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The Robustness of Favorable Propagation in
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Abstract— The impact of random errors (implementation
inaccuracies) in element locations and beamforming phases on
favorable propagation (FP) in massive multiple-input multiple-
output (MIMO) line-of-sight (LOS) channels is studied. For
arbitrary array geometry and under independent (possibly non-
Gaussian) errors, the FP property is shown to hold for the
perturbed array as long as it holds for the unperturbed one.
This means that small errors do not have catastrophic impact
on the FP, even for a large number of antennas. The negative
impact of random errors is to slow down the convergence to the
asymptotic value so that more antennas are needed under random
errors to achieve the same low inter-user interference as without
errors. For large but finite number of antennas, the distribution
and an analytically-tractable approximation of the inter-user
interference power are obtained. Practical design guidelines are
given that quantify the accuracy level needed to make the
impact of random errors negligible. The analytical results are
validated via numerical simulations and are in agreement with
measurement-based studies.

Index Terms— Massive MIMO, favorable propagation, inter-
user interference, robustness, location/phase errors.

I. INTRODUCTION

S INCE the seminal work by Marzetta [1], massive MIMO
(mMIMO) has been attracting significant and increasing

attention, both in academia [2], [3], [4] and industry, espe-
cially for 5/6G applications [5], [6]. Its main advantage is a
significant increase in spectral and energy efficiency as well as
simplified processing in multi-user environments [2], [3], [4],
[5], [6], [7]. This is due to a phenomenon known as “favorable
propagation” (FP), whereby different users’ channels become
orthogonal (or nearly so) to each other when the number of
base station antennas increases, thereby substantially reducing
inter-user interference (IUI), even with simple linear process-
ing [7]. Although these channels are not exactly orthogonal to
each other in practice, they become nearly orthogonal under
certain conditions and a significant part of mMIMO benefits
can be achieved in this case [14], [15], [16], [17], [18], [19].
Massive MIMO has also significant advantages for single-
user applications, including high spectral efficiency and large
multiplexing/diversity gains [20], [21].
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The FP property has been studied both theoretically [7],
[8], [9], [10], [11], [12] and experimentally [14], [15], [16],
[17], [18], [19]; antenna array geometry and propagation
channel properties were identified as key factors affecting
the FP. In particular, it was shown, using the law of large
numbers, that the FP holds in i.i.d. fading channels [2], [7]
[8], [20]. However, the i.i.d. fading assumption neglects the
impact of antenna array geometry and is justified provided
that (i) multipath is rich enough (without a single dominant
component) and (ii) antenna spacing is large enough. If either
of these conditions is violated, e.g. if there is a dominant
line-of-sight (LOS) component, then the i.i.d. assumption
does not hold anymore. In fact, the LOS environment is
extreme opposite of i.i.d. fading and is considered to be
“particularly difficult” for users’ orthogonality and mMIMO
system performance [15], [19]; the law of large numbers is not
applicable in this case. Real-world channels are expected to be
somewhere in-between of these 2 extremes [7], [11]. mMIMO
in LOS environment was studied in [7], [8], [9], [10], [11],
and [12] and the FP was shown to hold for uniform linear,
planar, circular and cylindrical arrays (ULA, UPA, UCA and
UCLA) of fixed element spacing and distinct angles-of-arrival
(AoA) of different users (or for uniformly-random users) but
it does not hold for a fixed antenna array size, clearly showing
the impact of antenna array geometry and related constraints.
While increasing the array size improves the performance due
to higher spacial resolution, especially in LOS channels with
closely-located users, this fails to hold if grating lobes appear
(due to large element spacing) and some users align with
their directions [13], [18]. In the latter case, non-uniform array
design can be used to eliminate this negative effect.

Measurement-based studies with large numbers of antennas
[14], [15], [16], [17], [18], [19] confirmed the general ten-
dencies observed in the theoretical studies, i.e. performance
improvement with increasing number of antennas and antenna
array size, but also revealed some key differences. Namely,
this improvement falls behind that predicted by the i.i.d. fading
model and, at certain point, it starts saturating, indicating that
channel correlation plays a role here. LOS environment with
closely-located users was identified as the most difficult one
while non-LOS environment is somewhat better for channel
orthogonality [15], [19].

The above-mentioned theoretical studies assume perfect
channel knowledge/estimation, perfect element location or
array calibration, no inaccuracies in beamforming weights etc.
In practice, such perfect setting is hardly possible as imple-
mentation inaccuracies and tolerances always exist. It is not
clear whether the FP property will still hold under such inaccu-
racies, when the number of antennas increases without bound.
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The robustness property, whereby small perturbations/errors
in element locations, beamforming weights etc. do not have
a catastrophic impact on the performance, is desirable from
a practical perspective, especially for mmWave and THz
systems, where the impact of implementation inaccuracies
becomes more pronounced since the wavelength becomes
much smaller; in addition, the presence of phase noise also
becomes a major issue affecting the system performance.

The impact of implementation inaccuracies/errors on the
traditional antenna arrays has been studied and robust
beamforming strategies have been proposed, including the
well-known diagonal loading technique and its modifica-
tions [28], [29], [30], [31]. While some studies advocate
random error model [28], others use deterministic normed
or bounded uncertainty models and worst-case performance
optimization [29], [30], [31]. A general conclusion is that,
under proper design, small errors do not have a catastrophic
impact on the performance. Likewise, the impact of channel
uncertainty on traditional MIMO system performance was
also studied in the classical setting using information-theoretic
tools (compound channel capacity) and it was shown that
small normed uncertainties do not have large impact under
proper transmitter and receiver designs [32], [33]. However,
the above results were established in the traditional settings
(not mMIMO) and it remains unclear whether they still holds
in the mMIMO setting and apply to the FP property as well
(especially because increasing the number of antennas to very
large values has a potential to “amplify” small per-element
errors and generate a large aggregate effect thereby destroying
the FP property). In a related line of work, the impact
of hardware imperfections on mMIMO energy and spectral
efficiencies in Rayleigh-fading channels was studied in [34]
using an additive noise model of imperfections. However, their
impact on the FP was not studied so that it remains unclear
whether the FP holds under random errors, especially in LOS
channels, which behave differently to i.i.d. Rayleigh-fading
ones and are particularly difficult for the FP.

This paper studies the robustness of the FP in mMIMO LOS
channels to random errors in element locations and beamform-
ing phases (due to implementation inaccuracies, quantization
effects, imperfect array calibration, component aging, environ-
mental effects, etc.). Both Gaussian and non-Gaussian error
distributions are considered and the following three questions
are addressed:

1) Does the FP hold under random errors? If so, under what
conditions?

2) What is the IUI scaling with the number of antennas
under random errors?

3) How accurate does a design need to be for the impact
of random errors to be negligible?

We show that, for an arbitrary array geometry (including
ULA, UPA, UCA and UCLA as special cases), the FP holds
for the perturbed array under random independent errors as
long as it holds for the nominal array (i.e. the one without
errors). From a practical perspective, this means that small
inaccuracies in array implementation do not “blow up” even
if the number of array elements is large and that small levels of

IUI are achievable under random errors (provided the number
of antennas is large enough).

While random errors do not affect the FP asymptotically,
they have a profound negative impact on the convergence
speed to the asymptotic value as the number N of antennas
increases: while the IUI power scales as N−2 for the nominal
array (no errors), it scales only as N−1 for the perturbed
array, i.e. the impact of random errors is to slow down the
convergence from N−2 (20 dB per decade) to N−1 (10 dB
per decade) so that more antennas are needed to achieve
the same low IUI under random errors. For a finite number
of antennas, the impact of random errors is shown to be
qualitatively different in small and large perturbation regimes.
A quantitative condition for this impact to be negligible is
given, which also determines the required implementation
accuracy for a given number of antennas and IUI level. For
large but finite N , the IUI power under random i.i.d. errors is
shown to follow the non-central chi-squared distribution with
2 degrees of freedom. Based on this, an analytically-tractable
approximation for the IUI power is proposed.

To compare the above IUI scaling under random errors to
that without errors, note from [11] that, in the latter case,
the IUI power scales as N−2 ln2N in the LOS channel with
uniformly-random users but only as N−1 in the i.i.d. Rayleigh
fading channel, i.e. the IUI power decreases with N much
faster in the LOS channel when there are no errors. However,
as our results above indicate, this IUI scaling in LOS channel
slows down from N−2 to N−1 when random location and
phase errors are present, i.e. becomes the same as in the i.i.d.
Rayleigh fading channel.

The rest of the paper is organized as follows. Sec. II
introduces the system model and the FP property. The impact
of random (possibly non-Gaussian) errors is introduced and
studied in Sec. III; the main result is in Theorem 1. Sec. IV
gives the distribution and an analytically-tractable estimate of
the IUI power for large but finite number of antennas. Sec.
V illustrates the asymptotic results of Theorem 1 for a finite
number of antennas and gives some design guidelines as to
what accuracy is needed to make errors negligible. It also com-
pares the finite-N scaling of the IUI power with and without
errors. The analytical results are validated via numerical simu-
lations and are in agreement with measurement-based studies.
Sec. VI concludes the paper.

Notations: lower-case bold letters denote column vectors
while regular letters are scalars; |h|, h′ and h+ denote
Euclidean norm (length), transposition and Hermitian conju-
gation, respectively, of vector h; E{·} is statistical expectation
while Var{·} is the variance (with respect to relevant random
variables), Re{·} and Im{·} are the real and imaginary parts
of a complex number.

II. SYSTEM MODEL AND FP

We use the standard basedband model [1], [2], [3], [7], [8],
[9], [10], [11] whereby M single-antenna users communicate
simultaneously to a base station (BS) equipped with an N -
element antenna array:

y(t) = h1x1(t) +
M∑
i=2

hixi(t) + ξ(t) (1)
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where y(t) is the vector signal received by the BS at time
t, ξ(t) is a zero-mean white Gaussian circularly-symmetric
noise vector of variance σ2

0 per dimention; hi and xi(t) are the
channel vector and transmitted signal of user i, i = 1 . . .M ,
respectively.

To detect user 1 signal x1(t) (the main user), a linear (low-
complexity) beamforming w+

1 y(t) is used by the BS [7],
where w1 is the beamforming vector for detecting user 1,
and the other users’ contribution w+

1

∑M
i=2 hixi(t) is treated

as interference. Since x1(t), .., xM (t) are independent of each
other and also of ξ(t), the main user SINR can be expressed
as follows:

SINR =
|w+

1 h1|2σ2
x1∑M

i=2 |w
+
1 hi|2σ2

xi
+ |w1|2σ2

0

(2)

=
|α11,N |2γ1∑M

i=2 |α1i,N |2γi + 1
(3)

≤ |α11,N |2γ1 (4)
≤ γ1 (5)

where σ2
xi = E{|xi(t)|2} and γi = |hi|2σ2

xi/σ
2
0 are the signal

power and the single-user SNR of user i, respectively, and

α1i,N =
w+

1 hi

|w1||hi|
(6)

where |α11,N |2 ≤ 1 is the normalized channel power gain of
the main user (the normalization is with respect to the no-error
case, which corresponds to |α11,N |2 = 1) and |α11,N |2γ1 is
its after-beamforming SNR, which may also include beam-
forming errors that induce |α11,N |2 < 1; |α1i,N |2 ≤ 1, i =
2 . . .M , is the IUI power “leakage” factor of user i to the
main user and |α1i,N |2γi is the “leaked” IUI power measured
in σ2

0 . In fact, |α1i,N | is the measure of the FP (or channel
orthogonality) adopted in the reported studies, both theoretical
and experimental [2], [3], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. The channel is normalized so that
|hi|2 = N and the propagation path loss is absorbed into the
single-user SNR γi. While the model in (1) applies directly to
the uplink (users-to-BS), the user 1 SINR in (2) also applies to
the downlink (BS-to-users) if (i) equal amount of channel state
information is available in both cases and (ii) the channel is
reciprocal. As a consequence, if the FP holds for uplink, it will
also hold for downlink and vice versa.

In the case of no perturbations/errors, the channel is known
precisely and the beamforming weights are also set precisely,
as is usually assumed in the literature [1], [2], [3], [7], [8], [9],
[10], [11], [12]. In this case and for the matched filter beam-
forming (also known as maximum ratio combining, which
maximizes the single-user SNR), w1 = h1 so that α11,N =
1 and hence the inequality in (5) becomes equality. Under this
condition, the upper bound in (4) is attained with equality and
thus the SINR is maximized achieving its single-user value,
if the total IUI power “leakage” vanishes,

∑M
i=2 |α1i,N |2 = 0.

This favorable condition can be approached, in some cases,
by increasing the number of antennas without bound. This is
known as “asymptotically favorable propagation” [7], [8], [9],
[10], [11], [12]. Since the total IUI is rarely exactly zero for
a finite number of antennas, we further omit “asymptotically”

and use the term “favorable propagation” (FP) with under-
standing that N →∞ is included in its definition. For a finite
number of users, M < ∞, and for uniformly-bounded per-
user SNRs, γi ≤ A <∞ for all i, where A is independent of
N (but γi may depend on N , as they usually do in practice),
the total IUI vanishes and thus the FP holds if

lim
N→∞

M∑
i=2

|α1i,N |2 = 0 or lim
N→∞

|α1i,N |2 = 0 ∀i > 1 (7)

so that the SINR achieves its maximum, SINR = γ1,
i.e. its single-user value. Note that, when the FP holds,
the performance of matched filtering (MF), also known as
maximum-ratio combining (MRC), zero-forcing (ZF) and
MMSE receivers is the same where the MF/MRC is attractive
due to its simplicity, robustness and suitability for paral-
lel/distributed implementation.1 While N →∞ is not possible
in practice, an important practical implication of (7), which
follows from the limit definition, is that the IUI power can
be made as small as desired provided the number of antennas
is large enough. This is not the case anymore if the FP does
not hold. A metric alternative to the FP measure in (6)(7) was
introduced in [19], namely, “angle to interference subspace”.
It is not difficult to see that these two metrics are equivalent,
i.e. if the FP holds for one, it also holds for the other.

In the case of random errors, (7) cannot be used anymore
since α1i,N becomes a random sequence and thus the limits in
(7) do not exist (in the deterministic sense). Hence, an exten-
sion of the FP condition in (7) is needed to accommodate
random errors. This is done in the next section.

III. FP UNDER LOCATION AND PHASE ERRORS

Let us consider an N -element antenna array of arbitrary
geometry (including ULA, UPA, UCA and UCLA as spe-
cial cases) where element locations as well as beamforming
phases are subject to random errors (perturbations) due to e.g.
implementation and array calibration inaccuracies, quantiza-
tion errors, aging, environmental effects etc. In particular, the
actual location vector pn of n-th antenna array element is

pn = p0
n + ∆pn, n = 1 . . . N (8)

where p0
n is the nominal location vector and ∆pn is its

random offset, all measured in wavelengths. Following [7],
[8], [9], [10], [11], [12], we consider the LOS environment,
primarily due to the following reasons: (i) it is a particularly
difficult environment for the FP to hold and it also represents
the extreme opposite of i.i.d. fading; (ii) there are many
LOS application scenarios, including cellular, WiFi, wireless
backhaul, short-range, UAV and satellite systems [17], [22],
[23], [24]; (iii) unlike below-6 GHz systems, the LOS environ-
ment is critical for emerging mmWave and THz systems (key
technologies for 5/6G, most likely to employ mMIMO) [6],
[25], [26], [27]. Under LOS propagation in the far field, the
normalized channel vector entries for user i can be expressed
as [7] and [28]

hin = exp(j2πu+
i pn), i = 1..M, n = 1 . . . N, (9)

1One should further note that, under the FP, the rate delivered by the
MF/MRC is also the same as that of the more-complicated (nonlinear) but
capacity-optimal successive interference cancellation receiver [42] in this case
(since there is no interference to cancel under the FP).
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where i and n are user and element indexes, ui is the unit
direction vector for user i.

When matched filtering is used to detect user 1 signal, the
beamforming weights w1 = [w1, . . . , wN ]′ are matched to
user 1 nominal (rather than actual) channel vector h0

1, whose
entries are

h0
1n = exp(j2πu+

1 p0
n), (10)

and are perturbed in phase as well, typically due to imperfect
phase shifters and quantization errors, so that

wn = exp(j2πu+
1 p0

n + j∆ϕn) (11)

where ∆ϕn are beamforming phase errors; following the
widely-accepted approach [28], they are modeled as zero-mean
i.i.d. random variables. Likewise, ∆pn are also modeled as
zero-mean i.i.d. random vectors. Unlike the existing studies,
we do not assume here that they are Gaussian, so that non-
Gaussian distributions are included as well.

Using (6) and (8)-(11), α1i,N can be expressed as

α1i,N =
1
N

N∑
n=1

w∗nhin =
1
N

N∑
n=1

ejΨin , (12)

Ψin = Ψ0
in + ∆Ψin (13)

Ψ0
in = 2π(ui − u1)+p0

n (14)
∆Ψin = ∆ψin −∆ϕn (15)

where Ψ0
in represents phase differences of i-th and 1st users’

signals for the nominal array; ∆ψin = 2πu+
i ∆pn represents

uncompensated phase shifts due to element location errors.
The corresponding IUI leakage factor of the nominal array is

α0
1i,N =

1
N

N∑
n=1

ejΨ0
in (16)

Since, under random errors above, |α1i,N |2 is a random
sequence (indexed by N ), (7) cannot be used since the respec-
tive limits do not exist in the deterministic sense. Therefore,
one has to use a notion of stochastic convergence. The follow-
ing definition gives three such notions widely used in many
areas of stochastic analysis and applications; this is a slight
extension of the definitions in [35, p. 306] and [36, Ch. 6].

Definition 1: A sequence z1, z2, . . . of random variables
converges to a deterministic sequence a1, a2, . . . in the mean
square sense (mse), zN

mse−−→ aN , if

lim
N→∞

E{|zN − aN |2} = 0 (17)

zN converges in probability to aN , zN
Pr−→ aN , if, for any

ϵ > 0,

lim
N→∞

Pr{|zN − aN | > ϵ} = 0 (18)

zN converges to aN almost surely (a.s.) or with probability
one, zN

a.s.−−→ aN , if

Pr
{

lim
N→∞

(zN − aN ) = 0
}

= 1 (19)

where the probability applies to the set of all events where the
limit exists and equals to 0.

We will further use → (without a superscript) to denote
stochastic convergence in all three senses above as well as the

regular (deterministic) convergence when all related sequences
are deterministic. Note that convergence in the mean square
sense and almost sure convergence imply convergence in
probability but the converse is not true in general, see e.g. [35,
p. 310] [36, p. 130-132] for examples and further discussion.

A few remarks are in order as to why these three different
modes of convergence are needed here. First, mean square
error is a time-tested tool in many areas of communications,
signal processing and stochastic control, including robust
beamforming [31], so its use is appropriate here. It ensures
that random IUI zN converges to its mean value aN in the
MSE sense. Second, Pr{|zN−aN | > ϵ} is the probability that
the deviation of random IUI from its mean is not small. This is
akin to outage probability widely used in may areas of wireless
communications. In fact, it becomes the outage probability if
one designs a system based on the mean IUI and the actual
random IUI deviates significantly from this design. Lastly, (19)
is needed since, even if (18) holds, it does not guarantee that
|zN −aN | cannot become arbitrary large (i.e., large deviation)
for infinitely-many N [37, p. 237]. The guarantee that |zN −
aN | becomes and stays small as N increases is provided by
(19) (the set of all events where this does not hold has a
combined probability measure of zero, i.e. extremely unlikely
to be encountered in the real world) [36, p. 315]. It comes
the closest to the deterministic convergence and guarantees
that once a mMIMO design is acceptable for a given (large)
number N0 of antennas, it will also remain acceptable for any
N > N0. In fact, the results we establish below hold for all
three modes of convergence, which also ensures that they are
not an artifact of a particular definition used.

Next, we replace the deterministic limits in the FP definition
in (7) by the stochastic convergence modes in Definition 1.
Upon this replacement, the FP holds under random perturba-
tions if, as N →∞,

|α1i,N |2 → 0 ∀i > 1 (20)

The following Theorem shows that the FP property holds for
a perturbed array under i.i.d. perturbations defined above if it
holds for the respective nominal array, i.e. i.i.d. random errors
do not have a catastrophic impact on the FP. This becomes
“if and only if” (iff) under certain conditions and holds for all
three convergence definitions above and, hence, is insensitive
to a particular definition used.

Theorem 1: Under i.i.d. perturbations of finite variance, the
FP property of the channel in (8)-(11) can be characterized
as follows:

1) If perturbations are Gaussian: the FP holds for a
perturbed array if and only if it holds for a nominal
(unperturbed) one, i.e., for any i > 1,

|α1i,N |2 → 0 iff lim
N→∞

|α0
1i,N |2 = 0 (21)

2) If perturbations are non-Gaussian: (21) holds if ci ≜
E{ej∆Ψin} ̸= 0; if ci = 0, then the FP always holds
for a perturbed array and 2nd condition in (21) is not
necessary.

3) The following convergence holds in all considered cases
for i ≥ 1:

|α1i,N |2 → E{|α1i,N |2} (22)
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= |ci|2|α0
1i,N |2 + (1− |ci|2)N−1 (23)

→ |ci|2|α0
1i,N |2 (24)

Proof: First, we establish (22)-(24), from which (21) will
follow. We begin with a proof of the above claims for conver-
gence in the MSE sense. Then, convergence in probability and
almost sure convergence are established. To simplify notations,
we further use αN = α1i,N , α0

N = α0
1i,N for i > 1.

A. Convergence in the MSE Sense

The definition in (17) with zN = |αN |2 and aN =
E{|αN |2} is equivalent to

Var{|αN |2} = E{(|αN |2 − E{|αN |2})2}
= E{|αN |4} − (E{|αN |2})2 → 0 (25)

Finding the variance in (25) is rather involved since the fourth
moment analysis is complicated. To circumvent this difficulty,
we present an upper bound and prove that it converges to zero
as N → ∞. To this end, the following Lemma shows that
E{|αN |4} can be “sandwiched” via |E{αN}|4.

Lemma 1: E{|αN |4} can be bounded as follows:

|E{αN}|4 ≤ E{|αN |4} ≤ |E{αN}|4 + 12N−1 (26)
Proof: See Appendix A. □

It follows from (26) that E{|αN |4} and |E{αN}|4 behave
similarly as N →∞:

E{|αN |4} → 0 iff |E{αN}|4 → 0 (27)

The next Lemma establishes the needed upper bound.
Lemma 2: Var{|αN |2} can be upper bounded, for any N ,

as follows:

Var{|αN |2} ≤ 12N−1 (28)
Proof: Since |·|2 is convex, it follows from Jensen’s

inequality [40] that

E{|αN |2} ≥ |E{αN}|2 (29)

Combining this with the upper bound in (26), one obtains

Var{|αN |2} = E{|αN |4} − (E{|αN |2})2

≤ |E{αN}|4 + 12N−1 − |E{αN}|4 = 12N−1

as required. While this is not the tightest possible bound and,
in many cases, the variance decreases faster with N (e.g.
as N−2 - see Fig. 2), it is sufficient for our purpose here.

□
Now, using (28) and (25),

Var{|αN |2} = E{(|αN |2 − E{|αN |2})2} ≤ 12N−1 → 0

which establishes the MSE convergence,

|αN |2
mse−−→ E{|αN |2} (30)

i.e. (22) in the MSE sense. The next Lemma establishes (23).
Lemma 3: The following holds for αN = α1i,N as defined

in (12):

E{αN} = ciα
0
N , ci = E{ej∆Ψin} (31)

E{|αN |2} = (1− |ci|2)N−1 + |ci|2|α0
N |2 (32)

Proof: Let us first evaluate E{|αN |2} using (12):

E{|αN |2} =
1
N2

∑
n,m

E{ej(Ψin−Ψim)}

=
1
N

+
1
N2

∑
m̸=n

E{ejΨin}E{e−jΨim} (33)

=
1
N

+
1
N2

∑
n

E{ejΨin}
∑
m

E{e−jΨim}

− 1
N2

∑
n

E{ejΨin}E{e−jΨin}

=
1
N

+ |E{αN}|2 −
1
N2

∑
n

|E{ejΨin}|2

(34)

where (33) follows from independence of Ψin and Ψim for
n ̸= m. Next, using (12) and (16), one obtains:

E{αN} =
1
N

N∑
n=1

E{ejΨin} =
ci
N

N∑
n=1

ejΨ0
in = ciα

0
N (35)

where

E{ejΨin} = E{ej(Ψ0
in+∆Ψin)} = cie

jΨ0
in (36)

Using (34)-(35), (32) follows:

E{|αN |2} = N−1 + |ci|2|α0
N |2 −N−1|ci|2 (37)

This completes the proof of Lemma 3. □
Finally, note that (32) implies the following convergence as

N →∞:

E{|αN |2} → |ci|2|α0
N |2 (38)

This establishes (22)-(24), where perturbations do not have
to be Gaussian (no such assumption was made in the above
derivations). For Gaussian perturbations, from (56), ci =
E{ej∆Ψin} = e−δ2/2 ̸= 0 and therefore, from (38),

lim
N→∞

E{|αN |2} = 0 iff lim
N→∞

|α0
N |2 = 0 (39)

and, since |αN |2
mse−−→ E{|αN |2} as established in (30) above,

(21) follows (in the MSE sense):

|αN |2
mse−−→ 0 iff lim

N→∞
|α0

N |2 = 0 (40)

For non-Gaussian perturbations, ci = 0 is possible, in which
case, from (30) and (32),

|αN |2
mse−−→ E{|αN |2} → 0 (41)

even if limN→∞ |α0
N |2 ̸= 0, i.e. the condition

limN→∞ |α0
N |2 = 0 is not necessary. This completes

the proof for the MSE convergence.

B. Convergence in Probability

To establish (22) with convergence in probability, we use
(18) with zN = |αN |2, aN = E{|αN |2} and Chebyshev
inequality [35, p. 46]:

Pr{|zN − E{zN}| > ϵ} ≤ Var{zN}ϵ−2 (42)
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which holds for any ϵ > 0. Using (42) and (28), one obtains:

lim
N→∞

Pr{||αN |2 − E{|αN |2}| > ϵ}

≤ lim
N→∞

Var{|αN |2}ϵ−2

≤ lim
N→∞

12(Nϵ2)−1 = 0 (43)

This establishes (22) with convergence in probability,

|αN |2
Pr−→ E{|αN |2} (44)

Combining it with (23) and (24) established above (note that
they apply to the deterministic sequences and therefore do not
depend on the stochastic convergence definitions), we finally
obtain (21) with convergence in probability.

C. Almost Sure Convergence

To establish (22) with almost sure convergence,2 |αN |2
a.s.−−→

E{|αN |2}, we need the following technical Lemma, which is
an extension of [38, Theorem 1] to two-dimensional sequences
with non-zero means.

Lemma 4: Consider the empirical mean zN of
N2 uniformly-bounded random variables znm,

zN =
1
N2

N∑
n,m=1

znm (45)

Then, zN
a.s.−−→ E{zN} if:

(a) |znm| ≤ 1 and (b)
∞∑

N=1

1
N

Var{zN} <∞ (46)

Proof: See Appendix B. □
Now, use Lemma 4 with zN = |αN |2,

zN = |αN |2 =
1
N2

∑
n,m

ej(Ψin−Ψim) (47)

which is the empirical mean of N2 random variables znm =
exp{jΨin − jΨim} as in (45) and observe that |znm| ≤ 1,
which satisfies (46)(a). Using (28), Var{zN} ≤ 12N−1 so
that ∑

N≥1

N−1 Var{zN} ≤ 12
∑
N≥1

N−2 = 2π2 <∞ (48)

i.e. (46)(b) is also satisfied. Therefore, |αN |2
a.s.−−→ E{|αN |2},

as required. This establishes (22) with almost sure conver-
gence. Combining it with (23) and (24) established above,
(21) follows with almost sure convergence. □

IV. THE DISTRIBUTION AND A BOUND FOR |αN |2

Eq. (22) implies that, for large N , E{|αN |2} can be used
as an estimate of the actual IUI |αN |2 = |α1i,N |2. However,
as Fig. 3 below shows, random fluctuations of |αN |2 do exists
for finite N and, hence, |αN |2 can exceed E{|αN |2}. This
possibility should be taken into account for a more reliable
design with finite N . A simple way to accomplish this is via
the following approximate upper bound, which accounts for

2note that this convergence mode is not implied by the two convergence
modes above [35, p. 310] [36, p. 130-132].

random fluctuations and holds with high probability for large
N and sufficiently-large m,

|αN |2 ≲ |αup
N |

2 = E{|αN |2}+mσ|αN |2 (49)

where σ2
|αN |2 = Var{|αN |2} is the variance, m =

1 . . . 3 controls the outage probability (i.e. the probability that
|αN |2 exceeds the bound |αup

N |2) and the design is based
on |αup

N |2. As Fig. 3 below shows, using m = 0 is not
sufficient and m = 1 . . . 3 provides more reliable design, with
larger m corresponding to smaller outage probability (note that
m = 3 corresponds to the well-known three-sigma rule).

The following Proposition gives finite-N approximations for
the distribution of |αN |2 and its variance, which can be used
in (49).

Proposition 1: For large N and if the FP holds for the
nominal (no error) array at double the element spacing, i.e.

lim
N→∞

1
N

N∑
n=1

ej2Ψ0
in = 0, (50)

|αN |2 is distributed as a non-central chi-squared random
variable χ2

2(λ) with 2 degrees of freedom,

|αN |2 ∼
1
2
σ2

Nχ
2
2(λ) (51)

where λ = 2σ−2
N |E{αN}|2 is the noncentrality parameter, and

λ = 2 N(1− |ci|2)−1|ci|2|α0
N |2 (52)

σ2
N = Var{αN} = N−1(1− |ci|2) (53)

σ2
|αN |2 = Var{|αN |2} ≈ σ2

N (σ2
N + 2|ci|2|α0

N |2) (54)
Proof: See Appendix C. □

The accuracy of these approximations is examined in the
next section.

V. EXAMPLES AND DISCUSSION

To illustrate and validate the above results, let us consider a
ULA with the nominal element spacing d = 0.5 measured in
wavelengths, as illustrated in Fig. 1. The perturbed array has
both location and phaseshift errors, which are zero-mean i.i.d
Gaussian of variances σ2

p and σ2
ϕ, respectively. It follows that

∆Ψin is also zero mean Gaussian of variance

δ2 = 4π2σ2
p + σ2

ϕ (55)

and therefore (see e.g. [28, p. 68])

ci = E{ej∆Ψin} = e−δ2/2 (56)

so that 0 < ci < 1 if 0 < δ <∞.
First, we validate the key part of the Theorem 1 proof, the

asymptotic behaviour Var{|αN |2} → 0 and also the approxi-
mation in (54). Fig. 2 illustrates the behaviour of Var{|αN |2}
as N increases for the ULA as in Fig. 1, confirming that
indeed Var{|αN |2} → 0, as expected. This also implies, from
Chebyshev inequality, convergence in probability in (21). Note
also that the empirical (Monte-Carlo (MC) simulated) variance
and its estimate in (54) agree well with each other over the
whole range of N .

The qualitatively-different behaviour of Var{|αN |2} for
smaller and larger σp,ϕ can be explained using (54) as follows.
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Fig. 1. N -element ULA under perturbed element locations. θi is the AoA
of user i, where i = 1 corresponds to the main user, all measured from the
array broadside.

Fig. 2. Empirical Monte-Carlo (MC) simulated Var{|αN |2} and its estimate
in (54) in the presence of zero-mean i.i.d. Gaussian errors of variances
σ2

p and σ2
ϕ, for the ULA with d = 0.5, the user angles-of-arrival are

θ1 = 0, θi = π/8 (with respect to the array broadside). The MC variance
was evaluated over 100 trials generated independently for each N .

In the large error regime σp,ϕ = 0.1, σ2
N is larger and hence

the first term in (54) dominates, Var{|αN |2} ≈ σ4
N , which

decreases monotonically with N , as in (53). In the small error
regime σp,ϕ = 0.01, the 2nd term in (54) dominates until
about N = 100 and hence Var{|αN |2} ≈ 2|ci|2|α0

N |2σ2
N ,

which exhibits an oscillatory decrease with N due to |α0
N |.

A. Impact of Errors: Small and Large Perturbation Regimes

1) Large Perturbation Regime: Fig. 3 illustrates the
behaviour of the IUI factors as N increases in the large
perturbation regime. By comparing |αN |2 and |α0

N |2, note
that perturbations have a significant impact on the IUI in this
regime and cannot be neglected for any finite N and, thus,
|α0

N |2 is not a good approximation of |αN |2. While all three
IUI factors, i.e. the random IUI |αN |2, its mean E{|αN |2}
and nominal |α0

N |2 values, decrease with N , in agreement
with Theorem 1, the 1st one exhibit the slowest decrease
and also statistical fluctuations due to random location and
phase errors while the nominal IUI shows the fastest decrease.
In general, there is significant difference between all three
IUI factors. Using the mean IUI, as done in some studies,
can significantly underestimate the actual IUI level, since the
former ignores statistical fluctuations around the mean and
their impact is significant in this regime; the approximate
upper bound |αup

N |2 in (49) is a more reliable measure of IUI in
this regime. Likewise, using the nominal IUI factor |α0

N |2 will
also significantly underestimate the actual IUI.

2) Small Perturbation Regime: Fig. 4 illustrates the IUI
factors in the small perturbation regime with σp = σϕ = 0.01.
Note that here, in a stark contrast to Fig. 3, all three factors, i.e.
the random IUI, its mean and nominal values, behave similarly
until about N = 100, making the impact of random errors

Fig. 3. IUI factor |αN |2, its mean and nominal values for the N -element
ULA with nominal element spacing d = 0.5, under zero-mean i.i.d. Gaussian
perturbations with σp = σϕ = 0.1 (generated independently for each N );
θ1 = 0, θi = π/8. While all three decrease with N , |αN |2 fluctuates due
to random errors and |α0

N |
2 exhibits fastest decrease. Note that perturbations

have non-negligible impact for any finite N so that |α0
N |

2 is not a good
approximation of |αN |2.

Fig. 4. The IUI factors as in Fig. 3 but for σp = σϕ = 0.01 (small
perturbation regime). Note that, unlike Fig. 3, all three factors behave similarly
until about N = 100, the impact of random errors is negligible and |α0

N |
2 is

a good approximation of |αN |2.

almost negligible. This can be explained via (22) and (23),
whereby 1st term of (23) dominates in the small perturbation
regime, for which |ci| ≈ 1 and therefore

(1− |ci|2)N−1 ≪ |ci|2|α0
N |2 (57)

so that, from (22),

|αN |2 ≈ E{|αN |2} ≈ |α0
N |2 (58)

i.e. the random and nominal IUI leakage factors are almost the
same, making the impact of random perturbations negligible.
Using (56) for Gaussian perturbations, (57) is equivalent to

δ2 ≪ ln(1 +N |α0
N |2) (59)

which quantifies the notion of small perturbation regime,
where the impact of location and phase errors is negligible
and (58) holds, i.e. all 3 IUI leakage factors are approximately
the same. We caution the reader not to interpret (59) as that
large errors are tolerable for larger N (and especially that
arbitrarily-large errors are allowed as N →∞). The reason is
that α0

N also depends on N and, in many cases, |α0
N |2 ∼ N−2

so that the overall scaling of the upper bound in (59) is as
ln(1 + N−1) ∼ N−1, i.e. just the opposite of what naive
interpretation would suggest.

Note also that random errors affect not only |αN |2 but
also its mean value E{|αN |2}, as evidenced by (58) as well
as Fig. 3 and 4: while E{|αN |2} ≈ |α0

N |2 in the small
perturbation regime (Fig. 4 until about N = 100), this is no
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Fig. 5. IUI factor |αN |2 and its nominal values for the N -element UCA
and all other settings as in Fig. 3. Note the same tendencies as in Fig. 4 and
significantly smaller impact of errors compared to Fig. 3.

longer the case in the large perturbation regime when, as in
Fig. 3,

E{|αN |2} ≈ (1− |ci|2)N−1 (60)

The above observations are not limited to ULA geometry
but also hold for other array geometries. Fig. 5 illustrates this
for uniform circular array (UCA) and all other settings as
in Fig. 3: while the actual values of IUI are different from
those for the ULA, the general tendencies are the same as
in Fig. 4 and the FP also holds under random perturbations
since it holds for the nominal array, as was established in [12].
This is consistent with Theorem 1, which holds for any array
geometry. Comparing Fig. 5 to Fig. 3, where the error standard
deviations are the same in both cases, we conclude that the
UCA is more robust to random errors (their impact is almost
negligible) compared to the ULA. This can be explained by
the fact that while |α0

N |2 ∼ N−2 for the ULA, the scaling is
much slower for the UCA, where |α0

N |2 ∼ N−1 and hence
the impact of random errors is not that visible for the latter.

It should be noted that the above observations also hold
for non-Gaussian errors. Fig. 6 shows the IUI factors under
uniformly-distributed errors with all other parameters being
the same as in Fig. 4. As the comparison of these figures
shows, the impact of errors is almost the same in both cases.
Hence, we conclude that, under the same error variance, the
shape of its distribution plays only a minor role. This is also
consistent with Theorem 1 and Proposition 1, which hold for
any error distribution (provided the errors are i.i.d. and of finite
variance).

B. IUI Scaling With N and Design Guidelines

It follows from Theorem 1 that, if the FP holds for the
nominal array, then it also holds for the perturbed one and all
three IUI factors converge to zero as N →∞,

|αN |2, E{|αN |2}, |α0
N |2 → 0 (61)

Note, however, that while their convergence point is the same,
the convergence speed is significantly different: while for the
nominal array in many cases (e.g. an ULA with fixed element
spacing, distinct AoAs and no grating lobes)

|α0
N |2 ∼ N−2 (62)

Fig. 6. IUI factor |αN |2, its mean and nominal values for the N -element
ULA as in Fig. 4 under uniform perturbations with σp = σϕ = 0.01. Note
the similarity to Fig. 4, where perturbations are Gaussian.

i.e. 20 dB per decade, for the perturbed one

|αN |2, E{|αN |2} ∼ N−1 (63)

i.e. 10 dB per decade, so that the impact of random errors,
even if the FP holds, is to slow down the convergence from
N−2 to N−1 and, hence, more antennas are needed to achieve
the same low IUI leakage under random errors. As a further
confirmation of this result, the N = 100 point in Fig. 3, where
the IUI is about -20 dB under random errors, agrees well with
the respective experimental results in [17, Fig. 11].

The above scalings should be compared to the ones in [11],
where it was observed that, without errors, the IUI power
scales as N−2 ln2N ≈ N−2 in the LOS channel with
uniformly-random users (located on a sphere) but only as N−1

in the i.i.d. Rayleigh fading channel. However, when random
location and phase errors are present, (63) indicates that, even
in the LOS channel, the scaling slows down to N−1, i.e. the
same as in the fading channel.

We note that (59) may be difficult to use in practice since
|α0

N |2 depends on user AoAs, which may be unknown or
known only imprecisely. On the other hand, a sensible practical
design is one which can tolerate any IUI leakage not exceeding
a certain threshold ε, i.e. any |αN |2 ≤ ε is acceptable,
regardless of its actual value. In this case, one can use (59) at
this target IUI threshold to obtain

δ2 ≪ ln(1 +Nε) (64)

which would ensure that the threshold is not exceeded under
random errors (provided that it is not exceeded without errors).
To illustrate this, let N = 100 and ε = 10−3 (i.e. -30 dB) for
Fig. 4, so that, from (64), δ2 ≪ 0.1 makes the impact of
random errors negligible for this design, which is consistent
with δ2 = 4π2σ2

p + σ2
ϕ ≈ 0.004 in Fig. 4 but not with δ2 ≈

0.4 in Fig. 3. Using (62) and (63), one concludes that the
number of antennas needed to achieve a low IUI threshold
ε ≪ 1 scales as 1/ε with errors and only as

√
1/ε without

errors, i.e. more antennas are needed in the former case for
small ε.

In summary, while random errors do affect the IUI leak-
age factor, their impact is not catastrophic at all and small
|αN |2 can still be attained, even under random errors, provided
that N is sufficiently large (or, equivalently, if δ2 is sufficiently
small). This confirms the asymptotic result in Theorem 1.

Authorized licensed use limited to: University of Ottawa. Downloaded on January 22,2024 at 19:09:45 UTC from IEEE Xplore.  Restrictions apply. 



ANARAKIFIROOZ AND LOYKA: ROBUSTNESS OF FP IN MASSIVE MIMO TO LOCATION AND PHASE ERRORS 475

Fig. 7. The main user normalized power gain |α11,N |2, its mean and
nominal values for the N -element ULA with d = 0.5 and θ1 = 0, under
zero-mean i.i.d. Gaussian errors with σp = σϕ = 0.05, 0.1, 0.3 (generated
independently for each value of N ). While power loss is not large for
σp, σϕ ≤ 0.1, it quickly increases otherwise but |α0

11,N |
2 = 1 for the

nominal (no errors) array.

C. Impact of Errors on the Main User

Finally, we examine the impact of random errors on the
main user via its normalized power gain |α11,N |2 (equal to
1 if there are no errors). Using (22)-(24) in Theorem 1, one
obtains:

|α11,N |2 → E{|α11,N |2}
= |c1|2|α0

11,N |2 + (1− |c1|2)N−1

= |c1|2 + (1− |c1|2)N−1 (65)

→ |c1|2 = e−δ2

where the last equality holds for Gaussian errors while the
others hold for non-Gaussian errors as well; (65) is due to
|α0

11,N |2 = 1, which follows from (14) and (16) with Ψ0
1n =

0. |c1|2 ≤ 1 is a measure of the average normalized power
received by the main user under random errors, which can be
evaluated from (56), where 1st equality holds for non-Gaussian
errors as well. Note that random errors do induce power/SNR
loss for the main user and this loss is not large as long as δ2 is
not large:

|α11,N |2 ≈ 1 if δ2 ≪ 1 (66)

This condition is less demanding than the one for the low IUI
leakage in (59) if N |α0

N |2 < e− 1. Fig. 7 shows |α11,N |2 as
well as its mean and nominal values for N -element ULA. Note
that power loss is not large for σp, σϕ ≤ 0.1 but it quickly
increases above that threshold. While random fluctuations
of |α11,N |2 induced by random errors do diminish with N
(especially above N = 100), the significant power/SNR loss
remains, regardless of N , for σp, σϕ > 0.1. Therefore, the
latter regime should be avoided in practice.

VI. CONCLUSION

While the existing studies analysed favorable propagation
in massive MIMO assuming no implementation inaccuracies,
this paper studies the impact of random errors in array element
location and beamforming phases on the FP. In particular, the
FP property is rigorously shown to hold asymptotically for
the perturbed array if it holds for the unperturbed one and,
hence, random errors do not have a catastrophic impact, even

when the number of antennas increases without bound. Even
though random errors do not affect the FP asymptotically, they
do slow down considerably the convergence to the asymptotic
value and, thus, more antennas are needed under random errors
to achieve the same low IUI as without errors. These results
are general enough to include arbitrary array geometry as
well as non-Gaussian error distributions. Practical guidelines
as to what accuracy is needed to make the impact of errors
negligible for a finite number of antenna are given. The
analytical results are validated via numerical simulations and
are in agreement with measurement-based studies.

APPENDIX

A. Proof of Lemma 1

First, we prove the upper bound. Using (12), one obtains

E{|αN |4}
= E{αNα

∗
NαNα

∗
N}

=
1
N4

E

{
N∑

n1=1

ejΨin1

N∑
n2=1

e−jΨin2

N∑
n3=1

ejΨin3

×
N∑

n4=1

e−jΨin4

}

=
1
N4

∑
n1,n2,n3,n4

E{ej(Ψin1−Ψin2+Ψin3−Ψin4 )} (67)

where the last summation is over 1 ≤ nk ≤ N , k = 1 . . . 4.
Since ejΨink are independent for different nk, we divide the
total set St of {n1, . . . , n4} into the set of distinct indices Sd

and its complementary set Sc
d = St − Sd,

St = {{n1, n2, n3, n4}, 1 ≤ nk ≤ N} (68)
Sd = {{n1, n2, n3, n4}, ni ̸= nj ,∀i ̸= j} (69)

Next, we determine the cardinalities of these sets. First, note
that the cardinality of St is |St| = N4 and, likewise,

|Sd| = N(N − 1)(N − 2)(N − 3) (70)

(the latter follows from the number (N)k of all possible
ordered selections of k distinct items out of a set of N distinct
items, (N)k = N !

(N−k)! [39, p. 745]). Hence, the cardinality of
the complementary set Sc

d is

|Sc
d| = N4 − |Sd| = 6N3 − 11N2 + 6N (71)

To simplify the derivations, define

βi,n1..n4 =
4∏

k=1

E{ej(−1)k+1Ψink } (72)

β′i,n1..n4
= E{

4∏
k=1

ej(−1)k+1Ψink } (73)

Since ejΨink are independent for different nk,

βi,n1..n4 = β′i,n1..n4
if {n1..n4} ∈ Sd (74)

Using (67) and (74),

E{|αN |4} =
1
N4

∑
n1..n4

β′i,n1..n4
(75)
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=
1
N4

{
∑
Sd

βi,n1..n4 +
∑
Sc

d

β′i,n1..n4
} (76)

=
1
N4

{
∑
Sd

βi,n1..n4 +
∑
Sc

d

βi,n1..n4}

+
1
N4

{
∑
Sc

d

β′i,n1..n4
−

∑
Sc

d

βi,n1..n4} (77)

=
1
N4

{
∑

n1..n4

βi,n1..n4 +
∑
Sc

d

(β′i,n1..n4
−βi,n1..n4)}

(78)

≤ |E{αN}|4 +N−4
∑
Sc

d

|β′i,n1..n4
− βi,n1..n4 |

(79)

≤ |E{αN}|4 + 12N−1 − 22N−2 + 12N−3

(80)

≤ |E{αN}|4 + 12N−1 (81)

where (76) is due to (74), (79) is due to the triangle inequality
and

|E{αN}|4 =
1
N4

∑
n1..n4

βi,n1..n4 (82)

and (80) is due to (71) and

|β′i,n1..n4
− βi,n1..n4 | ≤ 2 (83)

which follows from |β′i,n1..n4
|, |βi,n1..n4 | ≤ 1; (81) is due to

−22N−2 + 12N−3 < 0, N ≥ 1 (84)

This establishes the upper bound. The lower bound in (26) fol-
lows from Jensen’s inequality, since |·|4 is a convex function,
see e.g. [40].

B. Proof of Lemma 4

We will need the following technical Lemmas.
Lemma 5 [38]: Let {aN}∞N=1 be a sequence of real num-

bers such that

aN ≥ 0,
∞∑

N=1

aN

N
<∞ (85)

Then, there exists an increasing sequence of integers {Nk}∞k=1

such that Nk+1/Nk → 1 as k →∞ and
∞∑

k=1

aNk
<∞ (86)

Lemma 6 [38]: If yn are random variables such that∑∞
n=1 E{|yn|2} <∞, then yn

a.s.−−→ 0 as n→∞.
Now, use Lemma 5 with

aN = Var{zN} = E{|zN − E{zN}|2} (87)

which satisfy (85), to conclude that there exits an increasing
sequence {Nk} such that Nk+1/Nk → 1 and

∞∑
k=1

E{|zNk
− E{zNk

}|2} <∞ (88)

Now, using Lemma 6 with yk = zNk
− E{zNk

},

zNk

a.s.−−→ E{zNk
} as k →∞ (89)

i.e. almost sure convergence holds for the subsequence {Nk}.
It remains to prove that it also holds for any N in-between,
Nk < N < Nk+1. To this end, let ynm = znm − E{znm},
define the following sets I1, I2 of indexes (n,m):

I1 = {(n,m) : 1 ≤ n ≤ Nk, Nk < m ≤ N}
I2 = {(n,m) : Nk < n ≤ N, 1 ≤ m ≤ N} (90)

and note that

|yN | = |zN − E{zN}| (91)

=
1
N2

∣∣∣∣ ∑
n,m≤N

ynm

∣∣∣∣ (92)

≤ 1
N2

k

∣∣∣∣ ∑
n,m≤N

ynm

∣∣∣∣ (93)

=
1
N2

k

∣∣∣∣Sk +
∑

(n,m)∈I1

ynm +
∑

(n,m)∈I2

ynm

∣∣∣∣ (94)

≤ |Sk|
N2

k

+
∑

(n,m)∈I1

|ynm|
N2

k

+
∑

(n,m)∈I2

|ynm|
N2

k

(95)

≤ |Sk|
N2

k

+
∑

n≤Nk
Nk<m≤Nk+1

|ynm|
N2

k

+
∑

m≤Nk+1
Nk<n≤Nk+1

|ynm|
N2

k

(96)

≤ |Sk|
N2

k

+
2(Nk+1 −Nk)

Nk
+

2Nk+1(Nk+1 −Nk)
N2

k

(97)
a.s.−−→ 0 (98)

where Sk =
∑

n,m≤Nk
ynm; (93) is due to N > Nk, (96) is

due to Nk+1 > Nk and all summation terms being positive,
(97) is due to

|ynm| = |znm − E{znm}| ≤ |znm|+ E{|znm|} ≤ 2 (99)

since |znm| ≤ 1; (98) follows since, from (89),

Sk

N2
k

= zNk
− E{zNk

} a.s.−−→ 0 (100)

and Nk+1/Nk → 1. Therefore, from (98), zN
a.s.−−→ E{zN},

as required.

C. Proof of Proposition 1

To estimate |αN |2 for large N , we first obtain the asymp-
totic distribution of αN = αN1 + jαN2. To this end, observe
from (12) that it is an empirical average of i.i.d random
variables with finite variance. Therefore, from the central limit
theorem [35, p. 406], its real αN1 and imaginary αN2 parts
are asymptotically Gaussian,

αNk ∼ N (E{αNk}, σ2
Nk), k = 1, 2 (101)
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where σ2
Nk = Var{αNk} and, using (35), E{αN} =

ciα
0
N from which E{αNk} can be found. Next, σ2

N1 can be
evaluated as follows:

σ2
N1 = Var

{
1
N

N∑
n=1

cos(Ψin)

}
(102)

=
1
N2

N∑
n=1

Var{cos(Ψin)} (103)

=
1
N2

N∑
n=1

(E{cos2(Ψin)} − (E{cos(Ψin)})2) (104)

=
1
N2

N∑
n=1

(
1
2

+
1
4

E{ej2Ψin + e−j2Ψin}
)

− 1
4N2

N∑
n=1

(E{ejΨin + e−jΨin})2 (105)

=
1
N2

N∑
n=1

(
1
2

+
1
4
ej2Ψ0

in(c′i − c2i )
)

+
1
N2

N∑
n=1

(
1
4
e−j2Ψ0

in(c′i − c2i )
∗ − 1

2
|ci|2

)
(106)

=
1

2N
(1− |ci|2) +

1
N2

×
N∑

n=1

(
1
4
ej2Ψ0

in(c′i − c2i ) +
1
4
e−j2Ψ0

in(c′i − c2i )
∗
)

(107)

=
1

2N
(1− |ci|2) +

1
2N

Re{(c′i − c2i )β
0
N} (108)

=
1

2N
(1− |ci|2)(1 + o(1)) (109)

where (103) is due to Ψin being independent for different n;
(106) is due to (13) and the following expectations:

E{ej2Ψin} = ej2Ψ0
inc′i, c′i = E{ej2∆Ψin} (110)

E{ejΨin} = ejΨ0
inci, ci = E{ej∆Ψin} (111)

(107) follows by noting that 1st and last summation
terms are independent of n; (108) follows from β0

N =
N−1

∑N
n=1 e

j2Ψ0
n , ci, c′i being independent of n and z+z∗ =

2Re{z}; (109) follows from (50), where β0
N = o(1) → 0 as

N →∞. Following the steps in (102)-(109) adopted for αN2,
one obtains:

σ2
Nk =

1
2
σ2

N − (−1)k

2N
Re{(c′i − c2i )β

o
N}, k = 1, 2

=
1
2
σ2

N (1 + o(1)) ≈ 1
2
σ2

N (112)

where, using (31) and (32),

σ2
N = Var{αN} = E{|αN |2} − |E{αN}|2 (113)

= N−1(1− |ci|2)

It can be further shown that σNk > 0 unless ∆Ψin is a
deterministic constant with probability one, i.e. the errors are

deterministic (biases) rather then random, - a degenerate case
not considered here.

To obtain the asymptotic distribution of |αN |2, we will
now show that αN1 and αN2 are asymptotically independent.
To this end, we use the normalized random variables α′Nk,
k = 1, 2,

α′Nk = σ−1
NkαNk ∼ N (E{αNk}, 1) (114)

and evaluate their covariance rN :

rN = E{α′N1α
′
N2} − E{α′N1}E{α′N2} (115)

= (σN1σN2)−1(E{αN1αN2} − E{αN1}E{αN2})

=
∑

n

∑
m

E{cos(Ψin) sin(Ψim)}
σN1σN2N2

−
∑

n

∑
m

E{cos(Ψin)}E{sin(Ψim)}
σN1σN2N2

(116)

=
∑

n

E{sin(2Ψin)} − 2 E{cos(Ψin)}E{sin(Ψin)}
2σN1σN2N2

(117)

=
∑

n

(c′i − c2i )e
j2Ψ0

in − (c′i − c2i )
∗e−j2Ψ0

in

4jσN1σN2N2
(118)

=
1

2σN1σN2N
Im{(c′i − c2i )β

0
N} (119)

= Im{(c′i − c2i )β
0
N}

×
[
(1− |ci|2)2 − (Re{(c′i − c2i )β

0
N})2

]−1/2
(120)

where (116) is obtained by substituting the real and imagi-
nary parts of αN , defined in (12); the double sum in (116)
reduces to the single sum in (117) since Ψin is indepen-
dent of Ψim for n ̸= m and so E{cos(Ψin) sin(Ψim)} =
E{cos(Ψin)}E{sin(Ψim}; (118) follows from (110) and
(111); (119) follows from z − z∗ = 2jIm{z} and ci, c′i being
independent of n; (120) follows from (113) and (112). Once
can further show that |ci| < 1 unless ∆Ψin is a deterministic
constant (no random errors). Thus, using (120) and (50):

lim
N→∞

rN = lim
n→∞

Im{(c′i − c2i )β
0
N}√

(1−|ci|2)2 − (Re{(c′i − c2i )β
0
N})2

= 0

This shows that α′N1 and α′N2 are asymptotically uncorrelated
and, since they are asymptotically Gaussian, also independent
of each other. Having established this, we use the following
technical Lemma [41, p. 447] to establish the asymptotic
distribution of |αN |2.

Lemma 7: Let (x1, x2, . . . , xk) be k independent, normally
distributed random variables (RV) with means µi and unit
variances. Then y =

∑k
i=1 x

2
i is the noncentral chi-squared

RV with k degrees of freedom and noncentrality parameter λ,

y ∼ χ2
k(λ), λ =

k∑
i=1

µ2
i , Var{y} = 2(k + 2λ) (121)

Since α′N1 and α′N2 are two unit variance and asymptotically
independent Gaussian random variables with means E{αN1}
and E{αN2}, one obtains from Lemma 7, (114) and (112):

2α2
N1σ

−2
N + 2α2

N2σ
−2
N ∼ χ2

2(λ) (122)
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Using (31) and (121),

λ = 2(E{αN1})2σ−2
N + 2(E{αN2})2σ−2

N

= 2|E{αN}|2σ−2
N = 2σ−2

N |ci|2|α0
N |2 (123)

Using (121) with k = 2 and λ in (123),

Var{2α2
N1σ

−2
N + 2α2

N2σ
−2
N } = 4σ−4

N Var{|αN |2}
≈ 2(2 + 4σ−2

N |ci|2|α0
N |2)

(124)

Hence, using (122), the IUI is asymptotically distributed as

|αN |2 = α2
N1 + α2

N2 ∼
1
2
σ2

Nχ
2
2(λ) (125)

and, using (124), σ2
|αN |2 = Var{|αN |2} can be asymptotically

approximated as

σ2
|αN |2 ≈ σ4

N + 2|ci|2|α0
N |2σ2

N (126)

as required.
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