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Abstract—Outage probability of a class of block-fading
(MIMO) channels is considered under channel distribution un-
certainty, when the channel or its distribution are not known
but the latter is known to belong to a class of distributions
where each member is within a certain distance from a nominal
distribution. Relative entropy is used as a measure of distance be-
tween distributions. Compound outage probability defined as min
(over the input distribution) -max (over the channel distribution
class) outage probability is introduced and investigated, which
generalizes the standard outage probability to the case of partial
channel distribution information. Compound outage probability
characterization via one-dimensional convex optimization, its
properties and approximations are given. It is shown to have
a two-regime behavior: when the nominal outage probability
decreases, the compound outage first decreases linearly down
to a certain threshold and then only logarithmically (i.e. very
slowly), so that no significant further decrease is possible. The
input distribution optimized for the nominal channel distribution
is shown to be also optimal for the whole class of distributions.
The effect of swapping the distributions in relative entropy is
investigated and an error floor effect is established. The obtained
results hold for a generic channel model (arbitrary nominal
fading and noise distributions).

I. INTRODUCTION

W Ireless channel capacity depends significantly on the

channel state information available at the transmitter

and the receiver as well as the fading statistics experienced

by the channel [1]. Since channel state information (CSI)

is obtained via channel measurements, its accuracy may be

limited due to variability and difficult propagation conditions

(e.g. low SNR). The transmitter CSI is further limited due

to limitations of the feedback channel (if any). This situation

can be modeled via a compound channel model, where the

true channel is not known but it is known to belong to

a certain (limited) class of channels and the corresponding

compound channel capacity theorems have been established

[1][2]. The compound MIMO channel capacity under the

spectral norm constraints have been studied recently in [3].

While compound channel capacity theorems treat all channels

in the class equally and build a code that performs well

on any such channel, the corresponding capacity is typically

limited by the worst channel in the class and may be low,

even though most channels in class are good and the worst

channel is realized with low probability, i.e. it is a conservative
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performance indicator. To avoid this problem, a concept of

composite channel has been introduced [2][5], where each

channel in a class has associated probability measure, so

that bad low-probability channels do not penalize significantly

the performance metric. The corresponding channel capacity

theorems can be proved via the concept of information density

[4][5] or using the compound channel approach [1].

In this paper, we consider a situation where even the channel

distribution information is not available at the transmitter;

rather, the transmitter knows that the distribution belongs to

a certain class centered around a nominal distribution (known

to the transmitter). This models a practical scenario where

the channel distribution information is obtained from multiple

but limited measurements, so that the true distribution is

known only with limited accuracy. This also models a dynamic

scenario where the channel distribution information obtained

from past measurements may be outdated. The uncertainty

in this information may also be related to the limitation of

the feedback channel used to supply the information to the

transmitter. We assume a quasi-static (block-fading) scenario

so that the CSI at the receiver is irrelevant [1]. This channel

model is quite generic: we do not assume any particular

nominal channel distribution and even the channel noise can

be arbitrary so that the results are general too. Relative entropy

between two distributions is used as a measure of distance, so

that the distribution uncertainty class includes all distributions

within certain relative entropy distance of the nominal one.

Similar approach was adopted in [6] to study the ergodic

capacity under channel distribution uncertainty and in [7] to

investigate an optimal control of stochastic uncertain systems.

Since the channel is block-fading, the outage probability

is the main performance metric, which we term ”compound

outage probability” to emphasize that it applies to a class of

fading distributions (i.e. ”compound distribution”) rather than

any particular one. This parallels the concept of compound

channel, where a code is designed to operate on any member

in the class. In our case, a code is designed to operate for

any channel distribution in the class, so that the compound

outage probability involves maximization over all feasible

channel distributions and minimization over the transmitted

signal distribution (subject to the power constraint), and the

corresponding compound outage capacity can be derived from

it.

The channel model is introduced in Section II. Compound

outage probability is defined and investigated in Section III,

which includes its closed-form characterization in Theorem

1 (as one-dimensional convex optimization problem) and the



worst channel distribution (which is a piece-wise constant scal-

ing of the nominal distribution). Remarkably, the compound

outage probability depends only on the nominal one and the

relative entropy distance, all other details being irrelevant.

Properties of the compound outage probability are given in

Propositions 1-3, and its two-regime asymptotic behavior is

identified in Section III-B. Specifically, as the nominal outage

probability decreases (say by increasing the SNR), the com-

pound outage probability first decreases linearly, but after a

certain threshold - only logarithmically, i.e. very slowly, so that

significant decrease is not possible anymore. Optimizing the

input signal distribution in this regime does not bring in sig-

nificant improvement either so that any reasonable distribution

(e.g. isotropic signalling in MIMO channels) will do as well.

Compact, closed-from approximations are obtained for the

compound outage probability in these two regimes using the

tools of asymptotic analysis. Theorem 2 shows that the input

signal distribution optimal for the nominal channel distribution

is also optimal for the whole class, so that numerous known

optimal distributions can be ”recycled”. Since relative entropy

is not symmetric, Section IV investigates the impact of this

asymmetry on the compound outage probability. Swapping the

distributions (nominal and true) is shown to result in the error

floor effect: the compound outage probability is bounded away

from zero, does not matter how low the nominal outage (or

how high the SNR) is. The error floor depends on the relative

entropy distance: it decreases with it and when it is small, they

are equal, so that the relative entropy distance is an adequate

measure of fading uncertainty in the non-ergodic regime.

II. CHANNEL MODEL AND OUTAGE PROBABILITY

Let us consider a generic discrete-time baseband multiple-

input multiple-output channel where x and y are the input

(transmitted) and output (received) vectors (or sequences), and

H denotes channel state. In the general case, the channel is de-

scribed by the conditional probability distribution W (y|x,H)
of y given x and H, and the mutual information (per channel

use) supported by the channel for a given distribution of x and

channel state H is I(x;y|H). We assume that the channel is

block-fading (non-ergodic), i.e. a particular channel realization

H is selected in the beginning and stays fixed for the whole

duration of codeword transmission; next codeword will see a

different channel realization 1. Channel fading distribution is

described by its probability density function f(H). Most of

our results will hold in this generic scenario, which includes

as special cases frequency-selective (inter-symbol interference)

or frequency-flat (no ISI) Gaussian MIMO channels.

We will not assume any particular fading and noise dis-

tribution so that our results are general and apply to any

such distribution. The transmitted signal, receiver noise and

the channel are assumed to be independent of each other. We

also assume that the transmitter does not know the channel

1With a slight modification in notations, this block-fading model can also
be extended to the case where each codeword sees a finite number of channel
realizations and our results will hold in that case as well.

but only has a partial knowledge of its distribution. A popular

Gaussian MIMO channel is a special case in this model.

Main performance metrics in the block-fading regime are

outage probability and outage capacity [1] 2. Outage proba-

bility is the probability that the channel is not able to support

the target rate R. When the transmitter knows the channel

distribution (but not the channel itself), the outage probability

is

Pout(R) = min
ρ(x)

Pr{I(x;y|H) < R} (1)

where ρ(x) is the distribution of x subject to the total power

constraint E[x†x] ≤ PT , Pr{I(x;y|H) < R} is the outage

probability for a given ρ(x) and the minimization is over

all possible distributions of the input x satisfying the power

constraint. Using the outage probability, outage capacity can

also be found as the maximum possible rate subject to the

outage probability constraint. Finally, one may also consider

the outage probability and capacity for a given (fixed) ρ(x).
Operational meaning of the outage capacity/probability fol-

lows from the compound channel capacity theorems [1][2];

see also [4][5] for a modern treatment using the concept of

information density.

III. COMPOUND OUTAGE PROBABILITY

Consider the scenario where the transmitter has only partial

channel distribution information. Namely, it knows that the

channel probability density function (PDF) f(H) is within

a certain distance of the nominal one f0(H). We use the

relative entropy as a measure of the distance between two

distributions, so that all feasible distributions f satisfy the

following inequality:

D(f ||f0) =

∫

f ln
f

f0
dH ≤ d (2)

where D(f ||f0) is the relative entropy or Kullback-Leibler

distance between the distributions, and d is the maximum

possible distance in the uncertainty set to which f belongs;

both d and f0(H) are known to the transmitter. Throughout the

paper we assume that d < ∞. In this scenario, the definition

in (1) does not apply (since the true channel distribution is not

known) but can be generalized to

P ∗
out = min

ρ(x)
max

D(f ||f0)≤d
Pr{I(x;y|H) < R} (3)

where the max is over all feasible (satisfying (2)) channel

distributions f . Its operational meaning also follows from the

compound channel capacity theorems [1][2] or from [4][5],

since the optimal input distribution does not depend on the

true channel distribution, but only on the nominal one and

the relative entropy distance d, both known to the transmitter.

This problem setup models a practical situation where the

channel distribution information is obtained from measure-

ments or physical modeling, which are never perfect. It also

accounts for the fact that the estimated channel distribution

2It can be further shown that the outage probability is the best achievable
average codeword error probability [4][5].



may change with time in dynamic scenarios. We term P ∗
out in

(3) ”compound outage probability” since it is a performance

measure of a class of channel distributions rather than a single

distribution. This approach parallels the work on compound

channel capacity [2][3] where the channel is not known to the

transmitter but it is known to belong to a certain class.

To characterize the compound outage probability P ∗
out, we

adopt a two-step approach: first, we characterize the outage

probability for a given input distribution, i.e. no minimization

in (3), which also represent a practical situation where this

distribution is set a priory; then it is minimized over all feasible

input distributions.

A. Step 1: Compound Outage for a Given Input Distribution

When the input distribution ρ(x) is fixed a priory, the

compound outage probability is

Pout = max
D(f ||f0)≤d

Pr{I(x;y|H) < R} (4)

Its characterization is strikingly simple in the generic scenario,

i.e. for any noise and nominal fading distribution.

Theorem 1. For a given input distribution ρ(x) and arbitrary

nominal fading distribution f0, the outage probability in (4)

can be expressed as

Pout = min
s≥0

[s ln(1 + (e1/s − 1)ε) + sd] (5)

where

ε =

∫

I(x;y|H)<R

f0dH (6)

is the nominal outage probability (i.e. the outage probability

under the nominal channel distribution). The worst channel

distribution f∗ (the maximizer in (4)) is given by

f∗ =
(e1/s∗ − 1)ℓ(H) + 1

(e1/s∗ − 1)ε + 1
f0 (7)

where s∗ is the minimizing s in (5), and ℓ(H) is the indicator

of the outage set: ℓ(H) = 1 if I(x;y|H) < R and 0 otherwise.

Proof: since the problem is convex with zero duality gap,

follows from the KKT conditions, see [11] for details.

Note that Theorem 1 effectively reduces the infinite-

dimensional optimization problem in (4) (the optimization

there is over the set of all admissible distributions f ) to

one-dimensional convex optimization in (5), which can be

efficiently solved using numerical algorithms. It is remarkable

that the nominal distribution enters the compound outage

probability in (5) only via the nominal outage probability ε,

all other its details being irrelevant, i.e. two different nominal

distributions with the same nominal outage probability will

produce the same compound outage probability.

Note that the maximizing density f∗ in (7) mimics the

nominal one f0 in a piece-wise constant manner:

f∗

f0
=

{

e1/s∗

(e1/s∗−1)ε+1
, if H ∈ O

1
(e1/s∗−1)ε+1

if H /∈ O (8)

where O = {H : ℓ(H) = 1} is the outage set, so that the

right-hand side of (8) is independent of H in each set and f∗

is a scaled up version of f0 in the outage set and scaled down

otherwise.

A number of properties of the compound outage probability

are given below (proofs are omitted due to the page limit and

are available in a full version of this paper [11]).

Proposition 1. For a given input distribution ρ(x), the com-

pound outage probability Pout(d) as a function of distance d
has the following properties:

1) Pout(d) is concave in d ≥ 0.

2) Pout(d = 0) = ε, i.e. the compound outage probability

equals the nominal one when d = 0.

3) Pout(d) is a non-decreasing function of d, that is

Pout(d1) ≤ Pout(d2), 0 ≤ d1 < d2 < ∞. (9)

and the equality holds if and only if Pout(d1) = Pout(d2) =
1, 0 i.e. Pout(d) is a strictly increasing function of the distance

d unless Pout = 1, 0.

Proposition 2. The compound outage probability Pout has the

following properties:

1) Pout = 1 if and only if ε = 1.

2) Pout = 0 if and only if ε = 0.

3) Pout ≥ ε, and the equality holds if and only if d = 0 or

ε = 0, 1.

While in general the compound and nominal outage proba-

bilities can differ significantly, the former takes on a limiting

value (either 0 or 1) if and only if the latter does so.

Proposition 3. The compound outage probability in (5) is a

strictly-increasing, concave function of the nominal outage ε,

i.e.

Pout(ε1) < Pout(ε2), 0 ≤ ε1 < ε2 ≤ 1. (10)

with the boundary conditions Pout(ε = 0) = 0, Pout(ε =
1) = 1.

B. Asymptotic Regimes

We now consider the compound outage in (5) in two limiting

regimes: 1) The uncertainty-dominated regime ε → 0 and fixed

d, and 2) The nominal-outage dominated regime d → 0 and

fixed ε. The following approximations can be obtained using

the standard tools of asymptotic analysis [9].

Proposition 4. The outage probability Pout in (5) in the low

nominal outage regime, ε → 0 and fixed d > 0, is as follows:

Pout =
d

ln d
ε − ln ln d

ε

(1 + o(1)). (11)

Note from (11) that the main contribution to Pout is coming

from d (i.e. the uncertainty) rather than ε (i.e. the nominal

outage) since ln(d/ε) is a slowly-varying function of ε, so that

variations from the nominal channel distribution dominate the

outage events. Also note that the relative entropy distance d
is directly related to the compound outage probability, which



indicates that it is this distance that should be used as a

measure of accuracy in estimating the channel distribution

from measurements or physical modeling since it is directly

related to the system performance.

Let us now consider the nominal outage-dominated regime.

Proposition 5. In the low channel distribution uncertainty

regime, d → 0 and fixed ε, the compound outage probability

is

Pout = ε +
√

2d(1 − ε)ε + o(
√

d) (12)

Comparing Proposition 4 and Proposition 5, one concludes

that indeed there are two regimes in the behavior of Pout(ε),
as illustrated in Fig. 1:

1) The uncertainty dominated regime (nominal outage is

neglegible), when ε ≪ d < 1 so that

Pout ≈
d

ln d
ε − ln ln d

ε

∼ d

ln(1/ε)
(13)

where ∼ means ”scales as”, so that Pout depends

linearly on d but only logarithmically (i.e. very slowly)

on ε.

2) The nominal outage-dominated regime (uncertainty is

negligible), when d ≪ ε < 1 and

Pout ≈ ε +
√

2d(1 − ε)ε ∼ ε (14)

i.e. d contributes very little to the outage probability.

These two regimes immediately suggest some design guide-

lines related to the outage probability. In the uncertainty dom-

inated regime, the main way to reduce outage probability is

via decreasing the uncertainty of the channel distribution, e.g.

via improved channel measurements or modeling; reducing

the nominal outage probability is not efficient here, so that

minimizing it via the optimal input distribution is not worth

the effort - any reasonable distribution (e.g. isotropic signalling

in MIMO channels) will do as well. This approach, however,

will bring little improvement in the nominal outage-dominated

regime, where the only way to reduce the outage probability is

via improving systems performance under the nominal fading,

e.g. by increasing the SNR or optimizing the input distribution.

These conclusions hold for any nominal channel distribution

(e.g. not limited to i.i.d. Rayleigh) and for any noise (not only

Gaussian).

This two-regime behavior can also be linked to the way

channel distribution is obtained from measurements: a finite

number of fading channel realizations are measured and the

empirical channel distribution is derived based on it. However,

the relative accuracy of this empirical distribution is always

lower at the distribution tails, where fewer measurement points

are available. On the other hand, in the uncertainty-dominated

regime, the nominal outage probability is low when the

average SNR is high so that a nominal outage event takes place

when the channel is very weak, i.e. at the distribution tail,

so that the inaccuracy in the channel distribution estimation

plays a dominant role there. Ultimately, low compound outage

probability can only be achieved by insuring sufficiently high

accuracy of the estimated distribution tail (small d), i.e. when

a sufficient number of independent measurements fall into that

region.

Fig. 1. Two-regime behavior of the compound outage probability. Its
approximations in (13) and (14) and nominal outage ε = 1/SNR (set for
convenience as in Rayleigh fading at high SNR) are also shown; d = 10−3.
Decreasing the compound outage probability beyond about 10−3(≈ d)
requires exponentially high SNR and is not practical (it takes 60 dB extra
to go from 10−3 to 10−4, while normally, i.e. without uncertainty, it would
take only 10 dB).

C. Step 2: Minimizing over the Input Distribution

Using Theorem 1, we are now in a position to characterize

the compound outage probability in (3).

Theorem 2. Consider a class of fading channels in (2). Its

compound outage probability in (3) can be found from

P ∗
out = min

s≥0
[s ln(1 + (e1/s − 1)ε∗) + sd] (15)

where ε∗ = minρ(x) ε is the optimized nominal outage

probability, so that the outage-minimizing input distribution

for the class of channel distributions in (2) and for the nominal

distribution f0 are the same,

arg min
ρ(x)

Pout = arg min
ρ(x)

ε (16)

Proof: use Theorem 1 and observe that ln(·) is a mono-

tonic function, minρ(x) and mins≥0 can be swaped, so that the

minimization of the compound outage over ρ(x) is equivalent

to the minimization of the nominal outage.

A significance of Theorem 2 is that the optimal input

distribution is the same as for the nominal channel, so that

a significant number of known results apply directly to the

compound fading channel as well, i.e. no new search of

optimal input distributions is required.

When the compound outage P ∗
out in (15) is considered as a

function of the distance d, P ∗
out(d), its properties mimic those

in Proposition 1 with the substitution ε → ε∗. Also, the results

and conclusions of Section III-B hold under this substitution.

In particular, optimizing the input distribution is worth the

effort only in the nominal outage dominated regime.



IV. THE IMPACT OF ASYMMETRY

Since relative entropy is not symmetric, i.e. D(f ||f0) 6=
D(f0||f), we consider in this section the constraint

D(f0||f) ≤ d to see the impact of the order on the obtained

results. The main results are summarized below (see [11] for

details).

Proposition 6. For a given input distribution, the compound

outage under the distribution class D(f0||f) ≤ d,

Pout = max
D(f0||f)≤d

Pr{I(x;y|H) < R} (17)

is bounded as follows:

Pout ≥ 1 − e−d + e−dε ≥ 1 − e−d (18)

The bounds in (18) are tight when ε → 0 and fixed d,

Pout = 1 − e−d + o(1), (19)

and when d → 0 and fixed ε,

Pout = ε +
√

2ε(1 − ε)d + o
(√

d
)

→ ε (20)

When d ≪ 1,

Pout ≥ d + ε (21)

An important conclusion is immediate from (18): Pout(ε =
0) ≥ 1−e−d, i.e. there is an error floor effect in the behavior of

Pout(ε): even though ε → 0 (e.g. by SNR → ∞), Pout 9 0.

From (21), Pout ≥ d, i.e. cannot be made smaller than

the relative entropy distance d, does not matter how large

the SNR (or how small the nominal outage) is. This is in

contrast to (11), where Pout → 0 when ε → 0, even though

logarithmically slowly (i.e. no error floor). The absence of

error floor in the latter case should not however be overes-

timated, since the convergence Pout → 0 is logarithmically

slow in ε, i.e. requires exponentially large SNR, so that for

all practical purposes, Pout also saturates around d, as was

indicated in Section III-B. Note also that (21) places d and ε
on equal footing, re-enforcing our earlier conclusion that d is

an adequate measure of fading uncertainty in the non-ergodic

regime.

Comparing (20) to (12), we conclude that the compound

outage probability is the same for the D(f‖f0) ≤ d and

D(f0‖f) ≤ d uncertainty sets in the low uncertainty regime

while the same cannot be said about the low nominal outage

regime (compare (19) to (11)).

V. CONCLUSION

Compound outage probability of a class of fading (MIMO)

channels with partial channel distribution information has been

introduced and studied. This concept generalize well-known

and widely used concepts of outage probability and capacity

with completely known channel distribution to the case where

only its partial knowledge is available. Relative entropy dis-

tance is used as a measure of uncertainty, which is shown

to be related directly to the compound outage probability

so that it is an adequate measure of the fading uncertainty

in the non-ergodic regime. A number of properties, bounds

and approximations of the compound outage probability are

given. The input distribution optimized for the nominal outage

probability is shown to be also optimal for the compound

one. These results hold for an arbitrary nominal channel

distribution (e.g. Rayleigh, Rician, Nakagami, Log-Normal,

correlated and/or non-identically distributed, etc.) and also for

arbitrary noise (not only Gaussian).
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