVA architectures, similar to behavioral robotic

frameworks, investigate the behavioral organization and action

selection. SAIBA [Kopp 2006] is a popular framework that

defines a pipeline for abstract behavior generation. It consists of

intent planner, behavior planner and behavior realizer. Thalamus

[Ribeiro et al. 2012] framework adds a perceptual loop to SAIBA

to let the embodied agent to perform continuous interaction.

AATP [Edward et al. 2009] is a coupled planning and execution

architecture for action selection in cognitive IVAs. Neural-

dynamic architecture [Sandamirskaya et al. 2011] utilizes a

dynamic neural field to describe and learn the behavioral state of

the system, which in turn, enables the agent to select the

appropriate action sequence regarding its environment.

Ultimately, layered architectures (i.e. hybrid models) perform

deliberative and reactive operations, simultaneously.

COGNITIVA [Spinola and Ricardo 2012] is a reactive-

deliberative agent architecture that consists of reactive,

deliberative and social layers. In those situations that there is no

time for planning, the reactive layer reacts to the situation.

Otherwise, the architecture generates goals, plans sequence of

actions to reach those goals, schedules the actions, and executes

them. Hybrid architectures are widely utilized in space robotic

systems as well [Hassani and Lee 2013 (a)]. RA [Muscettola et al.

1998] is a hybrid architecture tested on deep space-1. It is

designed to provide reliable autonomy for extended periods.

IDEA [Muscettola et al. 2002] is a multi-agent architecture that

supports distributed autonomy by separating the layers of

architecture to independent agents. IDEA has been successfully

evaluated on K9 rover. MDS [Horvath et al. 2006] is a hybrid

software framework that emphasizes state estimation and control

whereas TITAN [Horvath et al. 2006] emphasizes model-based

programming. LAAS [Alami et al. 1998] and Claraty [Nesnas et

al. 2006] are other examples of hybrid architectures utilized in

space missions. The modern space systems including satellite

systems (e.g. EO-1 and Techsat-21) and interplanetary missions

(e.g. DS-1) exploit hybrid architectures. We adopt RA and IDEA

frameworks to design a generic architecture for autonomous

virtual agents with migrating capabilities that consistently

supports deliberative and reactive behaviors.

RA [Muscettola et al. 1998], shown in Figure 1, provides the

spacecraft with onboard autonomy and is developed as a hybrid

platform with three operational layers including deliberative

planner-scheduler (PS), reactive executive, and mode

identification and recovery system (MIR).

Figure 1: The Architecture of Remote Agent [Muscettola et al.

1998]

PS determines the optimal execution sequence of actions in a way

that spacecraft can reach its predefined mission goals. Also, it

schedules the start time of the actions. Reactive executive receives

scheduled actions from PS, and decomposes them to sub-actions

understandable by flight software. Flight software is an interface

between RA and spacecraft hardware, and consists of collection of

software packages such as motor controllers managed by RA.

Moreover, executive monitors the execution process to detect the

inconsistencies in plans. MIR consists of mode identification (MI)

and mode recovery (MR) units. MI transfers the low-level sensor

data to high-level perceptions and provides its upper levels with

the current system configuration. Ultimately, MR provides the

system with error detection and recovery services.

IDEA, illustrated in Figure 2, is an agent-oriented architecture for

distributed autonomy. Contrary to RA in which each layer has its

internal concept representation, IDEA employs a unique concept

representation for cooperating agents. The IDEA virtual machine

is the core of the IDEA agent. It provides the deliberative and

reactive planning and execution by employing reactive planner,

plan database and plan runner. The employed components are

similar to their counterpart components in RA architecture.

Figure 2: The Architecture of IDEA [Muscettola et al. 2002]

Structurally, the IDEA virtual machine integrates the

planner/scheduler and reactive executive layers of the RA

architecture. The communication wrapper provides and manages

the communicational channels among the IDEA agents. The

Model component shared between virtual machine and

communication wrapper, sets the formal communication protocols

among the agents. Each agent can control other agents or be

controlled by them. In former case, the agent sends its goals in

formal format to the agents that are being controlled and waits for

their feedbacks, whereas in latter case, the agent receives the goals

from controlling agents, plans and executes proper actions, and

sends the execution feedback to the controlling agent.

3 Autonomous Migrating Agents

Schematic of our proposed architecture is shown in Figure 3. It

consists of two layers including cognitive and executive layers.

Furthermore, it utilizes a middleware as an interface between

abstract agent and its embodied counterpart animated by a game

engine. In this architecture, the components are placed in their

corresponding layers regarding their operational frequency and

abstraction level. The cognitive layer is responsible for providing

cognitive functionalities whereas the executive layer is

responsible for executing the decisions made by cognitive layer

and providing the cognitive layer with high level feedbacks.

Cognitive layer functions in low frequency and high level

knowledge representation, and plans for long temporal horizons

whereas executive layer functions in high frequency and deals

with the current situations in a reactive and soft real-time manner.

3.1 Cognitive Layer

Cognitive layer provides the agent with autonomy, and consists of

three components including mission manager (MM), planning-

scheduling (PS) and knowledgebase (KB). MM contains the

agent’s goals and feasible actions. It consists of three sub-units

including goal automaton, goal generator, and action database.

Goal automaton keeps a network of predefined goals, and is

defined as a DFA (deterministic finite automaton) A=<Q,Σ,σ,q,F>

where Q denotes a set of goals, Σ is the evaluation signal

indicating whether the current goal has been achieved, σ is the

transition function (i.e. σ:Q×Σ→Q) which determines the priority

of goals, qϵQ determines the initial goal, and F⊆Q is the set of

final goals. Structurally, goal automaton is a graph whose nodes

present the goals, and edges determine the satisfaction criteria of

corresponding goals. Goal generator functions as the transition

function of the goal network. In each time step, it evaluates

current goal and received perceptions in order to determine

whether the current goal is satisfied. If so, it transforms the goal

state to a new goal within the goal automaton, and sends the new

goal to PS, so that it can plan new sequence of actions. In case

that the goal generator detects the current goal is not satisfied, it

keeps the current goal as mission objective. Concerning the

physical constraints of controlled system, there is a limited set of

valid actions that agent can execute. These feasible actions are

stored in action database. An action is a high-level abstract

activity that encapsulates a few low-level sub-actions and consists

of, some preconditions and effects, estimated execution duration,

set of sub-actions, and their execution timeline. This abstraction

scheme dramatically reduces the complexity of planning and

scheduling processes. Preconditions determine the constraints on

state variables which must be satisfied in order to an action can be

executed. Effects determine how the execution of an action affects

the state variables. Planner relies on information regarding

preconditions and effects of actions to determine the optimal

sequence of actions.

PS plays a crucial role in the proposed architecture. It consists of

three sub-units including deliberative planner, scheduler and plan

database. Deliberative planner decides serial or parallel sequences

of actions fetched from action database for long temporal horizons

to reach the mission objectives in an optimal trajectory based on

the perceptions received from executive layer, goals fetched from

mission manager, and required information by actions from

knowledgebase. It utilizes a backtracking algorithm with pruning

strategy to find the best sequence of actions that achieve the

current goal. The backtracking algorithm constructs a valid and

optimal sequence based on information regarding the effects and

preconditions of the actions. It is noteworthy that pruning strategy

reduces both spatial and temporal complexities, significantly. As

soon as deliberative planner completes the planning process, it

sends the action sequence to scheduler, which in turn, determines

the start time of the sequence. Estimated execution time of each

action is computed using regression techniques. Using this

information, scheduler assigns a start time to each action within

the sequence. Then, the planned and scheduled action sequence is

inserted into the plan database. In each time step, this temporal

database retrieves actions regarding their start time and sends

them to the executive layer, which in turn, executes them.

Figure 3: The proposed autonomous architecture for migrating agents

KB component as a profound memory provides the agent with

knowledge acquired from perception sequence. Essentially, a

knowledgebase consists of a set of sentences that claim something

about the world, an updating mechanism, and a knowledge

extraction engine [Russell Norving 2010]. Our KB consists of two

sub-modules: fuzzy ontology and search engine. Fuzzy ontology

represents the concepts, objects, features and their relations based

on the agent’s perceptional history. The ontology can be

constructed either in design-time to keep the built-in knowledge,

or in run-time to automatically capture the knowledge, or in a

hybrid manner. It utilizes a maintainer as an updating mechanism

that receives current perceptions from the executive layer and

compares them with the knowledge represented in the ontology.

Based on this comparison, it may decide to insert new concepts,

objects or relations, update them, or even prune the ontology to

omit the redundancies or inconsistencies. It is noteworthy that

extending the ontology with fuzzy theory enables the agent to

model both internal and external uncertainties. We utilize the

fuzzy ontology proposed in [Hassani et al. 2013 (a)] to design the

agent’s knowledgebase. Search engine receives queries from PS

and searches the ontology by applying iterative first depth search.

Then, it returns the resultant knowledge to PS.

3.2 Executive Layer

Executive layer executes the decisions made by cognitive layer,

monitors the execution process, and provides the cognitive layer

with high-level feedbacks. As illustrated in Figure 1, this layer

consists of two main components including state identification

and estimation unit, and smart executive. The first component,

state identification and estimation unit is responsible for providing

the framework with perceptions and estimations. It receives the

sensory data from the game engine interface and maps it to the

formal knowledge representation used by cognitive and executive

layers. In other words, it converts data acquired from agent’s

virtual or physical sensors to the perceptions cognoscible by the

agent. In order to complete this task, it utilizes Kalman filters for

data assimilation and fuzzifiers for data conceptualization.

Moreover, it can exploit variety of software libraries to perform

specialized data processing activities such as automatic speech

recognition, image processing, etc. Therefore, state identification

and estimation unit enables the agent to deal with a variety of

sensory data acquired from different sensory channels.

Smart executive is responsible for executing sequences of planned

actions within plan database, and monitoring the execution

process in order to prevent inconsistencies. It consists of two sub-

components including decomposer and reactive planner.

Decomposer fetches the scheduled action sequences from the plan

database, assigns a software thread to each of the retrieved

actions, and starts the threads according to the schedule. Using

this approach, agent can perform parallel plan execution. As

aforementioned, each action is an abstract activity that embodies a

set of low-level activities (i.e. sub-actions). In the beginning of

execution of an action, it invokes its corresponding sub-actions

according to a predefined timeline. This timeline is a built-in

knowledge defined by system experts. Execution of each sub-

action results in an activity in embodied layer (i.e. agent’s avatar).

Thus, using this hierarchal scheme, abstract decisions are mapped

to physical manipulations and actuations within the virtual

environment. Furthermore, decomposer can employ specialized

software libraries to provide the actions with required facilities

such as text-to-speech engine. Additionally, decomposer monitors

the execution to prevent inconsistencies. It compares the current

states of the system with the expected states predicted by state

estimation, and in case of any irregularities, it halts the

inconsistent thread and sends a signal to the reactive planner so

that it can take a proper action to eliminate the inconsistency. It is

noteworthy that this architecture can be tailored to different

embodiments by defining associated actions and perceptions with

target body in action database and state identification and

estimation components, respectively.

4 Experimental Results

Reliability of our proposed architecture is partially supported by

evaluation results of its predecessors operating in inter-planetary

missions. However, for further evaluations, we design a discrete

event-based 2D world-- the interplanetary world. In this virtual

world, we define four planets including Earth, Saturn, Neptune,

and Jupiter. Also, we define four observatory satellites orbiting

these planets with different velocities. These satellites orbit the

planets either in a circular or an elliptic orbit. Moreover, two non-

stationary asteroids with linear trajectory are embedded in the

world. Ultimately, we created a robot avatar to serve as the

embodiment of the proposed architecture.

The robot starts from a fixed position called origin and then non-

periodically receives sequences of mission goals. The sequence

contains some goal and their deadlines. Each goal consists of a

source and destination satellites, and states that robot should pick

up a payload from source satellite and transfer it to the destination

satellite while satisfying the deadline and avoiding the asteroids

and planets. The robot deliberatively plans and schedules for a

complete sequence and executes the plans for whole mission.

However, due to stochastic trajectories of asteroids and noise in

satellite orbits, it utilizes its reactive planner to tweak the plans in

real-time. The robot picks up the payload by setting a rendezvous

with the source satellite and then moves to the destination satellite

and sets another rendezvous with that satellite to deliver the

payload. It is noteworthy that due to noisy estimations of

satellite’s trajectory and stochastic dynamics of asteroids, the

world provides proper characteristics for evaluating both reactive

and deliberative behaviors. A sample scene of the simulation is

shown in Figure 4. The received mission goals containing

information about source and destination satellites, and the

temporal deadlines are displayed on mission panel on the left side

of the simulations. The main simulation panel shows the

dynamics of satellites, asteroids and the robot in soft real time.

The agent and environment are implemented in C#.Net

programming language.

The agent’s knowledgebase contains the fixed positions of the

planets, and the equations of dynamics of the position of asteroids

and satellites. State identification and estimation unit monitors the

trajectories computed based on these equations and in case of

inconsistency due to random noise in the environment, it informs

the reactive planner to correct the trajectory based on estimations

from state identification and estimation unit. Thus, by defining a

set of state variables, the proposed architecture can have an

internal model of the universe it is operating in. It is noteworthy

that by utilizing machine learning techniques that are devised for

learning hidden variables such as EM algorithm, it is possible to

omit the need for defining the state variables directly and let the

agent itself to extract those variables. Moreover, regression and

interpolation techniques can be utilized to learn the trajectories of

dynamic objects within the world. Ultimately, agent can learn the

optimal policies by exploiting reinforcement learning paradigms.

Figure 4: A sample scene of simulation environment

Three actions are explicitly defined in action database. These

actions include setting rendezvous, moving payload, and avoiding

asteroids and are shown in Table 1, 2, and 3, respectively. In these

tables, preconditions, effects and sub-actions of each

aforementioned action is elaborated.

Using these three feasible actions, cognitive layer is able to plan

and schedule series of actions that can satisfy the mission

constraints. We define two virtual sensors to provide the required

perceptions. One is the position sensor that indicates the current

position of the robot. The other one is a virtual vision sensor with

a specified sight radius that lets the robot to sense its

surroundings. Using these three actions and two perceptions, the

proposed agent architecture is able to adapt to the simulated

environment.

Table 1: Action of setting rendezvous

Action identifier: SetRendezvous(Satellite)

Preconditions:

 Position: close to orbit

Effects:

 Change in payload

Estimated execution time: T_Rendezvous

Sub-Actions:

 Status: Moving

 Point←EstimatePoint(Satellite)

 MoveTo (Point)

 Stop ()

 Status: Fixed

Table 2: Action of moving payload

Action identifier: MovePayload(Satellite src, Satellite des)

Preconditions:

 Mission: Available

 Deadline not passed

Effects:

 Change in position

Estimated execution time: #Steps

Sub-Actions:

 Status: Moving

 Find Path (src,des)

 Move ()

 Status: Idle

Table 3: Action of avoiding asteroids

Action identifier: AvoidAsteroid()

Preconditions:

 Asteroid in sight

Effects:

 Change in direction

Estimated execution time: T_changeDirection

Sub-Actions:

 If (Collision is estimated)

 Status: Moving

 ChangeDirection()

 RefinePlans ()

 Status: Moving

We run the simulations for 1000 times. In each simulation, the

length of a mission sequences is selected by a random uniform

distribution in the range of [5,25]. Also, the randomness of the

environment (i.e. noise in estimating the trajectory of satellites

and asteroids) is set to the range of [0,1] with the step size of 0.05.

The first step in evaluating the proposed architecture is to validate

the coordination and interactions among different units. To do so,

we utilize timing diagrams to analyze the activation and

deactivation of units in response to different scenarios. A sample

timing diagram of the simulations is shown in Figure 5 in which

vertical axis indicates the components (i.e. FO: fuzzy ontology,

SE: search engine, PS: planner-scheduler, RP: reactive planner,

MM: mission manager, SIE: state identification and estimation,

DE: decomposer). As shown in Figure 5, components function in

different frequencies. As an instance, because deliberative planner

and scheduler unit belongs to a layer with more high-level

activities in comparison with state identification and estimation

unit, it has lower activation and deactivation frequency. Different

timing diagrams from different scenarios suggest that there are

proper interactions among the units.

In Figure 6, average deliberative and reactive behaviors of the

agent in response to different length of mission sequences is

illustrated. In this diagram, the environmental randomness is set to

0.3. As shown, the average number of activation of deliberative

and reactive planners are proportional to the length of mission

sequence. It is noteworthy that in an environment without any

randomness, average number of deliberative planning for each

mission sequence regardless of its length will be one (i.e.

deliberative planner will plan only once for each mission

sequence), and the average number of activations of reactive

planner will be zero. On the other hand, as shown in Figure 6,

with the randomness degree of 0.3 (i.e. 30% noise), number of

unpredicted situations increases proportional to the length of

mission sequence. However as depicted, the agent is able to

deliberate and react, properly. Figure 7 illustrates the average

number of reactions of reactive planner in order to avoid the

asteroids and modify the predicted rendezvous coordinates. In this

scenario, the mission length is set to four and the robot has to

meet all the satellites. As it is shown, with the randomness of 0.5,

the reactive planner reacts approximately twice which statistically

is valid. Moreover, as depicted in Figure 7, average number of

reactive rendezvous modifications tends to grow faster than

average number of obstacle avoidance. This is because robot has

to meet all the satellites, whereas due to existence of only two

asteroids, robot may never see an asteroid on its path. Thus, there

is always more chance that robot has to modify its rendezvous

coordination in comparison with avoiding the asteroids.

As a conclusion, evaluation results suggest that the agent is able to

perform both deliberative and reactive behaviors in a way that it

can reach the mission goals. Also, the results suggest that the

combination of deliberative and reactive behaviors is

approximately optimal.

Figure 5: A sample timing diagram of the simulations

Figure 6: Reactive and deliberative behaviors of the agent

Figure 7: Reactive behavior of the agent

5 Conclusion

In the terminology of multi-agent systems, migrating refers to the

ability of an agent to morph from one embodiment to another. In

this paper, we introduced a generic architecture for developing

autonomous migrating agents inspired by RA and IDEA agent

architectures that are utilized in inter-planetary space missions for

providing onboard autonomy. Our proposed architecture provides

the agent with concurrent deliberative and reactive behaviors. The

proposed framework lets the developers to tailor the embodiment

by defining set of possible actions and perceptions associated with

the new body. Furthermore, the proposed architecture equips the

agent with necessary components for autonomy such as fuzzy

knowledgebase and smart executive. In order to validate our

proposed architecture, we implemented a discrete event simulated

world. The evaluation results suggest that the architecture is valid

and consistent, and is able to handle deliberative and reactive

functionalities, simultaneously. Moreover, it can properly support

the required parallelism among the processes. Ultimately, the

simulations suggest that by defining a concise set of feasible

actions, perceptions and state variables that agent can perform,

percept and represent required knowledge, respectively, agent can

move along different embodiments.

Currently, we are considering four directions for extending this

research. The first direction is to utilize a mechanical embodiment

beside the graphical one. In order to do that, we are planning to

utilize a simple humanoid robot to perform the same tasks as its

avatar counterpart does. Furthermore, we are planning to apply

our agent architecture to a complex game scenario and investigate

it is capability in playing the game autonomously. The third

direction in this research is to perform a comprehensive user

studies regarding the identity morphing of the proposed

architecture. Ultimately, we are planning to exploit online

machine learning approaches such as EM algorithm for learning

hidden state variables, regression and interpolation techniques for

learning the trajectories of dynamic objects within the world,

reinforcement learning techniques for learning the optimal

policies, and self-organizing neuro-fuzzy approaches for learning

the ontology automatically from perception sequence. Using these

learning schemes renders the need for expert’s knowledge

obsolete.

References

Alami, R., Chautila, R., Fleury, S., Ghallab, M., and Ingrand, F. 1998.

An Architecture for Autonomy. International Journal of Robotics

Research, 17, 4, 315–337.

Alt, J.K., Francisco, B., and Darken, C.J. 2011. A practical situation

based agent architecture for social simulations. In 2011 IEEE 1st

International Multi-Disciplinary Conference on Cognitive

Methods in Situation Awareness and Decision Support, 305–312.

Arent, K., and Kreczmer, B. 2013. Identity of a companion, migrating

between robots without common communication modalities:

Initial results of VHRI study. In Proceedings of the 18th

International Conference on Methods and Models in Automation

and Robotics, 109–114.

Arnellos, A., Vosinakis, S., Anastasakis, G., and Darzentas, J. 2008.

Autonomy in virtual agents: Integrating perception and action on

functionally grounded representations. In Proceedings of the 5th

Hellenic Conference on AI, 51–63.

Aylett, R., Kriegel, M., Wallace, I., Marquez Segura, E., Mecurio, J.,

Nylander, S., and Vargas, P. 2013. Do I remember you? Memory

and identity in multiple embodiments. In Proceedings of IEEE

RO-MAN conference, 143–148

Barella, A., Carrascosa, C. and Botti, V. 2007. Agent architectures for

intelligent virtual environments. In IEEE/ACM International

Conference on Intelligent Agent Technology, 532–535.

Barriga, S.D., Rodriguez, L. and Ramos, F. 2012. Emotional attention

in autonomous agents: a biologically inspired model. In

International Conference on Cyberworlds, 61–68.

Bordini, R.F., Hübner, J.F. and Wooldridge, M. 2007. Programming

Multi-Agent Systems in AgentSpeak Using Jason, Wiley.

Cassell, J., Sullivan, J., Prevost, S. and Churchill. E. 2000. Embodied

Conversational Agents, MIT Press.

Conde, T., Tambellini, W. A and ND Thalmann, D. 2003. Behavioral

animation of autonomous virtual agents helped by reinforcement

learning. In Proceedings of the 4th International Workshop on

Intelligent Virtual Agents, 175–180.

Conde, T., and Thalmann, D. 2005. Autonomous virtual agents

learning a cognitive model and evolving. In Proceedings of 5th

International Conference on Intelligent Virtual Agents, 88–98.

Conde, T., and Thalmann, D. 2006. An Integrated Perception for

Autonomous Virtual Agents: Active and Predictive Perception.

Computer Animation and Virtual Worlds, 17, 3, 457–468.

Conforth, M., and Meng, Y. 2011. CHARISMA: A context hierarchy-

based cognitive architecture for self-motivated social agents. In

2011 International Joint Conference on Neural Networks, 1894–

1901.

Dastani, M. 2008. 2APL: A Practical Agent Programming Language.

Autonomous Agents and Multi-Agent Systems, 16, 3, 214–248.

Edward, L., Lourdeaux, D., and Barthes, J. 2009. An action selection

architecture for autonomous virtual agents. In New Challenges in

Computational Collective Intelligence, N.T. Nguyen, R.P.

Katarzyniak, A. Janiak, Ed., Springer, 269–280.

Fong, T., Nourbakhsh, I., and Dautenhahn, K. 2002. A survey of

socially interactive robots: Concepts, design, and applications.

Robotics and Autonomous Systems, 42, 142–166.

Gomes, P., Segura, E., Cramer, H., Paiva, T., Paiva, A., Holmquist, L.

2011. ViPleo and PhyPleo: artificial pet with two embodiments.

In Proceedings of the 8th International Conference on Advances

in Computer Entertainment Technology. No. 3.

Hassani, K., and Lee, W-S. 2013. A software-in-the-loop simulation

of an intelligent microsatellite within a virtual environment. In

Proceedings of IEEE International Conference on Computational

Intelligence and Virtual Environments for Measurement Systems

and Applications, 31–36.

Hassani, K., Nahvi, A., and Ahmadi, A. 2013 (a). Architectural

Design and Implementation of Intelligent Embodied

Conversational Agents Using Fuzzy Knowledge Base. Journal of

Intelligent and Fuzzy System, 25, 3, 811–823.

Hassani, K., Nahvi, A., and Ahmadi, A. 2013 (b). Design and

Implementation of an Intelligent Virtual Environment for

Improving Speaking and Listening Skills. Interactive Learning

Environments, 1–20. DOI:10.1080/10494820.2013.846265

Heudin, J. 2008. Evolutionary virtual agent at an exhibition. In 13th

International Conference on Virtual Systems and Multimedia,

154–165.

Hindriks, K.V. 2009. Programming rational agents in GOAL. In

Multi-Agent Programming: Languages, Tools and Applications,

A. Seghrouchni, J. Dix, M. Dastani, Ed., Springer, 119–157.

Horvath, G., Ingham, M., Chung, S., Martin, O., and Williams, B.

2006. Practical application of model-based programming and

state-based architecture to space missions. In Proceedings of the

2nd IEEE International Conference on Space Mission Challenges

for Information Technology, 80–88.

Kriegel, M., Aylett, R., Cuba, P., Vala, M., and Paiva, A. 2011.

Robots meet IVAs: A mind-body interface for migrating artificial

intelligent agents. In Proceedings of the 10th International

Conference on Intelligent Virtual Agents, 282–295.

Langley, P., Laird, J.E., and Rogers, S. 2009. Cognitive Architectures:

Research Issues and Challenges. Cognitive Systems Research, 10,

141–160.

Liu, Z., Hong, Y., Liu, Q., and Chai, Y. 2011. An emotion model for

virtual agents with evolvable motivation. In Transactions on

Edutainment VI, Z. Pan, A.D. Cheok, W. Müller, Ed., Springer,

154–163.

Liu, J., and Lu, Y. 2006. Agent architecture suitable for simulation of

virtual human intelligence. In the 6th World Congress on

Intelligent Control and Automation, 2521–2525.

Luengo, F. and Iglesias, A. 2003. A new architecture for simulating

the behavior of virtual agents. In Proceedings of the International

Conference on Computational Science, 935–946.

Luengo, F., and Iglesias, A. 2005. Designing an action selection

engine for behavioral animation of intelligent virtual agents. In

Proceedings of the International Conference on Computational

Science and Its Applications, 1157–1166.

Mori, M. 2012. The uncanny valley. IEEE Robotics & Automation

Magazine. 19, 2, 98–100.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., and Plaunt, C. 2002.

IDEA: Planning at the core of autonomous reactive agents. In

Proceedings of the 3rd International NASA Workshop on

Planning and Scheduling for Space.

Muscettola, N., Nayak, P., Pell, B., and Williams, B. 1998. Remote

Agent: To Boldly Go Where No AI System Has Gone Before.

Artificial Intelligence, 103, 5–48.

Nesnas, I., Simmons, R., Gaines, D., Kunz, C., Calderon, A., Estlin,

T., Madison, R., Guineau, J., McHenry, M., Shu, I., and

Apfelbaum, D. 2006. CLARAty: Challenges and steps toward

reusable robotic software. International Journal of Advance

Robotic Systems, 3, 1, 23–30.

Oijen, J., Vanhee, L., and Dignum, F. 2012. CIGA: A middleware for

intelligent agents in virtual environments. In International

Workshop on Agents for Educational Games and Simulations,

22–37.

Ortony, A. 2003. On making believable emotional agents believable.

In Emotions in Humans and Aartifacts, R. Trappl, P. Petta, S.

Payr, Ed., MIT Press, 189–211.

Pokahr, A., Braubach, L., and Lamersdorf, W. 2005. Jadex: A BDI

Reasoning Engine. In Multi-Agent Programming: Languages,

Platforms and Applications, R.H. Bordini, M. Dastani, J. Dix, A.

Seghrouchni, Ed., 149–174.

Polle, B. 2002. Autonomy requirement and technologies for future

constellation. Technical Report 3682899.02, Astrium Inc.

Rickel, J. 2001. Intelligent virtual agents for education and training:

Opportunities and challenges. In the 3rd International Workshop

on Intelligent Virtual Agents, 15–22.

Rumbell, T., Barnden, J., Denham, S., and Wennekers, T. (2012).

Emotions in Autonomous Agents: Comparative Analysis of

Mechanisms and Functions. Autonomous Agents and Multi-Agent

Systems, 25, 1, 1–45.

Russell, S., and Norving, P. 2010. Artificial Intelligence: A Modern

Approach (3rd ed.), Prentice Hall.

Sandamirskaya, Y., Richtert, M., and Schoner, G. 2011. A neural-

dynamic architecture for behavioral organization of an embodied

agent. In IEEE International Conference on Development and

Learning, 1–7.

Segura, E., Kriegel, M., Aylett, R., Deshmukh, A., Cramer, H. 2012.

How do you like me in this: User embodiment preferences for

companion agents. In Proceedings of 12th International

Conference on Intelligent Virtual Agents. 112–125.

Siegwart, R., Nourbakhsh, I.R., and Scaramuzza, D. 2011.

Introduction to autonomous mobile robots. MIT Press,

Cambridge.

Spinola, J., and Ricardo, I. 2012. A cognitive social agent architecture

for cooperation in social simulations. In Proceedings of the 12th

International Conference on Intelligent Virtual Agents, 311–318.

Steels, L., and Brooks, R. 1993. The artificial life route to artificial

intelligence: Building situated embodied agents. Lawrence

Erlbaum Associates, New Haven.

Stroupe, A., Singh, S., Simmons, R., Smith, T., Tompkins, P., Verma,

V., Vitti-Lyons, R., and Wagner, M.D. 2000. Technology for

autonomous space systems. Technical Report CMU-RI-TR-00-02,

Carnegie Mellon University.

Thalmann, D. 2004. Control and autonomy for intelligent virtual

agent behavior. In Proceedings of the 3rd Hellenic Conference on

AI, 515–524.

Wooldridge, M. 2002. Intelligent agents: The key concepts. In Multi-

Agent Systems and Applications II, V. Marik, O. Stepankova, H.

Krautwurmova, M. Luck, Ed., Springer, 3–43.

