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Abstract—Convexity properties of error rates of a class of
decoders, including the maximum-likelihood/min-distance one
as a special case, are studied for arbitrary constellations, bit
mapping, and coding. Earlier results obtained for the additive
white Gaussian noise channel are extended to a wide class of
noise densities, including unimodal and spherically invariant
noise. Under these broad conditions, symbol and bit error rates
are shown to be convex functions of the signal-to-noise ratio
(SNR) in the high-SNR regime with an explicitly determined
threshold, which depends only on the constellation dimension-
ality and minimum distance, thus enabling an application of the
powerful tools of convex optimization to such digital communi-
cation systems in a rigorous way. It is the decreasing nature of
the noise power density around the decision region boundaries
that ensures the convexity of symbol error rates in the general
case. The known high/low-SNR bounds of the convexity/concavity
regions are tightened and no further improvement is shown to
be possible in general. The high-SNR bound fits closely into the
channel coding theorem: all codes, including capacity-achieving
ones, whose decision regions include the hardened noise spheres
(from the noise sphere hardening argument in the channel coding
theorem), satisfy this high-SNR requirement and thus has convex
error rates in both SNR and noise power. We conjecture that all
capacity-achieving codes have convex error rates. Convexity prop-
erties in signal amplitude and noise power are also investigated.
Some applications of the results are discussed. In particular, it
is shown that fading is convexity-preserving and is never good in
low dimensions under spherically invariant noise, which may also
include any linear diversity combining.

Index Terms—Bit error rate (BER), convexity/concavity, error
rate, maximum-likelihood (ML) decoding, pairwise probability of
error, spherically invariant noise, unimodal noise.

I. INTRODUCTION

C ONVEXITY properties play a well-known and important
role in optimization problems [1], [2], mainly due to two

key reasons: 1) it is essentially the class of convex problems that
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are solvable numerically, and 2) significant analytical insights
are available for this class. The same cannot be said about the
general class of nonlinear problems. Indeed, “the great water-
shed in optimization is not between linearity and nonlinearity,
but convexity and nonconvexity” [3].
In the world of digital communications, various types of error

rates often serve as objective or constraint functions during op-
timization [4]–[11]. Therefore, their convexity properties are
of considerable importance. While, in some simple scenarios,
the convexity can be established by inspection or differentia-
tion of corresponding closed-form error probability expressions
[4]–[11], this approach is not feasible not only in the general
case, but also in most cases of practical importance (e.g., mod-
ulation combined with coding, etc.), since such expressions are
either not known or prohibitively complex [12].
A general approach (i.e., not relying on particular closed-

form error probability expressions) to convexity analysis in bi-
nary detection problems has been developed in [13]. This ap-
proach has been later extended to arbitrary multidimensional
constellations (which can also include coding) in [14] and [15].
In particular, it has been shown that the symbol error rate (SER)
of the maximum-likelihood (ML) decoder operating in the ad-
ditive white Gaussian noise (AWGN) channel is always convex
in signal-to-noise ratio (SNR) in dimensions 1 and 2, and also in
higher dimensions at high SNR and concave at low SNR (with
explicitly specified boundaries of the high/low-SNR regimes),
for any modulation and coding. Bit error rate (BER) has been
shown to be convex in the high-SNR regime as well. These re-
sults have also been extended to fading channels. In particular,
it was shown that “fading is never good in low dimensions.” In
a related but independent line of study, a log-concavity prop-
erty of the SER in SNR [dB] for the multidimensional uniform
square-grid constellations (e.g., M-QAM), including fading and
diversity reception, has been established in [16] and a number
of new local SER bounds have been obtained based on it.
In this paper, the earlier results in [15] are expanded in sev-

eral directions, including an extension to a class of decoders
and a wide class of noise densities (significantly different from
Gaussian), as well as tightening the high/low-SNR bounds of
the convexity/concavity regions reported in [15].
While the utility of the Gaussian noise model is well known,

there are a number of scenarios where it is not adequate, most
notably an impulsive noise [19], [20], [24], [27]–[32] with
tails much heavier than Gaussian. To address this, an important
and natural generalization of the Gaussian random process
has been developed, namely, the spherically invariant random
process (SIRP). It has found a wide range of applications in
communications, information-theoretic, and signal processing
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areas [21]–[28]. This class of processes, while having some of
the important properties of the Gaussian process, significantly
extends modeling flexibility and thus can be applied to a wider
range of phenomena such as impulsive noise, radar clutter, radio
propagation disturbances, and bandlimited speech waveforms
[24], [27]. While the marginal probability density function
(PDF) of a SIRP may be significantly different from Gaussian,
this class of processes shares a number of important theoretical
properties with the Gaussian process: it is closed under linear
transformations, it is the most general class of processes for
which the optimal MMSE estimator is linear, and the optimal
(ML) decoding is still the minimum distance one (this may
also include fading and correlated noise) [21]–[28]. This paper
will extend this list to include the convexity properties of SER
under a SIRP noise, which turn out to be similar to those in
the AWGN channel (see Section III-B for further details). In
addition, a general class of unimodal noise power densities will
be considered and conditions on an arbitrary noise density will
be formulated under which the SER is convex. In particular,
the SER is convex in the SNR provided that the noise power
density is decreasing around the decision region boundaries,
regardless of its behavior elsewhere. It is convex at high SNR
under a unimodal or a SIRP noise, and it is always convex (for
any SNR) in low dimensions under SIRP noise. Similar results
are obtained for convexity in signal amplitude and noise power
(which are important for an equalizer design and a jammer
optimization). All the results formulated for an i.i.d. noise are
extended to the case of correlated noise as well.
In general, convexity of the SER does not say anything about

convexity of the BER, since the latter depends on pairwise error
probability (PEP) and not on the SER [6], [33]. Since the BER is
an important performance indicator and thus appears as an ob-
jective in many optimization problems, its convexity properties
are also studied here using the generic geometrical framework
developed for the SER analysis. The setting is general enough
so that the results apply to arbitrary constellations, bit mapping,
and coding. It turns out that the BER is convex at high SNR
for a wide class of noise distributions and a class of decoders,
where the high-SNR boundary is determined by the constella-
tion minimum distance and dimensionality, all other its details
being irrelevant.
While the convexity of the PEP and the BER has been es-

tablished at high SNR, the question remains: how relevant this
high-SNR regime is, i.e., does it correspond to realistic(prac-
tical) SNR values? This has significant impact on the result’s
importance and its utility when solving practically relevant op-
timization problems. In this paper, we provide a positive an-
swer: the high SNR is almost the same as that required by the
channel coding theorem so that any code, including capacity-
achieving ones, whose decision regions include the hardened
noise spheres (from the sphere packing/hardening arguments in
the channel coding theorem [4], [34]), is in this range. In other
words, the boundary of the high-SNR regime is closely matched
to that in the channel coding theorem so that arbitrary low prob-
ability of error implies its convexity, and hence, power/time
sharing does not help to reduce it further. This complements
the well-known result that the capacity cannot be increased by

power/time sharing. Any practical code whose decision regions
include the hardened noise spheres has also convex SER, PEP,
and BER. This opens up an opportunity to apply numerous and
powerful tools of convex optimization to design of systems with
such codes on a rigorous basis.
The main contributions are summarized as follows.

1) New tighter high/low-SNR bounds of the convexity/con-
cavity regions are obtained and it is demonstrated that no
further improvement is possible in the general case.

2) While the earlier results in [15] were established for the
ML (min-distance) decoders only, the same results are
shown to apply to any decoder with center-convex deci-
sion regions (see Section III-A for details), of which the
min-distance one is a special case.

3) While the earlier results in [15] were established for the
AWGN channel only, this paper considers a wide class of
noise densities of which Gaussian is a special case (e.g.,
generic unimodal, SIRP, etc.). In particular, the SER and
the BER are shown to be convex at high SNR for this
wider class as well; the SER turns out to be convex in low
dimensions not only for the Gaussian, but also for an ar-
bitrary SIRP noise. The constellation dimensionality and
minimum distance appear as the main factors affecting the
convexity properties.

4) The boundary of the high-SNR regime (where the
SER/BER convexity is ensured) is shown to be closely
linked to the channel coding theorem, so that error rates
of capacity-achieving codes (with vanishingly small prob-
ability of error) are convex.

5) Any flat-fading and any linear diversity combining are
shown to be convexity-preserving, so that fading is never
good in low dimensions under spherically invariant noise,
including linear diversity combining.

Tables I–III summarize the results for convexity properties in
the SNR/signal power, signal amplitude, and noise power. Un-
less otherwise indicated, a nonfading channel, an arbitrary con-
stellation, and a decoder with center-convex decision regions
are assumed.

II. SYSTEM MODEL

The standard baseband discrete-time system model in an ad-
ditive noise channel, which includes matched filtering and sam-
pling, is

(1)

where and are -dimensional vectors representing
transmitted and received symbols, respectively,

, a set of constellation points, is an
additive white noise. Several noise models will be considered,
including the AWGN one, in which case , and
the corresponding PDF is

(2)
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TABLE I
CONVEXITY PROPERTIES OF THE SER/PEP/BER IN THE SNR/SIGNAL POWER

TABLE II
CONVEXITY PROPERTIES OF THE SER IN SIGNAL AMPLITUDE

TABLE III
CONVEXITY PROPERTIES OF THE SER/PEP/BER IN NOISE POWER

where is the noise variance per dimension, and is the con-
stellation dimensionality1; lowercase bold letters denote vec-
tors, bold capitals denote matrices, denotes ith component
of , denotes L norm of , , where the super-
script denotes transpose, denotes ith vector, denotes
the determinant of matrix . The average (over the constella-
tion points) SNR is defined as , which implies the
appropriate normalization, , unless indicated
otherwise.
More general and distinctly different noise distributions will

be considered as well, which include the SIRP and unimodal
noise; see Sections III-A and III-B for further details. In addi-
tion to the ML decoder (demodulator/detector), which is equiv-
alent to the minimum distance one in the AWGN and some other
channels [25], [27],

a general class of decoders with center-convex decision regions
(see Definition 1 and Fig. 1) will be considered, for which the

1While we consider here a real-valued model, all the results extend to the
complex-valued case as well by treating real and imaginary parts as two inde-
pendent reals, so that -D complex constellation corresponds to -D real one.

min-distance one is a special case. The probability of symbol
error (also known as SER) given that was transmitted
is

(3)

where is the probability of correct decision, and the SER
averaged over all constellation points is

(4)

where is the overall probability of correct decision. Clearly,
and possess the opposite convexity properties. can

be expressed as
(5)

where is the decision region (Voronoi region),2 and cor-
responds to , i.e., the origin is shifted for convenience to
the constellation point . For the min-distance decoder, can
be expressed as a convex polyhedron [1],

(6)

2 if . If , an error is declared.



6504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

Fig. 1. Center-convex decision region centered on .

where denotes jth row of , and the inequality in (6) is
applied componentwise.
Another important performance indicator is the PEP i.e., a

probability to decide in
favor of given that , , was transmitted, which can
be expressed as

(7)

where is the decision region for when the reference frame
is centered at . The SER can now be expressed as

(8)

and the BER can be expressed as a positive linear combination
of PEPs [33]

(9)

where is the Hamming distance between binary sequences
representing and .
Note that the setup and error rate expressions we are using are

general enough to apply to arbitrary multidimensional constel-
lations, including coding (codewords are considered as points of
an extended constellation). We now proceed to convexity prop-
erties of error rates in this general setting.

III. CONVEXITY OF SERS

Convexity properties of SERs of the ML decoder in SNR and
noise power have been established in [14] and [15] for arbitrary
constellation/coding under ML decoding and AWGN noise and
are summarized in Theorem 1 below for completeness and com-
parison purposes.
Theorem 1 (see [15, Ths. 1 and 2]): Consider theML decoder

operating in the AWGN channel. Its SER is a convex
function of the SNR for any constellation/coding if ,

(10)

For , the following convexity properties hold:
1) is convex in the high-SNR regime,

(11)

where is the minimum distance from
a constellation point to the boundary of its decision region
over the whole constellation, and is the minimum
distance from to its decision region boundary;

2) is concave in the low-SNR regime,

(12)

where , and is the maximum
distance from to its decision region boundary,

3) there are an odd number of inflection points; ,
in the intermediate SNR regime,

(13)

The same results can be extended to via the substitution
in the inequalities above.

A. Convexity in SNR/Signal Power

Since the high/low-SNR bounds in Theorem 1 are only suffi-
cient for the corresponding property, a question arises whether
they can be further improved. Theorem 2 provides such an im-
provement and demonstrates that no further improvement is
possible.
Theorem 2: Consider the ML decoder operating in the

AWGN channel. Its SER has the following convexity
properties: it is convex in the high-SNR regime,

(14)

it is concave in the low-SNR regime,

(15)

and there are an odd number of inflection points in-between.
The high/low-SNR bounds cannot be further improved without
further assumptions on the constellation geometry.

Proof: See the Appendix.
Note that the high/low-SNR bounds in Theorem 2 are tighter

than those in Theorem 1, since

Convexity of the SER for is also obvious from this the-
orem. In the case of identical spherical decision regions, a more
definite statement can be made.
Corollary 2.1: Consider the case of Theorem 2 when all de-

cision regions are spheres3 of the same radius . The following
holds:
1) The SER is strictly convex in in the high-SNR regime:

2) It is strictly concave in the low-SNR regime:

3If the received signal does not belong to any of the decision regions, an error
is declared. While the spherical decision region is not often encountered in un-
coded systems, it has a number of remarkable properties: it is the best possible
decision region in the sense that it minimizes the error probability for the symbol
it represents [4]; it is a decision region for some noncoherent constellations [6];
and it enters intimately into the channel coding theorem [4] (via the sphere hard-
ening and packing arguments).
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3) There is a single inflection point:

Note that this result cannot be obtained from Theorem 1 di-
rectly, as the bounds there are not tight. It also follows from this
Corollary that the high/low-SNR bounds of Theorem 2 cannot
be further improved in general (without further assumptions on
the constellation geometry).
The results above are not limited to the AWGN channel but

can also be extended to a wide class of noise densities and a class
of decoders, as Theorem 3 below demonstrates. We will need
the following definition generalizing the concept of a convex
region.
Definition 1: A decision region is center-convex if a line seg-

ment connecting any of its points to a (given) center also belongs
to the region (i.e., any point can be ”seen” from the center).
Note that any convex region (e.g., a convex polyhedron) is

automatically center-convex but the converse is not necessarily
true, so that ML/min-distance decoders are a special case of a
generic decoder with center-convex decision regions. As an ex-
ample, Fig. 1 illustrates such a decision region, which is clearly
not convex.
To generalize the results above to a wide class of noise den-

sities, we transform the Cartesian noise density into the
spherical coordinates ,

(16)

...

where are the angles,
for , , and represents the
normalized noise instant power , so that

(17)

where

is the Jacobian of transformation from to , and
is the noise power density in the spherical coordinates (see [25]
and [36] for more on spherical coordinates and corresponding
transformations). For simplicity of notations, we further drop
the subscripts and use .
We are now in a position to generalize Theorem 2 to a wide

class of noise densities and the class of center-convex decoders.

Theorem 3: Consider a decoder with center-convex decision
regions operating in an additive noise channel of arbitrary den-
sity . The following holds:

(18)

Fig. 2. Gaussian noise power density for . It is unimodal with .

where . In particular, is convex in
the interval if the noise density is nonincreasing
in in the interval :

(19)

Proof: See the Appendix.
Note that it is the (nonincreasing) behavior of the noise power

density in the annulus , i.e., around the bound-
aries of decision regions, that is responsible for the convexity of

; the behavior of the noise density elsewhere is irrelevant.
The inequalities in(18) and (19) can be reversed to obtain the
corresponding concavity properties. The strict convexity prop-
erties can also be established by considering decoders with de-
cision regions of nonzero measure in the corresponding SNR
intervals. Convexity of individual SER can be obtained via
the substitution . It is also straight-
forward to see that Theorem 2 is a special case of Theorem 3.
Let us now consider more special cases of Theorem 3.
Corollary 3.1: Consider a decoder with center-convex de-

cision regions operating in an additive noise channel of a uni-
modal noise power density,4

(20)

i.e., it has only one maximum at ; it is an increasing func-
tion on one side and decreasing on the other (see, e.g., Figs. 2
and 3). Its SER is convex at high and concave at low SNR:

(21)

Corollary 3.2: Consider the case of monotonically de-
creasing (in ) noise power density, . Then,
the SER is always convex: .
Since the Gaussian noise power density is unimodal with

(see Fig. 2), Corollary 3.1 applies to the AWGN
channel as well, thereby generalizing Theorem 2 to decoders
with center-convex decision regions. The AWGN for is
also a special case of Corollary 3.2. These Corollaries allow one

4which is also quasi-concave [1]; many popular PDFs are unimodal.
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Fig. 3. Laplacian noise power density for . It is unimodal with
.

Fig. 4. Power density of Gaussian noise: while it is monotonically decreasing
for and , it is unimodal for .

to answer the question “Why is the SER in the AWGN channel
always convex for but not for ?”—the reason is
the monotonically decreasing (in ) nature of the noise power
density for any in the former but not the latter case;
see Fig. 4.
Other examples of unimodal densities include Laplacian

noise with the Cartesian PDF , where is a
normalizing constant, so that the spherical one is

where is the angular density. It is straightforward to see
that this power density is unimodal in with ;
see Fig. 3. Importance of this distribution for communication/in-
formation-theoretic problems is discussed in [37]–[39]. A more
general example is a power exponential distribution [38]–[40]

(also known as generalized Gaussian [27] or, in a slightly mod-
ified form, as Weibull distribution [41]–[43]) whose spherical
density is

which is also unimodal in with

This distribution has a heavier (for ) or lighter (for )
tail than the Gaussian one, so that it offers a significant flexibility
in noise modeling. In fact, it was shown in [40] that Weibull
distribution can be presented as a mixture of normal distribu-
tions, where the variance of normal distribution is treated as a
random variable with an -stable distribution. This fits well into
a typical model of interference in random wireless networks,
where the interference distribution also follows an -stable law
[29]–[32]: each node transmits a Gaussian (capacity-achieving)
signal of a fixed transmit power; at the receiver, the noise power
coming from each node is random (due to random distance to
transmitting nodes) and follows an -stable law, so that the com-
posite noise instant power follows the power exponential distri-
bution.
Some SIRPs or vectors considered in [23]–[27] also belong

to the classes considered in these corollaries or in Theorem 3,
as discussed next.

B. Convexity of SER Under SIRP Noise

In this section, we consider an additive noise channel when
the noise distribution follows that of a SIRP. The characteriza-
tion of the SIRP class is strikingly simple: any SIRP process is
conditionally Gaussian, i.e., a Gaussian random process whose
variance is a random variable independent of it. In the context
of wireless communications, this structure represents such im-
portant phenomena as channel fading, random distance between
transmitter and receiver, etc. Below, we establish the SER con-
vexity properties under a SIRP noise, thus generalizing further
the results of the previous section.
The following is one of the several equivalent definitions of

a SIRP [21]–[25].
Definition 2: A random process is a SIRP if a

vector of any of its samples
has the PDF of the following form:

(22)

where is the covariance matrix, is a nonnegative func-
tion of the scalar argument , and is a normalizing con-
stant.5

In fact, Definition 2 says that the PDF of SIRP samples de-
pends only on the quadratic form rather than on each
entry individually, so that any linear combinations of the entries
of having the same variance will also have the same PDF [21].
Distributions of the functional form as in (22) are also known as
elliptically contoured distributions [36]. The characterization of
SIRP is as follows (the SIRP representation theorem) [23]–[25].

5An equivalent definition in terms of the characteristic function is also pos-
sible. Note also that not any will do the job, but only those satisfying the
Kolmogorov consistency condition [23]–[25].
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Theorem 4: A random process is a SIRP iff any set of its
samples has a PDF as in (22) with

(23)

where is defined by continuity at , and is any
univariate PDF.
An equivalent representation is , where

is the Gaussian random process of unit variance, and is an
independent random variable of PDF , so that Theorem 4
basically states that any SIRP can be obtained by modulating
the Gaussian random process by an independent random vari-
able [26]. A number of PDFs that satisfy Theorem 4 and corre-
sponding can be found in [27] (which include Laplacian
and power exponential densities above).
It was shown in [27] that the optimal decoder under the SIRP

noise is still the minimum distance one (which follows from the
fact that in (23) is monotonically decreasing in ). Using
this, we are now in a position to establish the SER convexity
properties under SIRP noise with .

Theorem 5: Consider an additive SIRP noise channel, where
the noise density is as in (22) and (23) with . Assume
that in (23) has bounded support: .
Then, the SER of any decoder with center-convex decision re-
gions (including the min-distance/ML one as a special case) op-
erating in this channel is convex at high and concave at low SNR
as follows:

(24)

(25)

where is the signal power, and is the minimum
(maximum) distance in the normalized constellation (corre-
sponding to ).

Proof: See the Appendix.
Note that the high/low-SNR bounds are independent of a par-

ticular form of , but depend only on the corresponding
boundaries of its support set. A particular utility of this theorem
is due to the fact that closed-form expressions of are not
available in most cases so its convexity cannot be evaluated di-
rectly. The following corollary is immediate.

Corollary 5.1: Consider a decoder with center-convex deci-
sion regions operating in the SIRP noise channel as in Theorem
5 without the bounded support assumption. Its SER is
always convex when : .
Thus, the SER is convex in low dimensions for all the noise

densities in [27, Table I] (i.e., contaminated normal, general-
ized Laplace, Cauchy, and Gaussian), which extends the corre-
sponding result in Theorem 1 to a generic SIRP noise.
While Corollary 3.1 characterizes the SER convexity for the

identical spherical decision regions in the AWGN channel, such
a simple characterization is not possible in a SIRP channel in
general (when ), as Theorem 5 shows.

C. Nonnegative Mixture Is Convexity-Preserving

The next proposition generalizes further the results above and
shows that any nonnegative mixture of noise densities is con-
vexity-preserving in terms of error rates of a given decoder for
any variable of interest. We will need the following definition.
Definition 3: Let be a set of noise densities,

. Its convex hull [1] is any nonnegative linear
combination which is also a density,

Proposition 1: Let be an error rate of a given decoder
as a functional of noise density and let all be convex,

, where the derivative is over any variable of
interest (SNR, power/amplitude of signal/noise). Then,

(26)

Proof: A key observation here is to note, from (5), that the
probability of correct decision is a linear
functional of the underlying noise density ,

(27)

Since and each is concave, so is , from
which the result follows.
Thus, a convexity of error rates of a given decoder for is

sufficient to ensure the convexity for any in the convex hull of
. The same preservation holds for concavity and also when

the corresponding property is strict. It can be further extended
to continuous mixtures as well,

(28)

where is the noise density parameterized by a continuous
mixture parameter and is a (nonnegative) density of .
Such a mixture can model a fading channel where represents
the channel (random) gain, so that (28) states in fact that (flat)
fading is a convexity-preserving process. This will be elaborated
in further details in Section VI.
Observe that the same convexity-preserving property holds in

terms of the signal power/amplitude and noise power/amplitude,
due to the linearity of . Note also that Proposition 1 and
(28) extend the convexity/concavity properties to a very broad
class of noise densities, which includes, as a special case, the
SIRP noise, and do not even assume convex or center-convex
decision regions.6

6To the best of our knowledge, this is the most general known result about
the convexity properties of error rates.
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The following result is a direct consequence of Proposition 1.
Proposition 2: Let be a set of all noise densities for which

error rates of a given decoder are convex (in any variable of
interest). is a convex set.

D. Convexity in Signal Amplitude

Convexity of the SER as a function of signal amplitude
, , is also important for some optimization problems

(e.g., an equalizer design). For the ML decoder operating in the
AWGN channel, those properties have been established in [15],
which are summarized in Proposition 3 for completeness.
Proposition 3: Consider the ML decoder in the AWGN

channel. Its SER as a function of signal amplitude
has the following convexity properties:

1) is always convex in if ,
2) For , it is convex in the large-SNR regime

and concave in the small-SNR regime
, where

and there are an odd number of inflection points in-be-
tween.

3) The same applies to via the substitution
.

The next theorem provides tighter high/low-SNR bounds,
which cannot be further improved in general, and also extends
the result to any decoder with center-convex decision regions
(of which the ML/min-distance one is a special case).
Theorem 6: Consider a decoder with center-convex decision

regions operating in the AWGN channel. Its SER as
a function of signal amplitude has the following convexity
properties for any :

1) The SER is convex in in the large-SNR regime:

2) It is concave in the small-SNR regime

3) There are an odd number of inflection points in-between.
4) The bounds cannot be further tightened in general (without
further assumptions on the constellation geometry).

5) The same applies to via the substitution
.

Proof: See the Appendix.
Note that the convexity of for and any fol-

lows automatically from this theorem. It is straightforward to
see that the bounds of Theorem 6 are indeed tighter than those
of Proposition 1, since

with strict inequality for . The following is a direct con-
sequence of Theorem 6, which cannot be obtained from Propo-
sition 1.
Corollary 6.1: Consider the case of Theorem 6 when all de-

cision regions are the spheres of same radius . The following
holds:

1) The SER is strictly convex in in the large SNR regime:

2) It is strictly concave in the small-SNR regime:

3) There is a single inflection point:

Theorem 6 can also be extended to a wide class of noise den-
sities following the same approach as in Theorem 3.
Theorem 7: Consider a decoder with center-convex decision

regions operating in an additive noise channel of arbitrary den-
sity , where represents the normalized noise amplitude

. The SER is convex in in the interval
if the noise density is nonincreasing in in the interval

:

(29)

Proof: See the Appendix.
Similarly to Theorem 3, the inequalities can be reversed to

obtain the concavity properties and unimodal densities are a spe-
cial case. In particular, Corollary 3.1 holds with the substitution

, , and (21) reads as

(30)

The Gaussian, Laplacian, and exponential noise amplitude dis-
tributions are all unimodal, with , and

, respectively, so that the SER is always
convex if .
For the case of a SIRP noise as in Theorem 5, one obtains the

following.
Theorem 8: Consider an additive SIRP noise channel with

the density as in (22) and (23) and . Assume that
has bounded support: . Then, the SER
of any decoder with center-convex decision regions operating
in this channel is convex at high SNR and concave at low SNR
as a function of signal amplitude :

(31)

(32)
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where is the minimum (maximum) distance of the
normalized constellation (i.e., the one that corresponds to
).
Proof: See the Appendix.

The following is immediate.
Corollary 8.1: Consider the scenario in Theorem 8 for

without the bounded support assumption. The SER is always
convex in : .

E. Extension to Correlated Noise

While Theorems 2, 5, 6, 8, and corresponding corollaries
apply to a channel with i.i.d. noise, a similar result can be estab-
lished when noise is not i.i.d. (i.e., correlated or/and of noniden-
tical variance per dimension). Let us consider the model in (1),
where the noise covariance is . Applying the suf-
ficient statistics approach, one can use instead of
as decision variables without affecting the performance (i.e.,
a whitening filter). The equivalent channel

(33)

has i.i.d. noise and the equivalent constellation is

, so that equivalent decision regions and
corresponding minimum/maximum distances can be found to
which Theorems 2, 5, 6, and 8 apply. In particular, the SER is
still convex at high SNR. Note that Theorems 3 and 7 do not
require the noise to be i.i.d.

IV. CONVEXITY OF BER AND CAPACITY-ACHIEVING CODES

While the previous sections have established the convexity
properties of the SER, it does not imply the corresponding con-
vexity properties of the BER as the latter depends on the pair-
wise probability of error and not just the SER [see, e.g., (9)].
The PEP and the SER have somewhat different convexity prop-
erties. The convexity of the PEP has been established in [15]
and, based on it, the following result was obtained.
Theorem 9: Consider the ML decoder operating in the

AWGN channel. Its BER, SER, and PEP are all convex func-
tions of the SNR, for any constellation, bit mapping and coding,
in the high-SNR (small noise) regime, when

(34)

Note that the lower bound in (34) has an interesting interpre-
tation: is the mean of and is its standard devi-
ation, so that (34) requires that be larger than the average
noise power by at least its standard deviation, which is intu-
itively what is required for low probability of error. Thus, the
condition in (34) should be satisfied when probability of error
is small.
Below, we make this statement more precise and proceed to

establish practical relevance of the high-SNR regime in (34)
based on the channel coding theorem. Recall that the sphere
hardening argument (from the channel coding theorem) states
that the noise vector is contained within the sphere of radius

with high probability (approaching 1 as
[4], [34], where is a fixed, arbitrary small number, so

that the decision regions should have minimum distance to the
boundary

(35)

i.e., to enclose the hardened noise sphere of radius ,
to provide arbitrary low probability of error as . For any
code satisfying this requirement, it follows that

(36)

for sufficiently large and . Thus, for any code whose
decision regions enclose the hardened noise spheres, the con-
dition of Theorem 9 is satisfied, and therefore, the error rates
(SER, PEP, BER) of such codes are all convex.
On the other hand, for any code whose decisions regions are

enclosed by the spheres of radius , i.e.,
, the SERs are lower bounded as

(37)

where is the Q-function, so that arbi-
trary-low probability of error is not achievable. Based on these
two arguments, we conjecture the following.
Conjecture 1: Consider a capacity-achieving code designed

for . Error rates of any such code are convex for
, i.e., when it provides an arbitrary low probability

of error.
This conjecture is stronger that our convexity statement

above since the latter requires the decision regions to include
the hardened noise spheres, which is only a sufficient condition
for arbitrarily low probability of error, so that it is possible that
a capacity-achieving code violates the condition in (36). The
conjecture effectively states that, if present, such a violation is
minor in nature and does not affect the convexity property.
As an application of this result, we note that power/time

sharing cannot reduce error rates of any code for which (34)
holds. This complements the well-known result that power/time
sharing cannot increase the capacity.
In summary, any code respecting the noise sphere hardening

and hence having low probability of error will also have convex
error rates (SER, PEP, and BER). This is the way convexity in-
timately enters into the channel coding theorem. Theorem 9 can
also be extended to a wide class of decoders with center-convex
decision regions under a SIRP noise as follows. To separate the
effects of noise power and the shape of its PDF, let us con-
sider the normalized noise and assume that it has the PDF
as in (22) and (23), where is now a normalized conditional
standard deviation and is its PDF.
Theorem 10: Consider a channel with an additive SIRP noise

as in Theorem 4 when the PDF of conditional normalized
standard deviation has bounded support:

(38)

The PEP, SER, and BER of any decoder with center-convex de-
cision regions (e.g., min-distance decoder for any constellation,
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bit mapping and coding) operating in this channel is a convex
function of the SNR in the high SNR/low noise regime,

(39)

Proof: See the Appendix.
Theorem 10 essentially states that Theorem 9 also applies to

a SIRP noise channel provided the maximum conditional noise
variance is used in (34). We remark that it is only the constella-
tion dimensionality and theminimum distance that determine its
BER convexity and only via the bound in(39), all its other details
being irrelevant. As far as the noise is concerned, it is only the
maximum conditional variance that matters and only
via the same bound. A particular functional form of is irrel-
evant, i.e., many different unconditional noise distributions will
induce the same convexity properties in the high-SNR regime.

V. CONVEXITY OF ERROR RATES IN NOISE POWER

In a jammer optimization problem, it is convexity properties
in noise power that are important [13]. Motivated by this fact,
we study below convexity of the SER, the PEP and the BER in
the noise power.
The following result has been established in [15].
Theorem 11 (see [15, Th. 4]): Consider the ML decoder op-

erating in the AWGN channel. Its SERs have the following
convexity properties in the noise power , for any constella-
tion/coding,

1) is concave in the large noise regime,

(40)

where ;
2) is convex in the small noise regime,

(41)

where ;
3) there are an odd number of inflection points for interme-
diate noise power,

(42)

The following theorem tightens the high/low-SNR bounds
above and also shows that the new bounds cannot be further
improved in general.
Theorem 12: Consider a decoder with center-convex deci-

sion regions operating in the AWGN channel. Its SERs have the
following convexity properties in the noise power:
1) is concave in the large noise regime,

(43)

2) is convex in the small noise regime,

(44)

3) there are an odd number of inflection points for interme-
diate noise power,

(45)

4) These bounds cannot be improved in the general case.
Proof: See the Appendix.

Note that the bounds of Theorem 12 are indeed tighter than
those of Theorem 11, since

(46)

We further remark that similar results apply to via the sub-
stitution .
The following corollary, which cannot be obtained from The-

orem 11, follows immediately from Theorem 12.
Corollary 12.1: Consider the scenario of Theorem 12 when

all decision regions are the spheres of same radius
. The SER has the following convexity properties in noise

power :
1) is strictly concave in the large noise regime,

(47)

2) It is strictly convex in the small noise regime,

(48)

3) There is a single inflection point,

(49)

Note that unlike , which is convex in low dimensions
so that the transmitter cannot employ power/time

sharing to reduce error rate, does not possess this prop-
erty so that the jammer can increase error rate by power/time
sharing even in low dimensions (in the low noise regime). In
this respect, the jammer is in amore advantageous position com-
pared to the transmitter in the AWGN channel. It is also clear
from this Corollary that the high/low-SNR bounds of Theorem
12 cannot be improved in general. Theorem 12 can be also ex-
tended to a wider class of SIRP noise. As in Theorem 10, we
consider the normalized noise to separate the effects of
the noise power and the shape of its PDF, and assume that
the normalized noise power has the PDF as in (22), (23), where

has bounded support as in (38).
Theorem 13: Consider a decoder with center-convex deci-

sion regions operating in a SIRP noise channel under the stated-
above conditions. Its SERs have the following convexity prop-
erties in the noise power:
1) is concave in the large noise regime,

(50)

2) is convex in the small noise regime,

(51)

3) there are an odd number of inflection points for interme-
diate noise power.
Proof: See the Appendix.
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Let us study now the convexity/concavity properties of the
PEP as a function of noise power.
Theorem 14: Consider a center-convex decoder operating in

the AWGN channel. Its PEP is a convex function
of the noise power , for any , in the low noise (high SNR)
regime,

(52)

and in the high noise (low SNR) regime,

(53)

where , and has an even number of inflection
points in-between.

Proof: See the Appendix.
Note that unlike the SER, the PEP is convex in the low-SNR

regime if . Based on this theorem, a convexity
property of the BER follows.
Corollary 14.1: For any constellation, bit mapping, and

coding, the BER of a center-convex decoder operating in the
AWGN channel is a convex function of the noise power in the
low noise (high SNR) regime:

(54)

where the specifics of the constellation/code determine only the
high-SNR boundary via .
We remark that for any code respecting the sphere hardening

argument,

(55)

for sufficiently large , so that the BER is a convex function of
the noise power. For such codes, power/time sharing does not
help to decrease the BER, but it is always helpful for a jammer
whose objective is to increase the BER. A jammer transmission
strategy to maximize the SER via a time/power sharing has been
presented in [15] and, with some modifications, it can also be
used to maximize the BER, following the convexity result in
Corollary 14.1.
These results can also be extended to a SIRP noise channel.
Corollary 14.2: Consider a SIRP noise channel, where the

conditional noise power has bounded support

The results of Theorem 14 and Corollary 14.1 apply with the
substitutions for (52) and(54), and for (53).

VI. CONVEXITY IN FADING CHANNELS

The convexity properties of error rates in nonfading channels
can also be extended to fading channels. Let us consider the
following standard flat-fading channel model, which is a gener-
alization of (1):

(56)

where is a (scalar) fading channel gain, so that the instanta-
neous SNR is , and the instantaneous error rate is

. The average error rate as a func-
tion of the average SNR is obtained by the
expectation over the fading distribution,

(57)

where is the PDF of , and where denotes the expecta-
tion over the fading distribution.
If the instantaneous SER is convex for any SNR , the

following result is immediate.
Proposition 4: Consider a fading channel under additive

noise with monotonically decreasing power density, e.g., a
SIRP noise for . The average SER of a decoder with
center-convex decision regions operating in this channel is
lower bounded by the nonfading SER at the same (average)
SNR for any fading distribution:

(58)

i.e., fading is never good in low dimensions under a SIRP noise.
Proof: Follows from Jensen inequality [1] by observing

that is convex in under the stated assumptions.
Let us now consider the average error rate as a func-

tion of the average SNR .
Proposition 5: Consider a fading channel in (56) and assume

that the instantaneous SER is convex for any SNR (e.g.,
a SIRP noise for or any noise with monotonically de-
ceasing power density under a center-convex decoder), then the
average SER is also convex in the average SNR in
such channel, i.e., flat-fading is a convexity-preserving process.

Proof: Follows from (57) since nonnegative linear com-
bination preserves convexity [1] or, equivalently, by using the
convexity-preserving property in(28).
We note that Propositions 4 and 5 extend the corresponding

results in [15] obtained for the Gaussian noise and the ML de-
coder to a broad class of noise distributions and decoders. It ap-
pears that it is the constellation dimensionality that has a major
impact on convexity of the SER, rather than the specifics of the
noise or the fading distribution.
These results can be further extended to diversity combining

systems over such channel, which is a popular way to combat
the detrimental effects of fading [4]–[6].

A. Convexity Under Diversity Combining

Consider a maximum ratio combiner (MRC) operating over
an -branch fading channel as in (56),

(59)

where , , and are the received signal, channel (voltage)
gain and noise in th branch, . The th branch
SNR is and the combiner’s output SNR is

[5], where is the vector
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of channel gains. The combiner’s instantaneous error rate is
and the average error rate is

(60)

Using the same argument as in Proposition 5, this error rate is
convex in the average SNR provided that the instantaneous
SER is convex for any SNR.
This result can be now extended to an arbitrary linear com-

bining of the form , where are the
combining weights (which depend on the channel gains). The
output SNR of this combiner is , assuming
proper normalization (note that normalization does not
affect the SNR), so that its average error rate is

(61)

which is also convex in the average SNR provided is
convex, i.e., any linear combing is convexity-preserving. Note
that the MRC is a special case of the general linear combining,
with . Other special cases are the other 2 popular
combining techniques: selection combining (SC), which selects
the strongest branch with only one nonzero weight corre-
sponding to that branch, and equal-gain combing, which adds
coherently the required signals with unit gain [5]. All of them
preserve the convexity of error rates, which is summarized
below.
Proposition 6: Any linear diversity combining over any flat-

fading channel as in (59) is convexity-preserving, i.e., given that
the instantaneous SER is convex for any SNR , the av-
erage SER of the combiner is also convex in the average
SNR in such channel. Special cases include the maximum
ratio, selection and equal gain combining. The lower bound in
Proposition 4 also holds under any linear combining.
The utility of this convexity-preserving property is coming

from the fact that most error rate expressions in fading channels
and under diversity combining are prohibitively complex so that
the straightforward evaluation of convexity via differentiation
is not possible, while the results above establish the convexity
indirectly andwithout evaluating the integrals (themost difficult
part).

VII. CONCLUSION

Convexity/concavity properties of the error rates (SER, PEP,
and BER) in an additive noise channel have been considered.
The earlier results obtained for the AWGN channel under ML
(min-distance) decoder [15] have been improved and have also
been extended to a class of decoders with center-convex deci-
sion regions and to a wide class of noise densities (unimodal
and SIRP noise processes). In particular, the SER is shown to
be a convex function of the SNR for any noise with monotoni-
cally decreasing power density (e.g., SIRP, Laplacian, Weibull,
power-exponential, or AWGN noise in low dimensions). In
higher dimensions, this property holds in the high-SNR regime,
for which the boundary has been explicitly given. The latter is
such that any code that respects the sphere hardening condition
of the channel coding Theorem also meets the high-SNR

condition so that all such codes have convex error rates (SER,
PEP, and BER). Fading is shown to be a convexity-preserving
process, including any linear combining, and is never good in
low dimensions under a SIRP noise.
All the applications discussed earlier in [15] (e.g., optimiza-

tion of a spatial multiplexing system, optimum power/time
sharing for a jammer and transmitter, optimal unitary precoding
for an OFDM system) for the AWGN channel also hold under
the general SIRP or unimodal noise and a convex-center de-
coder, based on the convexity properties established here.
We conclude with the remark that convexity is not only very

useful but also widely found property in digital communica-
tions.

APPENDIX

A. Proof of Theorem 2

First, we transform the Cartesian noise density into the
spherical coordinates , where represents the normalized
noise instant power , and are the
angles (see [25] and [36] for more on spherical coordinates):

(62)

where and are the angular and normalized noise
power densities,

(63)

(64)

where is Gamma function. Using this, the probability of
correct decision can be expressed as

(65)

where is the range of angles in (62) and is the
boundary of the normalized decision region (corresponding to

). One can now obtain the second derivative in :

(66)

where

(67)

so that if . When the latter
condition holds for any , i.e., when , then
the integrand in (66) is nonpositive, since ,
and (14) follows. Reversing the inequalities, one obtains(15).
To prove that the bound in(14) cannot be further improved in
general (i.e., without further assumptions on the constellation
geometry), consider the case when all are spheres of the
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same radius , so that
and therefore ,

i.e., (14) is necessary for the convexity of the SER in general.
The bound in(15) can be handled in the same way. The case of
identical spherical decision regions follows in a straightforward
way. As a side remark, we note that this proof is a significant
simplification over those of Theorems 1 and 2 in [15].

B. Proof of Theorem 3

In the case of generic noise density , i.e., when (62)
does not hold, (65) and(66) are generalized to

(68)

(69)

Now observe that if , which
holds if for and all ,
so that (18) follows. Equation (19) follows by observing that
its condition ensures that the condition in(18) is satisfied for

.

C. Proof of Theorem 5

Using Theorem 4, the noise power density can be written as

(70)

where is the conditional power density,

(71)

Equations (68) and(69) can be written as

(72)

(73)

where now is the boundary of normalized decision re-
gion corresponding to , and is as in (63). Observe
from(71) that

(74)

(75)

i.e., is unimodal in with . Using these
properties in (73) and observing that ,

, the integrand in (73) is nonnegative/nonpositive
if

(76)

(77)

so that or from which (24) and (25)
follow.

D. Proof of Theorem 6

Using (63)–(66), can be written as

(78)

where is the normalized noise amplitude density,

(79)

and is the decision region boundary of the normalized
constellation. Therefore,

(80)

where

so that the integrand in (80) is nonnegative when
, which is case when so that
. The opposite case is similar. An odd number of

inflection points follows from the continuity argument. The fact
that the high/low-SNR bounds cannot be tightened in general is
clear from Corollary 6.1.

E. Proof of Theorem 7

In this case, (68) and (69) become

(81)

(82)

and the argument of Appendix B goes thorough with the substi-
tution , .

F. Proof of Theorem 8

In this case, (70)– (73) are modified to

(83)

(84)

(85)

(86)

and the rest of the proof in Appendix C goes through with ap-
propriate modifications.

G. Proof of Theorem 10

The SIRP noise Cartesian PDF can be expressed as

(87)
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Fig. 5. Two-dimensional illustration of the problem geometry for the case
. The decision region is shaded. has a sign as

indicated by “+” and “ .”

where

(88)

and the SNR , so that

(89)

where is the decision region for while the reference frame
is centered on . Now observe that

(90)

where and , so that

(91)

and hence

(92)

from which it follows that

(93)

and, from (9), under the same condition, so that (39)
follows, where .

H. Proof of Theorem 12

The proof follows along the same lines as that of Theorem 2,
with the substitution . In particular, (66) is modified
to

(94)

Fig. 6. Two-dimensional illustration of the problem geometry for the case
.

where the derivative of the noise power density is as in
(67). The integrand in(94) is nonnegative when

and nonpositive when fromwhich (43)
and(44) follow. The inflection points follow from the continuity
argument. The fact that the bounds cannot be improved is clear
from the equal spherical decision regions of Corollary 12.1.

I. Proof of Theorem 13

The proof is essentially a generalized version of the previous
proof. Under the stated conditions, can be written as

(95)
where is the boundary of normalized decision region cor-
responding to and is as in (71), so that its second
derivative in is

(96)

and the integrand in (96) is nonnegative when

and nonpositive when

from which the Theorem follows.

J. Proof of Theorem 14

The PEP can be expressed as

(97)
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where is the decision region for , while the reference frame
is centered on , and the AWGN density is as in (2). The
second derivative in the noise power is

(98)

where can be expressed as

(99)

and
(100)

where are as in Theorem 11. Clearly, if
or , so that

and the result follows. Figs. 5 and 6 illustrate these two cases.
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