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Extremum Problems With Total Variation
Distance and Their Applications

Charalambos D. Charalambous, Ioannis Tzortzis, Sergey Loyka, and Themistoklis Charalambous

Abstract—The aim of this paper is to investigate extremum
problems with pay-off being the total variation distance metric
defined on the space of probability measures, subject to linear
functional constraints on the space of probability measures, and
vice-versa; that is, with the roles of total variation metric and
linear functional interchanged. Utilizing concepts from signed
measures, the extremum probability measures of such problems
are obtained in closed form, by identifying the partition of the
support set and the mass of these extremum measures on the
partition. The results are derived for abstract spaces; specifically,
complete separable metric spaces known as Polish spaces, while
the high level ideas are also discussed for denumerable spaces en-
dowed with the discrete topology. These extremum problems often
arise in many areas, such as, approximating a family of probabil-
ity distributions by a given probability distribution, maximizing
or minimizing entropy subject to total variation distance metric
constraints, quantifying uncertainty of probability distributions
by total variation distance metric, stochastic minimax control, and
in many problems of information, decision theory, and minimax
theory.

Index Terms—Extremum probability measures, signed mea-
sures, total variation distance.

I. INTRODUCTION

TOTAL variation distance metric on the space of probabil-
ity measures is a fundamental quantity in statistics and

probability, which over the years appeared in many diverse
applications. In information theory it is used to define strong
typicality and asymptotic equipartition of sequences generated
by sampling from a given distribution [1]. In decision problems,
it arises naturally when discriminating the results of observation
of two statistical hypotheses [1]. In studying the ergodicity of
Markov Chains, it is used to define the Dobrushin coefficient
and establish the contraction property of transition probability
distributions [2]. Moreover, distance in total variation of prob-
ability measures is related via upper and lower bounds to an
anthology of distances and distance metrics [3]. The measure
of distance in total variation of probability measures is a strong
form of closeness of probability measures, and, convergence
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with respect to total variation of probability measures implies
their convergence with respect to other distances and distance
metrics.

In this paper, we formulate and solve several extremum
problems involving the total variation distance metric and we
discuss their applications in the areas of control, communica-
tion and statistics. The main problems investigated are:

(a) Extremum problems of linear functionals on the space
of measures subject to a total variation distance metric
constraint defined on the space of measures.

(b) Extremum problems of total variation distance metric
on the space of measures subject to a linear functional
constraint on the space of measures.

(c) Applications of these extremum problems, and their
relations to other problems.

The formulation of these extremum problems, their discus-
sion in terms of applications, and the contributions of this paper
are developed at the abstract level, in which systems are repre-
sented by probability distributions on abstract spaces (complete
separable metric space, known as Polish spaces [4]), pay-offs
are represented by linear functionals on the space of probability
measures or by distance in variation of probability measures,
and constraints by linear functionals or distance in variation of
probability measures. We consider Polish spaces since they are
general enough to handle various models of practical interest,
such as stochastic control problems on Borel spaces.

Utilizing concepts from signed measures, closed form ex-
pressions of the probability measures are derived which achieve
the extremum of these problems. The construction of the ex-
tremum measures involves the identification of the partition of
their support set, and their mass defined on these partitions.
Throughout the derivations we make extensive use of lower
and upper bounds of pay-offs which are achievable. Several
simulations are carried out to illustrate the different features of
the extremum solution of the various problems. An interesting
observation concerning one of the extremum problems is its
equivalent formulation as an extremum problem involving the
oscillator semi-norm of the pay-off functional. The formulation
and results obtained for these problems at the abstract level
are discussed throughout the paper in the context of various
applications, including the following.

(i) Dynamic Programming Under Uncertainty, to deal with
uncertainty of transition probability distributions, via
minimax theory, with total variation distance metric un-
certainty constraints to codify the impact of incorrect dis-
tribution models on performance of the optimal strategies
[5]. This formulation is applicable to Markov decision
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problems subject to uncertainty. A specific example is
presented in Section VII.

(ii) Approximation of Probability Distributions with Total
Variation Distance Metric, to approximate a given high
dimensional probability distribution μ on a measurable
space (Σ,B(Σ)) by another lower dimensional distribu-
tion ν on (Σ,B(Σ)), Σ ⊆ Σ, via minimization of the total
variation distance metric between them subject to linear
functional constraints. Model and graph reduction can be
handled via such approximations. Graphs, for example,
constitute the foundation of many real-world datasets.
However, the size of the graph can become prohibitive to
understand essential information that they contain. The
reduction of graph-based models is significant in a wide
variety of applications, such as placement of autonomous
sensors, modeling Central Processing Unit (CPU) and
database demands in web-based software engineering,
and identifying the evolution in clusters within massive
dynamic datasets in database research.

(iii) Maximization or Minimization of Entropy Subject to
Total Variation Distance Metric Constraints, to invoke
insufficient reasoning based on maximizing the entropy
H(ν) of an unknown probability distribution ν on de-
numerable space Σ subject to a constraint on the total
variation distance metric.

The rest of the paper is organized as follows. In Section II, to-
tal variation distance is defined, the extremum problems are in-
troduced, while several related problems are discussed together
with their applications. In Section III, some of the properties of
the problems are discussed. In Sections III-A and III-B, signed
measures are utilized to convert the extremum problems into
equivalent ones, and to characterize the extremum measures
on abstract spaces. In Section IV, closed form expressions of
the extremum measures are derived for finite alphabet spaces.
In Section V, the relation between total variation distance and
other distance metrics is discussed. In Section VI, several simu-
lations are presented to illustrate how the optimal distribution of
the extremum problems behaves, for different scenarios of the
support set of the distribution. Finally, in Section VII, an exam-
ple from the area of stochastic optimal control is presented to
demonstrate how the results obtained can be applied in practice.

II. EXTREMUM PROBLEMS

In this section, we will introduce the extremum problems
we investigate in this paper. Let (Σ, dΣ) denote a complete,
separable metric space and (Σ,B(Σ)) the corresponding mea-
surable space, where B(Σ) is the σ-algebra generated by open
sets in Σ. Let M1(Σ) denote the set of probability measures
on B(Σ). The total variation distance1 is a metric [6] dTV :
M1(Σ)×M1(Σ) → [0,∞) defined by

dTV (α, β) ≡ ‖α−β‖TV
�
= sup

P∈P(Σ)

∑
Fi∈P

|α(Fi)−β(Fi)| (1)

1The definition of total variation distance can be extended to signed
measures.

where α, β ∈ M1(Σ) and P(Σ) denotes the collection of all fi-
nite partitions of Σ. With respect to this metric, (M1(Σ), dTV )
is a complete metric space. Since the elements of M1(Σ)
are probability measures, then dTV (α, β) ≤ 2. In minimax
problems one can introduce an uncertainty set based on distance
in variation as follows. Suppose the probability measure ν ∈
M1(Σ) is unknown, while modeling techniques give access
to a nominal probability measure μ ∈ M1(Σ). Having con-
structed the nominal probability measure, one may construct
from empirical data, the distance of the two measures with
respect to the total variation distance ‖ν − μ‖TV . This will
provide an estimate of the radius R, such that ‖ν − μ‖TV ≤ R,
and hence characterize the set of all possible true measures
ν ∈ M1(Σ), centered at the nominal distribution μ ∈ M1(Σ),
and lying within the ball of radius R, with respect to the
total variation distance ‖ · ‖TV . Such a procedure is used in
information theory to define strong typicality of sequences.
Unlike other distances used in the past such as relative entropy
[7]–[11], quantifying uncertainty via the metric ‖ · ‖TV does
not require absolute continuity of measures,2 i.e., singular
measures are admissible, and hence ν and μ need not be
defined on the same space. Thus, the support set of μ may be
Σ̃ ⊂ Σ, hence μ(Σ \ Σ̃) = 0 but ν(Σ \ Σ̃) �= 0 is allowed. For
measures induced by stochastic differential equations (SDE’s),
variation distance uncertainty set models situations in which
both the drift and diffusion coefficient of SDE’s are unknown.

Define the spaces BC(Σ)
Δ
={Bounded continuous functions

� :Σ �→R :‖�‖Δ
=supx∈Σ |�(x)|<∞}, BC+(Σ)

Δ
={� ∈ BC(Σ):

� ≥ 0}, BM(Σ)
Δ
= {Bounded measurable functions � :

Σ �→R : ‖�‖ < ∞}, BM+(Σ)
Δ
={�∈BM(Σ):�≥0}. BC(Σ)

and BM(Σ) endowed with the sup norm ‖�‖ Δ
= supx∈Σ |�(x)|,

are Banach spaces [6]. Next, we introduce the two main ex-
tremum problems we shall investigate in this paper.

Problem 2.1: Given a fixed nominal distribution μ ∈
M1(Σ) and a parameter R ∈ [0, 2], define the class of true
distributions by

BR(μ)
�
= {ν ∈ M1(Σ) : ‖ν − μ‖TV ≤ R} (2)

and the average pay-off with respect to the true probability
measure ν ∈ BR(μ) by

L1(ν)
�
=

∫
Σ

�(x)ν(dx), � ∈ BC+(Σ) or BM+(Σ). (3)

The objective is to find the solution of the extremum problem

D+(R)
�
= sup

ν∈BR(μ)

∫
Σ

�(x)ν(dx). (4)

Problem 2.1 is a convex optimization problem on the space
of probability measures. Note that, BC+(Σ), BM+(Σ) can
be generalized to L∞,+(Σ,B(Σ), ν), the set of all B(Σ)-
measurable, non-negative essentially bounded functions

2ν ∈ M1(Σ) is absolutely continuous with respect to μ ∈ M1(Σ), de-
noted by ν � μ, if μ(A) = 0 for some A ∈ B(Σ) then ν(A) = 0.
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defined ν − a.e. endowed with the essential supremum norm

‖�‖∞,ν = ν-ess supx∈Σ �(x)
Δ
= infΔ∈Nν

supx∈Δc ‖�(x)‖,
where Nν = {A ∈ B(Σ) : ν(A) = 0}.

In the context of minimax theory, Problem 2.1 is important
in minimax stochastic control, estimation, and decision. Such
formulations are found in [7]–[11] utilizing relative entropy
to describe a class of models, and in [12], [13] utilizing L1

distance to describe a class of power spectral densities. An
application of Problem 2.1 in the context of dynamic program-
ming is presented in Section VII.

The second extremum problem is defined below.
Problem 2.2: Given a fixed nominal distribution μ ∈

M1(Σ) and a parameter D ∈ [0,∞), define the class of true
distributions by

Q(D)
�
=

⎧⎨⎩ν ∈ M1(Σ) :

∫
Σ

�(x)ν(dx) ≤ D

⎫⎬⎭ (5)

where � ∈ BC+(Σ) or BM+(Σ), and the total variation pay-
off with respect to the true probability measure ν ∈ Q(D) by

L2(ν)
�
= ‖ν − μ‖TV . (6)

The objective is to find the solution of the extremum problem

R−(D)
�
= inf

ν∈Q(D)
‖ν − μ‖TV (7)

whenever3
∫
Σ �(x)μ(dx) > D.

Problem 2.2 is important in the context of approximation
theory, since distance in variation is a measure of proximity
of two probability distributions subject to constraints. It is
also important in spectral measure or density approximation as
follows. Recall that a function {R(τ) : −∞ ≤ τ ≤ ∞} is the
covariance function of a quadratic mean continuous and wide-
sense stationary process if and only if it is of the form [14]

R(τ) =

∞∫
−∞

e2πντF (dν),

where F (·) is a finite Borel measure on R, called spectral

measure. Thus, by proper normalization of F (·) via FN (dν)
Δ
=

(1/R(0))F (dν), then FN (dν) is a probability measure on
B(R), and hence Problem 2.2 can be used to approximate the
class of spectral measures with moment estimates belonging
to the class described by inequality constraints. Spectral es-
timation problems are discussed extensively in [15]–[19], uti-
lizing relative entropy and Hellinger distances, under moment
estimates involving equality constraints. However, in these
references, the approximated spectral density is absolutely con-
tinuous with respect to the nominal spectral density; hence, it
can not deal with reduced order approximation. In this respect,
distance in total variation between spectral measures is very
attractive.

3If
∫
Σ
�(x)μ(dx) ≤ D then ν∗ = μ is the trivial extremum measure of (7).

A. Related Extremum Problems

Problems 2.1, 2.2 are related to additional extremum prob-
lems which are introduced below.

1) The solution of (4) gives the solution to the problem
defined by

R+(D)
�
= sup

ν∈M1(Σ):
∫
Σ
�(x)ν(dx)≤D

‖ν − μ‖TV . (8)

Specifically, R+(D) is the inverse mapping of D+(R).
D+(R) is investigated in [20] in the context of min-
imax stochastic control, following an alternative ap-
proach which utilizes large deviation theory to express
the extremum measure by a convex combination of a
tilted and the nominal probability measures. The two
disadvantages of the method pursued in [8]–[11] are
the following. 1) No explicit closed form expression for
the extremum measure is given, and as a consequence,
2) its application to dynamic programming is restricted to
a class of uncertain probability measures which are ab-
solutely continuous with respect to the nominal measure
μ(Σ) ∈ M1(Σ).

2) Let ν and μ be absolutely continuous with respect to

the Lebesgue measure so that ϕ(x)
Δ
= (dν/d(x))(x),

ψ(x)
Δ
= (dμ/dx)(x) (e.g., ϕ(·), ψ(·) are the probability

density functions of ν(·) and μ(·), respectively. Then,
‖ν − μ‖TV =

∫
Σ |ϕ(x)− ψ(x)|dx and hence, (4) and

(8) are L1-distance optimization problems.
3) Let Σ be a non-empty denumerable set endowed with

the discrete topology including finite cardinality |Σ|, with
M1(Σ) identified with the standard probability simplex
in R|Σ|, that is, the set of all |Σ|-dimensional vectors

which are probability vectors, and �(x)
Δ
= − log ν(x),

x ∈ Σ (emerges from an additional constraint—Kraft in-
equality), where {ν(x) : x ∈ Σ} ∈ M1(Σ), {μ(x) : x ∈
Σ} ∈ M1(Σ). Then, (4) is equivalent to maximizing
the entropy of {ν(x) : x ∈ Σ} subject to total variation
distance metric constraint defined by

D+(R) = sup
ν∈M1(Σ):

∑
x∈Σ

|ν(x)−μ(x)|≤R

H(ν). (9)

Problem (9) is of interest when the concept of insufficient
reasoning (e.g., Jayne’s maximum entropy principle [21],
[22]) is applied to construct a model for ν ∈ M1(Σ),
subject to information quantified via total variation dis-
tance metric between ν and an empirical distribution μ.
In the context of stochastic control systems for a class
of distributions, and its relation to robustness, Problem
(9) with the total variation distance constraint replaced
by relative entropy distance constraint is investigated
in [23], [24].

4) The solution of (7) gives the solution to the problem
defined by

D−(R)
�
= inf

ν∈M1(Σ):‖ν−μ‖TV ≤R

∫
Σ

�(x)ν(dx). (10)
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Problems (7) and (10) are important in approximating
a class of probability distributions or spectral measures
by reduced ones. In fact, the solution of (10) is obtained
precisely as that of Problem 2.1, with a reverse compu-
tation of the partition of the space Σ and the mass of
the extremum measure on the partition moving in the
opposite direction.

III. CHARACTERIZATION OF EXTREMUM

MEASURES ON ABSTRACT SPACES

This section utilizes signed measures and some of their prop-
erties to convert Problems 2.1, 2.2 into equivalent extremum
problems. We describe the results using abstract spaces to avoid
excluding measures defined on Borel spaces. First, we discuss
some of the properties of these extremum Problems.

Lemma 3.1:

1) D+(R) is a non-decreasing concave function of R, and

D+(R) = sup
‖ν−μ‖TV =R

∫
Σ

�(x)ν(dx), if R ≤ Rmax (11)

where Rmax is the smallest non-negative number belong-
ing to [0, 2] such that D+(R) is constant in [Rmax, 2].

2) R−(D) is a non-increasing convex function of D, and

R−(D) = inf∫
Σ
�(x)ν(dx)=D

‖ν − μ‖TV , if D ≤ Dmax (12)

where Dmax is the smallest non-negative number be-
longing to [0,∞) such that R−(D) = 0 for any D ∈
[Dmax,∞).

Proof:

1) Suppose 0 ≤ R1 ≤ R2, then for every ν ∈ BR1
(μ) we

have ‖ν − μ‖TV ≤ R1 ≤ R2, and therefore ν ∈ BR2
(μ),

hence

sup
ν∈BR1

(μ)

∫
Σ

�(x)ν(dx) ≤ sup
ν∈BR2

(μ)

∫
Σ

�(x)ν(dx)

which is equivalent to D+(R1) ≤ D+(R2). So D+(R)
is a non-decreasing function of R. Now consider two
points (R1, D

+(R1)) and (R2, D
+(R2)) on the linear

functional curve, such that ν1 ∈ BR1
(μ) achieves the

supremum of (4) for R1, and ν2 ∈ BR2
(μ) achieves the

supremum of (4) for R2. Then, ‖ν1 − μ‖TV ≤ R1 and
‖ν2 − μ‖TV ≤ R2. For any λ ∈ (0, 1), we have

‖λν1 + (1− λ)ν2 − μ‖TV ≤ λ‖ν1 − μ‖TV

+ (1− λ)‖ν2 − μ‖TV ≤ λR1 + (1− λ)R2 = R.

Define ν∗
Δ
= λν1 + (1− λ)ν2, R

Δ
= λR1 + (1− λ)R2.

The previous equation implies that ν∗ ∈ BR(μ), hence

D+(λR1 + (1− λ)R2) ≥
∫
Σ �(x)ν∗(dx). Therefore

D+(R) ≥
∫
Σ

�(x)ν∗(dx)

=

∫
Σ

�(x) (λν1(dx) + (1− λ)ν2(dx))

=λ

∫
Σ

�(x)ν1(dx) + (1− λ)

∫
Σ

�(x)ν2(dx)

=λD+(R1) + (1− λ)D+(R2).

So, D+(R) is a concave function of R. Also the right
side of (11), say D̄+(R), is concave function of R. But
D+(R) = supR′≤R D̄+(R′) which completes the deriva-
tion of (11).

2) The derivation is similar to (1). �
Let Msm(Σ) denote the set of finite signed measures.

Then, any η ∈ Msm(Σ) has a Jordan decomposition [25]
{η+, η−} such that η = η+ − η−, and the total variation of η

is defined by ‖η‖TV
Δ
= η+(Σ) + η−(Σ). Define the following

subset M0(Σ)
Δ
= {η ∈ Msm(Σ) : η(Σ) = 0}. For ξ ∈ M0(Σ),

then ξ(Σ) = 0, which implies that ξ+(Σ) = ξ−(Σ), and hence

ξ+(Σ) = ξ−(Σ) = ‖ξ‖TV /2. Then, ξ
Δ
= ν − μ ∈ M0(Σ) and

hence ξ = (ν − μ)+ − (ν − μ)− ≡ ξ+ − ξ−.

A. Equivalent Extremum Problem of D+(R)

Consider the pay-off of Problem 2.1, for � ∈ BC+(Σ). The
solution is based on finding an upper bound which is achiev-
able. Then the following inequalities hold.

L1(ν)
�
=

∫
Σ

�(x)ν(dx)

(a)
=

∫
Σ

�(x)
(
ξ+(dx)− ξ−(dx)

)
+

∫
Σ

�(x)μ(dx)

(b)

≤ sup
x∈Σ

�(x)ξ+(Σ)− inf
x∈Σ

�(x)ξ−(Σ) +

∫
Σ

�(x)μ(dx)

(c)
= sup

x∈Σ
�(x)

‖ξ‖TV

2
− inf

x∈Σ
�(x)

‖ξ‖TV

2
+

∫
Σ

�(x)μ(dx)

=

{
sup
x∈Σ

�(x)− inf
x∈Σ

�(x)

}
‖ξ‖TV

2
+

∫
Σ

�(x)μ(dx)

(13)

where (a) follows by adding and subtracting
∫
Σ �(x)μ(dx), and

from the Jordan decomposition of (ν − μ), (b) follows due
to � ∈ BC+(Σ), (c) follows because any ξ ∈ M0(Σ) satisfies
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ξ+(Σ) = ξ−(Σ) = (1/2)‖ξ‖TV . For a given μ ∈ M1(Σ) and
ν ∈ BR(μ) define the set

B̃R(μ)
�
={ξ ∈ M0(Σ) : ξ= ν− μ, ν ∈ M1(Σ), ‖ξ‖TV ≤ R} .

The upper bound in the right hand side of (13) is achieved by
ξ∗ ∈ B̃R(μ) as follows. Let

x0 ∈ Σ0 �
= {x ∈ Σ : �(x) = sup {�(x) : x ∈ Σ} ≡ M}

x0 ∈ Σ0
�
= {x ∈ Σ : �(x) = inf {�(x) : x ∈ Σ} ≡ m} .

Take

ξ∗(dx) = ν∗(dx)− μ(dx) =
R

2
(δx0(dx)− δx0

(dx)) (14)

where δy(dx) denotes the Dirac measure concentrated at
y ∈ Σ. This is indeed a signed measure with total varia-
tion ‖ξ∗‖TV = ‖ν∗ − μ‖TV = R, and

∫
Σ �(x)(ν∗ − μ)(dx) =

(R/2)(M −m). Hence, by using (14) as a candidate of the
maximizing distribution then the extremum Problem 2.1 is
equivalent to

D+(R) =

{
sup
x∈Σ

�(x)− inf
x∈Σ

�(x)

}
R

2
+

∫
Σ

�(x)μ(dx) (15)

where ν∗ satisfies the constraint ‖ξ∗‖TV = ‖ν∗ − μ‖TV =
R, it is normalized ν∗(Σ) = 1, and 0 ≤ ν∗(A) ≤ 1 on any
A ∈ B(Σ). Alternatively, the pay-off

∫
Σ �(x)ν∗(dx) can be

written as∫
Σ

�(x)ν∗(dx) =

∫
Σ0

Mν∗(dx) +

∫
Σ0

mν∗(dx)

+

∫
Σ\Σ0∪Σ0

�(x)μ(dx). (16)

Hence, the optimal distribution ν∗ ∈ BR(μ) satisfies∫
Σ0

ν∗(dx) =μ(Σ0) +
R

2
∈ [0, 1] (17)

∫
Σ0

ν∗(dx) =μ(Σ0)−
R

2
∈ [0, 1] (18)

ν∗(A) =μ(A), ∀A ⊆ Σ \ Σ0 ∪ Σ0. (19)

Remark 3.2:

1) For μ ∈ M1(Σ) which do not include point mass, and
for f ∈ BC+(Σ), if Σ0 and Σ0 are countable, then (19)
is μ(Σ0) = μ(Σ0) = 0, ν∗(Σ0) = 0, ν∗(Σ0) = R/2,
ν∗(Σ \ Σ0 ∪ Σ0) = μ(Σ \ Σ0 ∪ Σ0)− (R/2) ∈ [0, 1].

2) The first right side term in (15) is related to the oscil-
lator seminorm of f ∈ BM(Σ) called global modulus

of continuity, defined by osc(f)
Δ
= sup(x,y)∈Σ×Σ |f(x)−

f(y)| = 2 infα∈R ‖f − α‖. For f ∈ BM+(Σ), osc(f) =
supx∈Σ |f(x)| − infx∈Σ |f(x)|.

B. Equivalent Extremum Problem of R−(D)

Next, we proceed with the abstract formulation of
Problem 2.2. Consider the constraint of Problem 2.2, for
� ∈ BC+(Σ). Then the following inequalities hold:∫
Σ

�(x)ν(dx)

=

∫
Σ

�(x)
(
ξ+(dx)− ξ−(dx)

)
+

∫
Σ

�(x)μ(dx)

≥ inf
x∈Σ

�(x)ξ+(Σ)− sup
x∈Σ

�(x)ξ−(Σ) +

∫
Σ

�(x)μ(dx)

= inf
x∈Σ

�(x)
‖ξ‖TV

2
− sup

x∈Σ
�(x)

‖ξ‖TV

2
+

∫
Σ

�(x)μ(dx)

=

{
inf
x∈Σ

�(x)− sup
x∈Σ

�(x)

}
‖ξ‖TV

2
+

∫
Σ

�(x)μ(dx). (20)

The lower bound on the right hand side of (20) is achieved by
choosing ξ∗ ∈ B̃R(μ) as follows:

ξ∗(dx) = ν∗(dx)− μ(dx) =
R

2
(δx0

(dx)− δx0(dx)) . (21)

This is a signed measure with total variation ‖ξ∗‖TV = ‖ν∗ −
μ‖TV = R. Hence, by using (21) as a candidate of the mini-
mizing distribution then (20) is equivalent to∫
Σ

�(x)ν∗(dx) =
R

2

{
inf
x∈Σ

�(x)− sup
x∈Σ

�(x)

}
+

∫
Σ

�(x)μ(dx).

(22)

Solving the above equation with respect to R the extremum
Problem 2.2 (for D <

∫
Σ �(x)μ(dx)) is equivalent to

R−(D) =
2
(
D −

∫
Σ �(x)μ(dx)

){
inf
x∈Σ

�(x)− sup
x∈Σ

�(x)

} (23)

where ν∗ satisfies the constraint
∫
Σ �(x)ν∗(dx) = D, it is nor-

malized ν∗(Σ) = 1, and 0 ≤ ν(A) ≤ 1 on any A ∈ B(Σ). We
can now identify Rmax and Dmax described in Lemma 3.1.
These are stated as a corollary.

Corollary 3.3: The values of Rmax and Dmax described in
Lemma 3.1 are given by

Rmax = 2
(
1− μ(Σ0)

)
and Dmax =

∫
Σ

�(x)μ(dx).

Proof: Concerning Rmax, D+(R) ≤ supx∈Σ �(x), ∀R ≥
0, hence D+(Rmax) can be at most supx∈Σ �(x). Since D+(R)
is non-decreasing then D+(Rmax) ≤ D+(R) ≤ supx∈Σ �(x),
for any R ≥ Rmax. Consider a ν that achieves this supremum.
Let μ(Σ0) and ν(Σ0) to denote the nominal and true probability
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measures on Σ0, respectively. If ν(Σ0)=1 then ν(Σ \ Σ0)=0.
Therefore

‖ν − μ‖TV =
∑
x∈Σ0

|ν(x)− μ(x)|+
∑

x∈Σ\Σ0

|ν(x)− μ(x)|

(a)
=

∑
x∈Σ0

ν(x)−
∑
x∈Σ0

μ(x) +
∑

x∈Σ\Σ0

μ(x)

= 2

(
1−

∑
x∈Σ0

μ(x)

)
= 2

(
1− μ(Σ0)

)
(24)

where (a) follows due to ν(Σ \ Σ0) = 0 which implies ν(x) =
0 for any x ∈ Σ \ Σ0, and because ν(x) ≥ μ(x) for all x ∈ Σ0.
Therefore, Rmax = 2(1− μ(Σ0)) implies that D+(Rmax) =
supx∈Σ �(x). Hence, D+(R)=supx∈Σ �(x), for any R≥Rmax.

Concerning Dmax, R−(D) ≥ 0 for all D ≥ 0 hence
R−(Dmax) can be at least zero. Let Dmax =

∫
Σ �(x)μ(dx),

then it is obvious that R−(Dmax) = 0. Since R−(D) in
non-increasing, then 0 ≤ R−(D) ≤ R−(Dmax), for any D ≥
Dmax. Hence, R−(D) = 0, for any D ≥ Dmax. �

IV. CHARACTERIZATION OF EXTREMUM

MEASURES FOR FINITE ALPHABETS

This section uses the results of Section III to compute closed
form expressions for the extremum measures ν∗ for any R ∈
[0, 2], when Σ is a finite alphabet space to give the intuition
into the solution procedure. This is done by identifying the sets
Σ0,Σ0,Σ \ Σ0 ∪ Σ0, and the measure ν∗ on these sets for any
R ∈ [0, 2]. Although this can be done for probability measures
on complete separable metric spaces (Polish spaces) (Σ, dΣ),
and for � ∈ BM+(Σ), � ∈ BC+(Σ), L∞,+(Σ,B(Σ), ν), we
prefer to discuss the finite alphabet case to gain additional
insight into these problems. At the end of this section we
shall use the finite alphabet case to discuss the extensions to
countable alphabet and to � ∈ L∞,+(Σ,B(Σ), ν).

Consider the finite alphabet case (Σ,M), where card(Σ) =
|Σ| is finite, M = 2|Σ|. Thus, ν and μ are point mass distribu-
tions on Σ. Define the set of probability vectors on Σ by

P(Σ)
�
=

{
p=

(
p1, . . . , p|Σ|

)
: pi≥0, i=0, . . . , |Σ|,

∑
i∈Σ

pi=1

}
.

Thus, p ∈ P(Σ) is a probability vector in R
|Σ|
+ . Also let �

Δ
=

{�1, . . . , �|Σ|} so that � ∈ R
|Σ|
+ (e.g., set of non-negative vectors

of dimension |Σ|).

A. Problem 2.1: Finite Alphabet Case

Suppose ν ∈ P(Σ) is the true probability vector and μ ∈
P(Σ) is the nominal fixed probability vector. The extremum
problem is defined by

D+(R)
�
= max

ν∈BR(μ)

∑
i∈Σ

�iνi (25)

where

BR(μ)
�
=

{
ν∈P(Σ):‖ν−μ‖TV

�
=
∑
i∈Σ

|νi−μi|≤R

}
. (26)

Next, we apply the results of Section III to characterize the

optimal ν∗ for any R ∈ [0, 2]. By defining ξi
Δ
= νi − μi, i =

1, . . . , |Σ|, and ξ ∈ M0(Σ), Problem 2.1 can be reformulated
as follows:

max
ν∈BR(μ)

∑
i∈Σ

�iνi −→
∑
i∈Σ

�iμi + max
ξ∈B̃R(μ)

∑
i∈Σ

�iξi. (27)

Note that ξ ∈ B̃R(μ) is described by the constraints

α
�
=
∑
i∈Σ

|ξi|≤R,
∑
i∈Σ

ξi=0, 0≤ξi+μi≤1, ∀i ∈ Σ. (28)

The positive and negative variation of the signed measure ξ are
defined by ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}. Therefore∑

i∈Σ
ξi=

∑
i∈Σ

ξ+i −
∑
i∈Σ

ξ−i ,
∑
i∈Σ

|ξi|=
∑
i∈Σ

ξ+i +
∑
i∈Σ

ξ−i (29)

and hence
∑

i∈Σ ξ+i ≡ α/2 ≡
∑

i∈Σ ξ−i . In addition∑
i∈Σ

�iξi =
∑
i∈Σ

�iξ
+
i −

∑
i∈Σ

�iξ
−
i . (30)

Define the maximum and minimum values of the sequence

{�1, . . . , �|Σ|} by �max
Δ
= maxi∈Σ �i, �min

Δ
= mini∈Σ �i, and

its corresponding support sets by Σ0 Δ
= {i ∈ Σ : �i = �max},

Σ0
Δ
= {i ∈ Σ : �i = �min}. For all remaining sequence, {�i :

i ∈ Σ \ Σ0 ∪ Σ0}, and for 1 ≤ r ≤ |Σ \ Σ0 ∪ Σ0| define re-
cursively the set of indices for which � achieves its (k + 1)th
smallest value by

Σk
�
=

⎧⎨⎩i ∈Σ : �i=min

⎧⎨⎩�α : α ∈ Σ \ Σ0 ∪

⎛⎝ k⋃
j=1

Σj−1

⎞⎠⎫⎬⎭
⎫⎬⎭

(31)

where k ∈ {1, 2, . . . , r}, till all the elements of Σ are exhausted
(i.e., k is at most |Σ \ Σ0 ∪ Σ0|). Define the corresponding
values of the sequence of sets in (31) by

�(Σk)
�
= min

i∈Σ\Σ0∪
(⋃k

j=1
Σj−1

) �i, k ∈ {1, 2, . . . , r}

where r is the number of Σk sets which is at most |Σ \
Σ0 ∪ Σ0|; for example, when k = 1, �(Σ1) = mini∈Σ\Σ0∪Σ0

�i,
when k = 2, �(Σ2) = mini∈Σ\Σ0∪Σ0∪Σ1

�i, etc. Note that if
�1 < �2 < . . . < �|Σ| then Σ0 = {|Σ|}, Σ0 = {1} and Σk =
{k + 1} for k = 1, . . . , |Σ| − 2. The following theorem char-
acterizes the solution of Problem 2.1.

Theorem 4.1: The solution of the finite alphabet version of
Problem 2.1 is given by

D+(R)=�maxν
∗(Σ0)+�minν

∗(Σ0)+
r∑

k=1

�(Σk)ν
∗(Σk). (32)
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Moreover, the optimal probabilities are given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

μi +
α

2
(33a)

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =

( ∑
i∈Σ0

μi −
α

2

)+

(33b)

ν∗(Σk)
�
=
∑
i∈Σk

ν∗i =

⎛⎝ ∑
i∈Σk

μi−

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+⎞⎠+

(33c)

α = min(R,Rmax), Rmax
�
= 2

(
1−

∑
i∈Σ0

μi

)
(33d)

where, k = 1, 2, . . . , r and r is the number of Σk sets which is
at most |Σ \ Σ0 ∪ Σ0|.

The solution of Problem 2.1 is obtained by identifying the
partition of Σ into disjoint sets {Σ0,Σ0,Σ1, . . . ,Σk} and the
measures on this partition. The main idea is to express the total
variation distance constraint as a summation of the positive
and negative variation of a signed measure, and then to find
upper and lower bounds on the probabilities of Σ0 and Σ \ Σ0,
which are achievable. Utilizing the fact that the positive and
negative variation parts of the total variation distance have equal
mass concentrated on them, closed form expressions of the
probability measures, on these sets, which achieve the upper
and lower bounds are derived.

In the following Lemma upper and lower bounds which
are achievable are obtained. These they will be used for the
derivation of Theorem 4.1.

Lemma 4.2:
(a) Upper Bound.∑

i∈Σ
�iξ

+
i ≤ �max

(α
2

)
. (34)

The bound holds with equality if∑
i∈Σ0

μi+
α

2
≤1,

∑
i∈Σ0

ξ+i =
α

2
, ξ+i =0, ∀i∈Σ\Σ0.

(35)
(b) Lower Bound.

Case 1) If
∑

i∈Σ0
μi − (α/2) ≥ 0 then∑

i∈Σ
�iξ

−
i ≥ �min

(α
2

)
. (36)

The bound holds with equality if∑
i∈Σ0

μi−
α

2
≥ 0,

∑
i∈Σ0

ξ−i =
α

2
, ξ−i = 0, ∀i ∈ Σ \ Σ0.

(37)

Case 2) If
∑k

j=1

∑
i∈Σj−1

μi − (α/2) ≤ 0 for any k ∈
{1, 2, . . . , r} then

∑
i∈Σ

�iξ
−
i ≥ �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+

k∑
j=1

∑
i∈Σj−1

�iμi.

(38)

Moreover, equality holds if∑
i∈Σj−1

ξ−i =
∑

i∈Σj−1

μi, for all j = 1, 2, . . . , k (39a)

∑
i∈Σk

ξ−i =

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠ (39b)

k∑
j=0

∑
i∈Σj

μi −
α

2
≥ 0 (39c)

ξ−i = 0 for all i ∈ Σ \ Σ0 ∪ Σ1 ∪ . . . ∪ Σk. (39d)

Proof: Part (a) and Part (b), case 1, follows from
Section III-A. For Part (b), case 2, we proceed as follows.
Consider any k ∈ {1, 2, . . . , r}. First, we show that inequality
holds. From Part (b), case 1, we have that∑
i∈Σ\∪k

j=1
Σj−1

�iξ
−
i ≥ min

i∈Σ\∪k
j=1

Σj−1

�i
∑

i∈Σ\∪k
j=1

Σj−1

ξ−i

= �(Σk)
∑

i∈Σ\∪k
j=1

Σj−1

ξ−i =�(Σk)

⎛⎝∑
i∈Σ

ξ−i −
k∑

j=1

∑
i∈Σj−1

ξ−i

⎞⎠ .

Hence,

∑
i∈Σ

�iξ
−
i −

k∑
j=1

∑
i∈Σj−1

�iξ
−
i ≥ �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠
which implies

∑
i∈Σ

�iξ
−
i ≥ �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+
k∑

j=1

∑
i∈Σj−1

�iμi.

Next, we show under the stated conditions that equality holds.

∑
i∈Σ

�iξ
−
i =

k∑
j=1

∑
i∈Σj−1

�iξ
−
i +

∑
i∈Σk

�iξ
−
i +

∑
i∈Σ\∪k

j=0
Σj

�iξ
−
i

=
k∑

j=1

�(Σj−1)
∑

i∈Σj−1

ξ−i + �(Σk)
∑
i∈Σk

ξ−i

=

k∑
j=1

∑
i∈Σj−1

�iμi + �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠ .

�
Proof of Theorem 4.1: From Lemma 3.1, part (1), and

Corollary 3.3, we know that for R ≤ Rmax, where Rmax =
2(1− μ(Σ0)), the total variation constraint holds with equality,
that is, ‖ξ‖TV = R. Let α = ‖ξ‖TV . From (27) and (28),
Problem 2.1 is given by

D+(R) =
∑
i∈Σ

�iμi + max
ξ∈B̃R(μ)

∑
i∈Σ

�iξi. (40)

where ξ ∈ B̃R(μ) is described by the constraints

α
�
=
∑
i∈Σ

|ξi| = R,
∑
i∈Σ

ξi = 0, 0 ≤ ξi + μi ≤ 1, ∀i ∈ Σ.

(41)
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To maximize (40) we employ (30). It is obvious that an up-
per and a lower bound must be obtained for

∑
i∈Σ �iξ

+
i and∑

i∈Σ �iξ
−
i , respectively.

From Lemma 4.2, Part (a), the upper bound (34), holds with
equality if conditions given by (35) are satisfied. Note that,∑

i∈Σ0 μi + (α/2) ≤ 1 is always satisfied and from the second
equation of (35) we have that

∑
i∈Σ0 νi =

∑
i∈Σ0 μi + (α/2)

and hence the optimal probability on Σ0 is given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

μi +
α

2
. (42)

From Lemma 4.2, Part (b), case 1, the lower bound (36),
holds with equality if conditions given by (37) are satisfied.
Furthermore, from the second equation of (37) we have that∑

i∈Σ0
νi =

∑
i∈Σ0

μi − (α/2) and condition given by the first
equation of (37) must be satisfied, hence the optimal probability
on Σ0 is given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =

(∑
i∈Σ0

μi −
α

2

)+

. (43)

The extremum solution for any R ≤ Rmax, under equality
conditions (35) and (37) is given by

D+(R) = {�max − �min}
α

2
+
∑
i∈Σ

�iμi. (44)

Lemma 4.2, Part (b), case 1, characterize the extremum solu-
tion for

∑
i∈Σ0

μi − (α/2) ≥ 0. Next, the characterization of
extremum solution when this condition is violated, that is, when∑k

j=1

∑
i∈Σj−1

μi − (α/2) ≤ 0 for any k ∈ {1, 2, . . . , r}, is
discussed.

From Lemma 4.2, Part (b), case 2, the lower bound (38),
holds with equality if conditions given by (39) are satisfied.
Furthermore, from (39b) we have that

∑
i∈Σk

νi =
∑
i∈Σk

μi −

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠ (45)

and conditions (α/2)−
∑k

j=1

∑
i∈Σj−1

μi ≥ 0 and (39c) must
be satisfied, hence the optimal probability on Σk is given by

ν∗(Σk)
�
=
∑
i∈Σk

ν∗i =

⎛⎝∑
i∈Σk

μi −

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+⎞⎠+

.

(46)

The extremum solution for any R ≤ Rmax, under equality
conditions (35) and (39) is given by

D+(R) =
∑
i∈Σ

�iξ
+
i −

∑
i∈Σ

�iξ
−
i +

∑
i∈Σ

�iμi = �max

(α
2

)

− �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+

k∑
j=1

∑
i∈Σj−1

�iμi +
∑
i∈Σ

�iμi.

For R ∈ [Rmax, 2], Lemma 3.1, part (1), states that D+(R)
is constant. Indeed for α = ‖ξ‖TV = Rmax = 2(1− μ(Σ0))

equality conditions of Lemma 4.2, Part (a), become∑
i∈Σ0

μi+
α

2
=1,

∑
i∈Σ0

ξ+i =
α

2
, ξ+i =0 for i∈Σ \ Σ0 (47)

and hence∑
i∈Σ\Σ0

μi−
α

2
=0,

∑
i∈ΣΣ0

ξ−i =
α

2
, ξ−i =0 for i∈Σ0. (48)

Therefore,
∑

i∈Σ\Σ0 ξ−i =
∑

i∈Σ\Σ0 μi and hence ξ−i = μi for
all i ∈ Σ \ Σ0. The extremum solution for any R ∈ [Rmax, 2]
is given by

D+(R) =
∑
i∈Σ

�iξ
+
i −

∑
i∈Σ

�iξ
−
i +

∑
i∈Σ

�iμi

(a)
=

∑
i∈Σ0

�iξ
+
i −

∑
i∈Σ\Σ0

�iξ
−
i +

∑
i∈Σ

�iμi

= �max

(α
2

)
−

∑
i∈Σ\Σ0

�iμi +
∑
i∈Σ

�iμi

= �max

(
1−

∑
i∈Σ0

μi

)
+
∑
i∈Σ0

�iμi = �max.

where (a) follows from (47) and (48). �

B. Problem 2.2: Finite Alphabet Case

In this subsection we provide the solution of Problem 2.2,
by following the procedure utilized to derive the solution of
Problem 2.1 (e.g., Section IV-A). The extremum problem is
defined by

R−(D)
�
= min

ν∈Q(D)

∑
i∈Σ

|νi − μi| (49)

where Q(D)
Δ
= {ν ∈ M1(Σ) :

∑
i∈Σ �iνi ≤ D}.

Define the maximum and minimum values of the sequence

by �max
Δ
= maxi∈Σ �i, �min

Δ
= mini∈Σ �i and its corresponding

support sets by Σ0 Δ
= {i ∈ Σ : �i = �max}, Σ0

Δ
= {i ∈ Σ : �i =

�min}. For all remaining sequence, {�i : i ∈ Σ \ Σ0 ∪ Σ0}, and
for 1 ≤ r ≤ |Σ \ Σ0 ∪ Σ0| define recursively the set of indices
for which � achieves its (k + 1)th largest value by

Σk �
=

⎧⎨⎩i∈Σ : �i=max

⎧⎨⎩�α : α ∈ Σ \ Σ0 ∪

⎛⎝ k⋃
j=1

Σj−1

⎞⎠⎫⎬⎭
⎫⎬⎭

(50)

where k ∈ {1, 2, . . . , r}, till all the elements of Σ are ex-
hausted, and define the corresponding maximum value of � on
the sequence on these sets by

�(Σk)
�
= max

i∈Σ\Σ0∪
(⋃k

j=1
Σj−1

) �i, k ∈ {1, 2, . . . , r}

where r is the number of Σk sets which is at most |Σ \
Σ0 ∪ Σ0|. Clearly, �(Σ1) = maxi∈Σ\Σ0∪Σ0

�i and so on. Note
the analogy between (50) and (31) for Problem 2.1. The
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main theorem which characterizes the extremum solution of
Problem 2.2 is given below.

Theorem 4.3: The solution of the finite alphabet version of
Problem 2.2 is given by

R−(D) =
∑
i∈Σ

|ν∗i − μi| (51)

where the value of R−(D) is calculated as follows.

1) If

D ≥ �min

⎛⎝ k∑
j=0

∑
i∈Σj

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k+1

∑
i∈Σj

�iμi

D ≤ �min

⎛⎝ k∑
j=1

∑
i∈Σj−1

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k

∑
i∈Σj

�iμi

then

R−(D)

=

2

(
D−�min

∑
i∈Σ0

μi−�(Σk)
k∑

j=1

∑
i∈Σj−1

μi−
r∑

j=k

∑
i∈Σj

�iμi

)
�min − �(Σk)

.

(52)

2) If D ≥ (�min − �max)
∑

i∈Σ0 μi +
∑

i∈Σ �iμi then

R−(D) =

2

(
D −

∑
i∈Σ

�iμi

)
�min − �max

. (53)

Moreover, the optimal probabilities are given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

μi +
α

2
(54a)

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =

(∑
i∈Σ0

μi −
α

2

)+

(54b)

ν∗(Σk)
�
=
∑
i∈Σk

ν∗i =

⎛⎝∑
i∈Σk

μi−

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+⎞⎠+

(54c)

α = min

(
R−(D), 2

(
1−

∑
i∈Σ0

μi

))
. (54d)

where k = 1, 2, . . . , r and r is the number of Σk sets
which is at most |Σ \ Σ0 ∪ Σ0|.

Proof: For the derivation of Theorem 4.3 see the
Appendix. �

C. Solutions of Related Extremum Problems

In Section II-A we discuss related extremum problems,
whose solution can be obtained from those of Problem 2.1 and
Problem 2.2. In this Section we give the solution of the finite
alphabet version of the related extremum problems described
by (8) and (10).

Consider the finite alphabet version of (8), that is

R+(D)
�
= sup

ν∈M1(Σ):
∑

i∈Σ
�iνi≤D

‖ν − μ‖TV . (55)

As stated in Section II-A, the solution of (55) is obtained from
the solution of Problem 2.1, by finding the inverse mapping or
by following a similar procedure to the one utilized to derive
Theorem 4.3. The main results are stated below.

Theorem 4.4: The solution of the finite alphabet version of
(55) is given by

R+(D) =
∑
i∈Σ

|ν∗i − μi| (56)

where the value of R+(D) is calculated as follows.

1) If

D ≥ �max

⎛⎝ k∑
j=1

∑
i∈Σj−1

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k

∑
i∈Σj

�iμi

D ≤ �max

⎛⎝ k∑
j=0

∑
i∈Σj

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k+1

∑
i∈Σj

�iμi,

then

R+(D)

=

2

(
D−�max

∑
i∈Σ0

μi−�(Σk)
k∑

j=1

∑
i∈Σj−1

μi−
r∑

j=k

∑
i∈Σj

�iμi

)
�max − �(Σk)

.

(57)

2) If D ≤ (�max − �min)
∑

i∈Σ0
μi +

∑
i∈Σ �iμi then

R+(D) =

2

(
D −

∑
i∈Σ

�iμi

)
�max − �min

. (58)

Moreover, the optimal probabilities are given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

μi +
α

2
(59a)

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =

(∑
i∈Σ0

μi −
α

2

)+

(59b)

ν∗(Σk)
�
=
∑
i∈Σk

ν∗i =

⎛⎝∑
i∈Σk

μi−

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+⎞⎠+

(59c)

α = min

(
R+(D), 2

(
1−

∑
i∈Σ0

μi

))
(59d)
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where, k = 1, 2, . . . , r and r is the number of Σk sets
which is at most |Σ \ Σ0 ∪ Σ0|.

Consider the finite alphabet version of (10), that is

D−(R)
�
= inf

ν∈M1(Σ):‖ν−μ‖TV ≤R

∑
i∈Σ

�iνi. (60)

Similarly as before, the solution of (60) is obtained from that
of Problem 2.1, but with a reverse computation on the partition
of Σ and the mass of the extremum measure on the partition
moving in the opposite direction. Below, we give the main
theorem.

Theorem 4.5: The solution of the finite alphabet version of
(60) is given by

D−(R)=�maxν
∗(Σ0)+�minν

∗(Σ0)+
r∑

k=1

�(Σk)ν∗(Σk). (61)

Moreover, the optimal probabilities are given by

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

μi +
α

2
(62a)

ν∗(Σ0)
�
=
∑
i∈Σ0

ν∗i =

(∑
i∈Σ0

μi −
α

2

)+

(62b)

ν∗(Σk)
�
=
∑
i∈Σk

ν∗i =

⎛⎝∑
i∈Σk

μi−

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+⎞⎠+

(62c)

α = min(R,Rmax), Rmax
�
= 2

(
1−

∑
i∈Σ0

μi

)
(62d)

where k = 1, 2, . . . , r and r is the number of Σk sets which is
at most |Σ \ Σ0 ∪ Σ0|.

Remark 4.6: The statements of Theorems 4.1, 4.3, 4.4, 4.5
are also valid for the countable alphabet case, because their
derivations are not restricted to Σ being finite alphabet. For
example, D+(R) is given by

D+(R)=�maxν
∗(Σ0)+�minν

∗(Σ0)+
r∑

k=1

�(Σk)ν
∗(Σk) (63)

where the optimal probabilities are given by

ν∗(Σ0) = μ(Σ0) +
α

2
, ν∗(Σ0) =

(
μ(Σ0)−

α

2

)+

ν∗(Σk) =

⎛⎝μ(Σk)−

⎛⎝α

2
−

k∑
j=1

μ(Σj−1)

⎞⎠+⎞⎠+

α = min(R,Rmax), Rmax
�
= 2

(
1− μ(Σ0)

)
k is at most countable. It also holds for any � ∈ BC+(Σ) as
seen in Section III.

V. RELATION OF TOTAL VARIATION

DISTANCE TO OTHER METRICS

In this section, we briefly state relations of the total variation
distance to other distance metrics, and we give some of its
applications.

L1 Distance Uncertainty

Let σ∈M1(Σ) be a fixed measure (as well as μ∈M1(Σ)).

Define the Radon-Nykodym derivatives ψ
Δ
= dμ/dσ, ϕ

Δ
=

dν/dσ (densities with respect to a fixed σ ∈ M1(Σ)). Then

‖ν − μ‖TV =

∫
|ϕ(x)− ψ(x)|σ(dx).

Consider a subset of BR(μ) defined by BR,σ(μ)
Δ
= {ν ∈

BR(μ) : ν � σ, μ � σ} ⊆ BR(μ). Then,

BR,σ(μ)

=

⎧⎨⎩ϕ∈L1(σ), ϕ≥0, σ−a.s. :

∫
Σ

|ϕ(x)−ψ(x)|σ(dx)≤R

⎫⎬⎭ .

Thus, under the absolute continuity of measures the total varia-
tion distance reduces to L1 distance. Robustness via L1 distance
uncertainty on the space of spectral densities is investigated
in the context of Wiener-Kolmogorov theory in an estimation
and decision framework in [12], [13]. The extremum problem
described under (a) can be applied to abstract formulations of
minimax control and estimation, when the nominal system and
uncertainty set are described by spectral measures with respect
to variation distance.

Relative Entropy Uncertainty Model

Reference [4] The relative entropy of ν ∈ M1(Σ) with
respect to μ ∈ M1(Σ) is a mapping H(·|·) : M1(Σ)×
M1(Σ) �−→ [0,∞] defined by

H(ν|μ) �
=

{∫
Σ log

(
dν
dμ

)
dν, if ν � μ

+∞, otherwise.

It is well known that H(ν|μ) ≥ 0, ∀ν, μ ∈ M1(Σ), while
H(ν|μ) = 0 ⇔ ν = μ. Total variation distance is bounded
above by relative entropy via Pinsker’s inequality giving

‖ν − μ‖TV ≤
√

2H(ν|μ), ν, μ ∈ M1(Σ). (64)

Given a known or nominal probability measure μ ∈ M1(Σ)
the uncertainty set based on relative entropy is defined by

AR̃(μ)
Δ
= {ν ∈ M1(Σ) : H(ν|μ) ≤ R̃}, where R̃ ∈ [0,∞).

Clearly, the uncertainty set determined by the total variation
distance dTV , is larger than that determined by the relative
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entropy. In other words, for every r > 0, in view of Pinsker’s
inequality (64){
ν ∈ M1(Σ), ν � μ : H(ν|μ) ≤ r2

2

}
⊆ BR(μ)

≡ {ν ∈ M1(Σ) : ‖ν − μ‖TV ≤ r} .

Hence, even for those measures which satisfy ν � μ, the
uncertainty set described by relative entropy is a subset of the
much larger total variation distance uncertainty set. Moreover,
by Pinsker’s inequality, distance in total variation of probability
measures is a lower bound on their relative entropy or Kullback-
Leibler distance.

Over the last few years, relative entropy uncertainty model
has received particular attention due to various properties (con-
vexity, compact level sets), its simplicity and its connection
to risk sensitive pay-off, minimax games, and large deviations
[7]–[11]. Recently, an uncertainty model along the spirit of
Radon-Nikodym derivative is employed in [26] for portfolio
optimization under uncertainty. Unfortunately, relative entropy
uncertainty modeling has two disadvantages. 1) It does not
define a true metric on the space of measures; 2) relative
entropy between two measures is not defined if the measures
are not absolutely continuous. The latter rules out the possi-
bility of measures ν ∈ M1(Σ) and μ ∈ M1(Σ), Σ̃ ⊂ Σ to be
defined on different spaces.4 It is one of the main disadvantages
in employing relative entropy in the context of uncertainty
modeling for stochastic controlled diffusions (or SDE’s) [27].
Specifically, by invoking a change of measure it can be shown
that relative entropy modeling allows uncertainty in the drift
coefficient of stochastic controlled diffusions, but not in the
diffusion coefficient, because the latter kind of uncertainty leads
to measures which are not absolutely continuous with respect to
the nominal measure [7].

An anthology of other distances and distance metrics related
to total variation distance is found in [4]. In view of the relations
between different metrics, such as relative entropy, Kakutani-
Hellinger metric, Prohorov’s metric, etc, it is clear that the
Problem discussed under (1)–(4) gives a sub-optimal solution
to the same problem with distance in variation replaced by
these metrics.

VI. SIMULATIONS

We will illustrate through simple examples how the op-
timal solution of the different extremum problems behaves.
In particular, we present calculations through Section VI-A
for maximization problems D+(R) and R+(D), when the
sequence � = {�1 �2 . . . �n} ∈ Rn

+ consists of a number of
�i’s which are equal, and calculations through Section VI-B for
the corresponding minimization problems R−(D) and D−(R),
when the �i’s are not equal.

4This corresponds to the case in which the nominal system is a simplified
version of the true system and is defined on a lower dimension space.

A. Extremum Problems D+(R) and R+(D)

Let Σ = {i : i = 1, 2, . . . , 8} and for simplicity consider
a descending sequence of lengths �={�∈R8

+ :�1=�2>�3=
�4 > �5 > �6 = �7 > �8} with corresponding nominal proba-
bility vector μ ∈ P1(Σ). Specifically, let � = [1, 1, 0.8, 0.8, 0.6,
0.4, 0.4, 0.2], and μ = [23/72, 13/72, 10/72, 9/72, 8/72, 4/72,
3/72, 2/72]. Note that, the sets which correspond to the
maximum, minimum and all the remaining lengths are equal to
Σ0 = {1, 2}, Σ0 = {8}, Σ1 = {7, 6}, Σ2 = {5}, Σ3 = {4, 3}.
Fig. 1(a)–(c) depicts the maximum linear functional pay-off
subject to total variation constraint, D+(R), and the optimal
probabilities, both given by Theorem 4.1. Fig. 1(b)–(d) depicts
the maximum total variation pay-off subject to linear functional
constraint, R+(D), and the optimal probabilities, both given
by Theorem 4.4. Recall Lemma 3.1 case 1 and Corollary 3.3.
Fig. 1(a) shows that, D+(R) is a non-decreasing concave
function of R and also that is constant in [Rmax, 2], where
Rmax = 2(1− μ(Σ0)) = 1.

B. Extremum Problems R−(D) and D−(R)

Let Σ = {i : i = 1, 2, . . . , 8} and for simplicity consider
a descending sequence of lengths �={�∈R8

+ :�1>�2>�3>
�4 > �5 > �6 > �7 > �8} with corresponding nominal proba-
bility vector μ ∈ P1(Σ). Specifically, let � = [1, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3, 0.2] and μ = [23/72, 13/72, 10/72, 9/72, 8/72,
4/72, 3/72, 2/72]. Note that, the sets which correspond to
the maximum, minimum and all the remaining lengths are
equal to Σ0 = {1}, Σ0 = {8}, Σ1 = {2}, Σ2 = {3}, Σ3 =
{4}, Σ4 = {5}, Σ5 = {6}, Σ6 = {7}. Fig. 2(a)–(c) depicts the
minimum total variation pay-off subject to linear functional
constraint, R−(D), and the optimal probabilities, both given by
Theorem 4.3. Fig. 2(b)–(d) depicts the minimum linear func-
tional pay-off subject to total variation constraint, D−(R),
and the optimal probabilities, both given by Theorem 4.5.
Recall Lemma 3.1 case 2 and Corollary 3.3. Fig. 2(a) shows
that, R−(D) is a non-increasing convex function of D, D ∈
[�min,

∑
i∈Σ �iμi). Note that for D < �min = 0.2 no solu-

tion exists and R−(D) is zero in [Dmax,∞) where Dmax =∑8
i=1 �iμi = 0.73.

VII. APPLICATION: DYNAMIC PROGRAMMING

Extremum problems to the area of stochastic optimal control
are investigated. In particular, we apply the results to minimax
dynamic programming, subject to uncertainty of the transition
probability distribution.

Consider an inventory control example inspired by [28].
Specifically, an optimal inventory ordering policy of a quantity
of a certain item at each of the N periods must be found so as
to meet a stochastic demand. Let us denote

• xk, stock available at the beginning of the kth period;
• uk, stock ordered at the beginning of the kth period;
• wk, demand during kth period with given probability

distribution;
• h, holding cost per unit item remaining unsold at the end

of the kth period;



2364 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 9, SEPTEMBER 2014

Fig. 1. Example A: optimum solution of (a) D+(R); and, (b) R+(D). Optimal probabilities of (c) D+(R); and, (d) R+(D).

Fig. 2. Example B: optimum solution of (a) R−(D); and, (b) D−(R). Optimal probabilities of (c) R−(D); and, (d) D−(R).
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• c, cost per unit stock ordered;
• p, shortage cost per unit demand unfilled.

The random disturbance at time k, wk may depend on
values of xk and uk but not on values of prior disturbances
w0, . . . , wk−1. Excess demand is backlogged and filled as soon
as additional inventory becomes available. Inventory and de-
mand are non-negative integers variables. Thus, we assume a
nominal system given by

xk+1 = max(0, xk + uk − wk) (65)

and a total sample pay-off over N periods given by

N−1∑
k=0

(cuk+hmax(0, xk+ uk−wk)+pmax(0, wk−xk−uk)) .

We further assume that wk is independent and identically
distributed according to μwk

(·) = μw(·). We formulate the
problem as a minimax optimization of the expected cost as
follows:

min
uk∈Uk(xk)

max
νwk

(·):‖νwk
(·)−μw(·)‖

TV
≤R

k=0,...,N−1

E

{
N−1∑
k=0

(cuk

+hmax(0, xk+uk−wk)+pmax(0, wk− xk− uk))

}
. (66)

Assume the following:

• the nominal and the true distribution of {wk : k =
0, 1, . . . , N − 1} is μwk

(·) = μw(·), and νwk
(·), respec-

tively, k = 0, 1, . . . , N − 1;
• the maximum capacity (xk + uk) for stock is 2 units;
• the planning horizon N = 3 periods;
• the holding cost h and the ordering cost c are both 1 unit;
• the shortage cost p is 3 units;
• the demand wk has a nominal probability distribution

given by, μw(wk = 0) = 0.1, μw(wk = 1) = 0.7, and
μw(wk = 2) = 0.2, k = 0, 1, . . . , N − 1.

The dynamic programming algorithm for the minimax prob-
lem subject to total variation distance uncertainty is given by

VN (xN ) = 0 (67a)

Vk(xk) = min
0≤uk≤2−xk

max
νwk

(·):‖νwk
(·)−μw(·)‖

TV
≤R

E {uk +max(0, xk + uk − wk) + 3max(0, wk − xk − uk)

+ Vk+1 (max(0, xk + uk − wk))}
= min

0≤uk≤2−xk

max
νwk

(·):‖νwk
(·)−μw(·)‖

TV
≤R

E {�k(xk, uk, wk)}

≡ min
0≤uk≤2−xk

D+(xk, uk, R), k=0, 1, . . . , N−1 (67b)

where

�k(xk, uk, wk) = uk +max(0, xk + uk − wk)

+ 3max(0, wk − xk − uk) + Vk+1 (max(0, xk + uk − wk)) .

To address the maximization problem in (67b), for each
k = 0, 1, . . . , N − 1, xk ∈ {0, 1, 2} and 0 ≤ uk ≤ 2− xk, de-
fine the maximum and minimum values of �(xk, uk, wk) by

�max(xk, uk)
Δ
=maxwk∈{0,1,2} �(xk, uk, wk) and �min(xk, uk)

Δ
=

minwk∈{0,1,2} �(xk, uk, wk), respectively. Its corresponding
support sets are given by

Σ0 = {wk ∈ {0, 1, 2} : �(xk, uk, wk) = �max(xk, uk)}

Σ0 = {wk ∈ {0, 1, 2} : �(xk, uk, wk) = �min(xk, uk)} .

For all remaining sequence {�(xk, uk, wk) : wk ∈ {0, 1, 2} \
Σ0 ∪ Σ0} and for 1 ≤ r ≤ |{0, 1, 2} \ Σ0 ∪ Σ0| define recur-
sively the set of indices for which �(xk, uk, uk) achieves its
(j + 1)th smallest value by

Σj
�
=

{
wk ∈ {0, 1, 2} : �(xk, uk, wk) = min

{
�(xk, uk, αk)

: αk ∈ {0, 1, 2} \ Σ0 ∪
(

j⋃
i=1

Σi−1

)}}
, j ∈ {1, 2, . . . , r}

till all the elements of {0, 1, 2} are exhausted. Further, define

�Σj
(xk, uk)

�
= min

wk∈{0,1,2}\Σ0∪
(⋃j

i=1
Σi−1

) �(xk, uk, wk)

where j ∈ {1, 2, . . . , r}. Once we identify the support sets and
the corresponding values of the sequence �(xk, uk, wk) on these
sets, we employ (32), (33) to calculate the maximizing distri-
bution ν∗wk

(·) and the extremum solution of D+(xk, uk, R).
Finally, by employing (67) the optimal cost-to-go and hence
the optimal ordering policy are obtained. Alternatively, from
the definition of the oscillator seminorm (Remark 3.2, second
part), (67) can be expressed as follows:

VN (xN )= 0

Vk(xk)= min
0≤uk≤2−xk{
Eμw

{uk+max(0, xk+uk−wk)

+ 3max(0, wk−xk−uk)

+ Vk+1 (max(0, xk+uk−wk))}

+
Rk

2

(
max
wk

{uk+max(0, xk+uk−wk)

+ 3max(0, wk−xk−uk)

+ Vk+1 (max(0, xk+uk−wk))}

−min
wk

{uk+max(0, xk+uk−wk)

+ 3max(0, wk−xk−uk)

+ Vk+1 (max(0, xk+uk−wk))}
)}
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TABLE I
DYNAMIC PROGRAMMING ALGORITHM RESULTS

TABLE II
MAXIMIZING DISTRIBUTION AND SUPPORT SETS FOR R = 1

where Rk = R ∈ [0, 2]. The problem is solved for two possible
values of R for each period resulting in optimal ordering
policies as shown in Table I.

By setting R = 0, we choose to calculate the optimal con-
trol policy, when the true probability distribution νwk

(·) =
μw(·), k = 0, 1, 2. This corresponds to the classical dynamic
programming algorithm. From Table I, the resulting optimal
ordering policy for each period is to order one unit if the current
stock is zero and order nothing otherwise.

By setting the total variation distance R = 1, we choose to
calculate the optimal control policy, when the true probability
distribution is νwk

(·) �= μw(·), k = 0, 1, 2. The maximizing
distribution ν∗wk

(·) and its corresponding support sets for each
stock available, and the resulting optimal ordering policies at
each stage are given in Table II. Taking into consideration the
maximization (that is, by setting R > 0) the dynamic program-
ming algorithm results in optimal control policies which are
more robust with respect to uncertainty, but with the sacrifice of
low present and future costs. In cases where the planner needs
to balance the desire for low costs with the undesirability of
scenarios with high uncertainty, he must choose values of R
between 0 and 1. From Table I, the resulting optimal ordering
policy for the first two periods is to order two, one and zero
units if the current stock is zero, one and two, respectively. For
the last period the optimal ordering policy is to order one unit
if the current stock is zero and order nothing otherwise.

Fig. 3. Section VII: (a) optimal cost-to-go; (b) optimal control policy.

The optimal cost-to-go and the optimal control policy, for
each period and for each possible state, as a function of R ∈
[0, 2], are illustrated in Fig. 3. Clearly, Fig. 3(a) depicts that the
optimal cost-to-go is a non-decreasing concave function of R
as shown under case 1 in Lemma 3.1.

VIII. CONCLUSION

This paper is concerned with extremum problems involving
total variation distance metric as a pay-off subject to linear
functional constraints, and vice-versa. These problems are
formulated using concepts from signed measures while the
theory is developed on abstract spaces. Certain properties and
applications of the extremum problems are discussed, while
closed form expressions of the extremum measures are derived
for finite alphabet spaces. Finally, it is shown through several
simulations and an application how the extremum solution of
the various problems behaves.
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APPENDIX

Before we proceed with the proof of Theorem 4.3, we give
the following Lemma in which lower and upper bounds, which
are achievable, are obtained.

Lemma A.1

(a) Lower Bound∑
i∈Σ

�iξ
+
i ≥ �min

(α
2

)
. (68)

The bound holds with equality if∑
i∈Σ0

μi+
α

2
≤ 1,

∑
i∈Σ0

ξ+i =
α

2
, ξ+i =0, ∀i ∈ Σ \ Σ0.

(69)
(b) Upper Bound.

Case 1) If
∑

i∈Σ0 μi − (α/2) ≥ 0 then∑
i∈Σ

�iξ
−
i ≤ �max

(α
2

)
. (70)

The bound holds with equality if∑
i∈Σ0

μi−
α

2
≥ 0,

∑
i∈Σ0

ξ−i =
α

2
, ξ−i = 0, ∀i ∈ Σ \ Σ0.

(71)

Case 2) If
∑k

j=1

∑
i∈Σj−1 μi − (α/2) ≤ 0 for any k ∈

{1, 2, . . . , r} then

∑
i∈Σ

�iξ
−
i ≤ �(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+

k∑
j=1

∑
i∈Σj−1

�iμi.

(72)

Moreover, equality holds if∑
i∈Σj−1

ξ−i =
∑

i∈Σj−1

μi, for all j = 1, 2, . . . , k (73a)

∑
i∈Σk

ξ−i =

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠ (73b)

k∑
j=0

∑
i∈Σj

μi −
α

2
≥ 0 (73c)

ξ−i = 0 for all i ∈ Σ \ Σ0 ∪ Σ1 ∪ . . . ∪ Σk. (73d)

Proof: Part (a) and Part (b), case 1, follows from
Section III-B. The proof of Part (b), case 2, is similar to the
proof given for Lemma 4.2, Part (b), case 2, with appropriate
changes on Σk sets. �

Proof of Theorem 4.3: From Lemma 3.1, part (2), and
Corollary 3.3, we know that for D ≤ Dmax, where Dmax =∑

i∈Σ �iμi, the average constraint holds with equality, that is∑
i∈Σ

�iνi =
∑
i∈Σ

�iξ
+
i −

∑
i∈Σ

�iξ
−
i +

∑
i∈Σ

�iμi = D.

From Lemma A.1, Part (a) and from Part (b), case 1, when
equality conditions (69) and (71) are satisfied we have that

�min

(α
2

)
− �max

(α
2

)
+
∑
i∈Σ

�iμi = D.

Solving the above equation with respect to α we get that

α =
2
(
D −

∑
i∈Σ �iμi

)
�min − �max

. (74)

Since the first equation of (69) is always satisfied, it remains
to ensure that the first equation of (71) is also satisfied. By
substituting (74) into the first equation of (71) and solving with
respect to D we get that if D ≥ (�min − �max)

∑
i∈Σ0 μi +∑

i∈Σ �iμi then R−(D) is given by (53). Moreover, the optimal
probabilities given by (54a) and (54b) are obtained from the
second equation of (69) and (71), respectively.

Lemma A.1, Part (b), case 1, characterize the extremum so-
lution for

∑
i∈Σ0 μi − (α/2) ≥ 0. Next, the characterization of

extremum solution when this condition is violated, that is, when∑k
j=1

∑
i∈Σj−1 μi − (α/2) ≤ 0 for any k ∈ {1, 2, . . . , r}, is

discussed.
From Lemma A.1, Part (b), case 2, the upper bound (72),

holds with equality if conditions given by (73) are satisfied.
Hence,

�min

(α
2

)
−�(Σk)

⎛⎝α

2
−

k∑
j=1

∑
i∈Σj−1

μi

⎞⎠+

k∑
j=1

∑
i∈Σj−1

�iμi=D.

Solving the above equation with respect to α we get that

α=

2

(
D−�min

∑
i∈Σ0

μi−�(Σk)
k∑

j=1

∑
i∈Σj−1

μi−
r∑

j=k

∑
i∈Σj

�iμi

)
�min − �(Σk)

.

(75)

Substituting (75) into
∑k

j=1

∑
i∈Σj−1 μi − (α/2) ≤ 0 and into

(73c) and solving with respect to D we get that if

D ≥ �min

⎛⎝ k∑
j=0

∑
i∈Σj

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k+1

∑
i∈Σj

�iμi

D ≤ �min

⎛⎝ k∑
j=1

∑
i∈Σj−1

μi +
∑
i∈Σ0

μi

⎞⎠+

r∑
j=k

∑
i∈Σj

�iμi,

then R−(D) is given by (52). Moreover, the optimal probability
on Σk given by (54c) is obtained from (73b).

For D ∈ [Dmax,∞), it is straightforward that the extremum
measure is given by ν∗ = μ and hence R−(D) = 0. �



2368 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 9, SEPTEMBER 2014

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 1991.

[2] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
London, U.K.: Springer-Verlag, 1993.

[3] A. L. Gibbs and F. E. SU, “On choosing and bounding probability met-
rics,” Int. Statist. Rev., vol. 70, no. 3, pp. 419–435, Dec. 2002.

[4] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of
Large Deviations. New York, NY, USA: Wiley, 1997.

[5] C. D. Charalambous, I. Tzortzis, and F. Rezaei, “Stochastic optimal control
of discrete-time systems subject to conditional distribution uncertainty,”
in Proc. 50th IEEE Conf. Decision and Control and European Control
Conference, Orlando, FL, USA, Dec. 12–15, 2011, pp. 6407–6412.

[6] N. Dunford and J. Schwartz, Linear Operators: Part 1: General Theory.
New York, NY, USA: Interscience, 1957.

[7] P. D. Pra, L. Meneghini, and W. J. Runggaldier, “Connections between
stochastic control and dynamic games,” Math. Control Signals Syst.,
vol. 9, no. 4, pp. 303–326, 1996.

[8] V. A. Ugrinovskii and I. R. Petersen, “Finite horizon minimax optimal
control of stochastic partially observed time varying uncertain systems,”
Math. Control Signals Syst., vol. 12, no. 1, pp. 1–23, 1999.

[9] I. R. Petersen, M. R. James, and P. Dupuis, “Minimax optimal control
of stochastic uncertain systems with relative entropy constraints,” IEEE
Trans. Autom. Control, vol. 45, no. 3, pp. 398–412, Mar. 2000.

[10] N. U. Ahmed and C. D. Charalambous, “Minimax games for stochastic sys-
tems subject to relative entropy uncertainty: Applications to sde’s on Hilbert
spaces,” J. Math. Control Signals Syst., vol. 19, no. 1, pp. 65–91, Feb. 2007.

[11] C. D. Charalambous and F. Rezaei, “Stochastic uncertain systems subject
to relative entropy constraints: Induced norms and monotonicity prop-
erties of minimax games,” IEEE Trans. Autom. Control, vol. 52, no. 4,
pp. 647–663, Apr. 2007.

[12] H. V. Poor, “On robust Wiener filtering,” IEEE Trans. Autom. Control,
vol. 25, no. 3, pp. 531–536, Jun. 1980.

[13] K. S. Vastola and H. V. Poor, “On robust Wiener-Kolmogorov theory,”
IEEE Trans. Inform. Theory, vol. 30, no. 2, pp. 315–327, Mar. 1984.

[14] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems.
New York, NY, USA: Springer-Verlag, 1985.

[15] A. Ferrante, M. Pavon, and F. Ramponi, “Hellinger vs. Kullback-Leibler
multivariable spectrum approximation,” IEEE Trans. Autom. Control,
vol. 53, no. 5, pp. 954–967, May 2008.

[16] T. T. Georgiou, “Relative entropy and the multivariable multidimensional
moment problem,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1052–
1066, Mar. 2006.

[17] A. Ferrante, M. Pavon, and F. Ramponi, “Constrained approximation
in the Hellinger distance,” in Proc. Eur. Control Conf., Kos, Greece,
Jul. 2–5, 2007, pp. 322–327.

[18] T. T. Georgiou and A. Lindquist, “Kullback-Leibler approximation of
spectral density functions,” IEEE Trans. Inform. Theory, vol. 49, no. 11,
pp. 2910–2917, Nov. 2003.

[19] M. Pavon and A. Ferrante, “On the Georgiou-Lindquist approach to
constrained Kullback-Leibler approximation of spectral densities,” IEEE
Trans. Autom. Control, vol. 51, no. 4, pp. 639–644, Apr. 2006.

[20] F. Rezaei, C. D. Charalambous, and N. U. Ahmed, “Optimal control of un-
certain stochastic systems subject to total variation distance uncertainty,”
SIAM J. Control and Optimiz., vol. 50, no. 5, pp. 2683–2725, Sep. 2012.

[21] E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev.,
vol. 106, pp. 620–630, 1957.

[22] E. T. Jaynes, “Information theory and statistical mechanics ii,” Phys. Rev.,
vol. 108, pp. 171–190, 1957.

[23] J. S. Baras and M. Rabi, “Maximum entropy models, dynamic games, and
robust output feedback control for automata,” in Proc. 44th IEEE Conf.
Decision and Control, and the European Control Conf., Seville, Spain,
Dec. 12–15, 2005.

[24] F. Rezaei, C. D. Charalambous, and N. U. Ahmed, Optimization
of Stochastic Uncertain Systems: Entropy Rate Functionals, Minimax
Games and Robustness. A Festschrift in Honor of Robert J Elliott.
Singapore: World Scientific, 2012, ser. Advances in Statistics, Probability
and Actuarial Science.

[25] P. R. Halmos, Measure Theory. New York, NY, USA: Springer-Verlag,
1974.

[26] B. Oksendal and A. Sulem, “Portfolio Optimization Under Model Uncer-
tainty and bsde Games,” Institut National de Recherche en Informatique
et en Automatique, Rapport de Recherche 7554, 2011.

[27] M. S. Pinsker, Information and Information Stability of Random Variables
and Processes. San Francisco, CA, USA: Holden-Day, 1964.

[28] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena Scientific, 2005.

Charalambos D. Charalambous received the B.S.,
M.E., and Ph.D. degrees in 1987, 1988, and 1992,
respectively, all from the Department of Electrical
Engineering, Old Dominion University, VA, USA.

In 2003, he joined the Department of Electrical
and Computer Engineering, University of Cyprus,
where he served as Associate Dean of the School
of Engineering until 2009. He was an Associate
Professor at the University of Ottawa, School of
Information Technology and Engineering, from 1999
to 2003. He served as a non-tenure faculty member

on the faculty of the Department of Electrical and Computer Engineering,
McGill University, from 1995 to 1999. From 1993 to 1995, he was a Post-
doctoral Fellow at Idaho State University. His research group ICCC SystemS,
Information, Communication and Control of Complex Systems, is interested in
stochastic dynamical decision and control systems, information theory and its
applications in telecommunication systems, optimization subject to ambiguity,
stochastic dynamic games, large scale distributed and decentralized decision
systems, and mathematical finance.

Dr. Charalambous is currently an Associate Editor of the Systems and
Control Letters and Mathematics of Control, Signals, and Systems. In the past
he served as an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC
CONTROL and IEEE COMMUNICATIONS LETTERS. In 2001, he received the
Premier’s Research Excellence Award of the Ontario Province of Canada.

Ioannis Tzortzis received the Diploma degree from
the Higher Technical Institute, Nicosia, Cyprus, in
2003, the B.Sc. degree from Budapest University of
Technology and Economics, Budapest, Hungary, in
2007, and the M.Sc. degree from the University of
Cyprus, Nicosia, Cyprus, in 2009, all in electrical
and electronic engineering. He is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Cyprus.

His research interests include stochastic processes
and systems, minimax dynamic games, model reduc-

tion, and control and optimization.

Sergey Loyka was born in Minsk, Belarus. He re-
ceived the Ph.D. degree in radio engineering from
the Belorussian State University of Informatics and
Radioelectronics (BSUIR), Minsk, Belarus, in 1995
and the M.S. degree (Hons.) from Minsk Radioengi-
neering Institute, Minsk, Belarus, in 1992.

Since 2001, he has been a faculty member at
the School of Electrical Engineering and Computer
Science, University of Ottawa, Ottawa, ON, Canada.
Prior to that, he was a Research Fellow in the Labo-
ratory of Communications and Integrated Microelec-

tronics (LACIME) of Ecole de Technologie Superieure, Montreal, QC, Canada;
a Senior Scientist at the Electromagnetic Compatibility Laboratory of BSUIR,
Belarus; and an Invited Scientist at the Laboratory of Electromagnetism
and Acoustic (LEMA), Swiss Federal Institute of Technology, Lausanne,
Switzerland. His areas of research are wireless communications and networks
and, in particular, MIMO systems and security aspects of such systems, in
which he has published extensively.

Dr. Loyka received a number of awards from the URSI, the IEEE, the Swiss,
Belarus and former USSR governments, and the Soros Foundation.

Themistoklis Charalambous received the B.A. and
M.Eng. degrees in electrical and information sci-
ences from Trinity College, Cambridge Univer-
sity, Cambridge, U.K., and the Ph.D. degree from
the Control Laboratory, Engineering Department,
Cambridge University.

Following this, he joined the Human Robotics
Group as a Research Associate at Imperial College
London and worked as a Visiting Lecturer at the
Department of Electrical and Computer Engineering,
University of Cyprus. He is currently a Research

Associate with the Department of Automatic Control of the School of Electrical
Engineering, Royal Institute of Technology (KTH). His research involves
cooperative control, distributed decision making, game theory, and control to
various resource allocation problems in complex and networked systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


