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Abstract— Convexity/concavity properties of symbolerror rates

(SER) of the maximum likelihood detector operatingin the

AWGN channel (non-fading and fading) are studied. @neric
conditions are identified under which the SER is a
convex/concave function of the SNR. Universal bousdfor the
SER 1st and 2nd derivatives are obtained, which hdl for

arbitrary constellations and are tight for some of them.

Applications of the results are discussed, which alude optimum

power allocation in spatial multiplexing systems, ptimum

power/time sharing to decrease or increase (jammingroblem)

error rate, and implication for fading channels.

. INTRODUCTION

Many practical problems, including optimization plems
of various kinds, simplify significantly if the fations
involved have some convexity/concavity propertidst only
numerical, but also analytical techniques benédjhifcantly
if such properties hold. Powerful analytical andmmeuical
technigues exist for convex/concave problems [IgniBcant
insight into the problem is often provided by
convexity/concavity itself, even if an analyticalligtion is not
found. Symbol error rate (SER) is an important @enance
measure of a digital communication systems andsuad, is
often a subject to optimizations of various levélativated by
these arguments,
properties of SER of the maximume-likelihood (ML)teletor in
non-fading and frequency-flat slow-fading AWGN chats.
Convexity/concavity properties of ML detector errates for

binary constellations have been reported in [5lesehresults

are extended here to arbitrary multi-dimensionalstellations.
Applications of the results are discussed.

Il. SYSTEMMODEL

The standard baseband discrete-time system modkl am
AWGN channel,
sampling, is adopted here,

r=s+§

1)

wheres andr aren-dimensional vectors representing the T

and Rx symbols respectivelys{§, S..... §} ., a set ofM

constellation pointsg is the additive white Gaussian noise
(AWGN), & ~ CN(O,GSI ), whose probability density function

(PDF) is

P (X) = (2-,-[0-%)_2 e‘\X\Z/ZU(Z) )

where o3 is the noise variance per dimension, ani the
constellation dimensionality; lower case bold lettelenote
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vectors, bold capitals denote matriceg, denotes_i-th
component ofx, |x denotes b norm of x, |x|=\/S_xL,
where the superscript denotes transposes; denotes i-th
vector. Frequency-flat slow-fading channels willdmnsidered
as well. The average (over the constellation ppiBNR is
defined as y 1/00, which implies the appropriate
normalization,-- |si| =1.

Consider the maximum likelihood detector, which is
equivalent to the minimum distance one in the AWGN
channel,s=arg mirg |r—si|. The probability of symbol error
P, given than s=5§ was  transmitted  is
Py =Pr[8# 5| s= §]=1-P;, where P, is the probability of
correct decrsron The SER averaged over all cdasitah
points is P, = Z P Pr[s=5]=1-R.. P; can be expressed

Ry = [, Pe(X)oix 3)

is the decision region (Voronoi region), arsd
corresponds to =0, i.e. the origin is shifted for convenience
to the constellation poing . Q; can be expressed as a convex
polyhedron [1],

where Q,

(sj—9) 1
sl 72

where a denotes j-th row ofA , and the inequality in (4) is
applied component wise.

Q, ={x|Ax<b}, a] = ‘§|

[lI. CONVEXITY OFSERIN SNR

Below we study the convexity/concavity propertiésS&ER as
a function of SNR. Only sketches of the proofs previded
here due to the page limits.

Theorem 1 PR,(R.) is a convex (concave) function of the

which includes matched filtering andNRy if n<2,

dZPe/dyZ:qu>oH R}, <0 (5)

XSketch of the proof is given in the Appendix.

Theorem 1 covers such popular constellations askBPS
BFSK QPSK, QAM, M-PSK, OOK, whose error rate
convexity can also be verified directly based oowmn error
rate expressions.

Theorem 2 For n>2, B, (
convexity properties,
2.1.1tis convex (concave) in the large SNR mode,

y>(n+x/_)/dmm,

P,) has the following

(6)
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2.2.1tis concave (convex) in the small SNR mode,
ys(n-van)/di,, )

2.3.There are an odd number of inflection
Pci‘v" = Pea\y" =0, in the intermediate SNR mode,

(n_\/%)/dr%axj = VS (n+\/%)/dr2nini (8)

rather than the SNR.

Corollary 4.1: The results in Theorem 4 extend directly to
P.(R,) by the substitutionsl - d and d - d

maxj max min,i min

pointsin (9)-(11).

V. UNIVERSAL BOUNDS ONSERDERIVATIVES IN SNR
Here we explore some properties of the SER devieatin

Proof: follows along the same lines as that of Theorem 1 SNR based on the results in Section Ill.

Corollary 2.1: Using the fact that non-negative weighted Theorem 5 The first derivative in SNRR,

sum of convex (concave) functions is also convengave),
the results in Theorem 2 extend directly B(P,) by the
substitutions  dyay; - dax  and  don; - diyn,  where
Omax = Max @ a ) @and dg, =min; (dyn; ), in (6)-(8).

It should be noted that the small SNR regions &Y do
not exist if d,,, =, i.e. unbounded; .

Theorem 2 indicates that the constellation dimeradity
plays an important role for concavity/convexity pecties.

(and also
Pe'i‘v) is bounded, for arbitrary constellation, as fol
nl2  _-n/2
Ch n e
-N<p <0, ¢, =|— 12
y @ & (2) r(n/2) (12)

where[ () is the gamma function.

Proof: follows along the lines of that of Theorem 1 and 2
by observing that the lower bound is achieved fierspherical
decision region of the radiudm (see Corollary 5.1). The

Below we present a result which is independent fé t ypper bound is obvious.

dimensionality.
Theorem 3 PR,

is log-concave in SNR for arbitrary and constellation

It should be noted that the bounds depend onlyherSNR
dimensionality, not on constalat

constellation, arbitraryn and any log-concave noise densitygeometry. They also app|ylﬁe'iy-

(i.e. Gaussian, Laplacian, exponential, etc.)

Proof: via the integration theorem for log-concave fumasi
[1, p.1086].

Unfortunately, in the general case log-concavitgsimot

Example: for n=1 and n =2 correspondingly and arbitrary
constellation geometry,

1
- <P, <0 (=1,
oy T (=2

1
-—<P, <00= 2
ey dy

extend to P.(the sum of log-concave functions is not

necessarily log-concave). However, in some spemaks it

does.
Theorem 3 for a symmetric constellation, i.e.
P=Py=P,=..=Py, .

Proof: immediate from Theorem 3 sind& = F; .

We note that log-concavity is a “weaker” properhar
concavity as the latter does not follow from thenfer. Yet, it
is useful for many optimization problems, which cae
reformulated in terms olog P, .

IV. CONVEXITY OF SERIN NOISEPOWER

Below we study the convexity properties d¥; (R;) as
functions of the noise power, which has applicatiom the
jamming problem.

Theorem 4: P; has the following convexity properties in

the noise poweR, = a3, for anyn,
4.1. P; is concave in the large noise mode,

-1
R 2 0 (n+2- 200+ 2) ©)
4.2. P, is convex in the small noise mode,
-1
Py < 2y (n+2+4/20+ 2)) (10)

4.3. There are an odd number of inflection points for

intermediate noise power,

achieve
Corollary 3.1: P. is log-concave under the conditions ofQ; =C* = X||X|2 < ”/;j , of the radiu
for

Corollary 5.1: When the lower bound in (12) is applied to
Pe'iv, it i for the spherical decision region,
syn/y.
Proof: immediate from the proof of Theorem 5 by
observing thatPe’i‘y is positive outside o€ " .

While the spherical decision region is not oftecamtered
in practice, it is the best possible decision redi]. One may
also expect that for decision regions of the shelpse to a
sphere the lower bound in (12) is tight.

Corollary 5.2: The asymptotic behavior olPe'i‘y and P;

which also applies t(PE;y and C"y, is as follows

&

=lim P, =0

H !
lim P iim Py

13
lim B, (13)

and the convergence to the limit is uniform.
Proof: immediate from Theorem 5.

Theorem & The second derivative in SNIR}, (and also
Pe'i"y ) is bounded, for arbitrary constellation, asdols,
Bpr B

dy 2

14
7 v (14)

n/2 —an

(a,) e _
a;(n—/z), By —_(_bh)+

o =3(207) =427

where(x), =x if x=0 and 0 otherwise.

(b,) "™

Bu =2 r(n/2)

d2 (n+2+1/2(n+ 2))_l <R < drf]axj (n+ 2- 20+ 2))_1(11) Proof: similar to that of Theorem 5, by observing thas t

min,i

lower and upper bounds, when appliedR{

, to
Proof: follows along the same lines as those of Theoremifle spherical decision regions of rady =J(n—E;2n)+ Iy

and 2, by expressin®, (P, ) as functions of the noise power
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and R, =/(n+~/2n)/y.

Example: for n =2 and arbitrary constellation geometry,

(&

Corollary 6.1: the lower and upper bounds in (14) are VI,
achieved for the spherical decision regions ofrdwii R and Some of the convexity/concavity results above alpply to

The bounds for the1and 2° derivatives, both in the SNR
and the noise power, can also be extended to hagler
derivatives. The analysis, however, becomes more

< complicated.

0< R, (15)

CONVEXITY OF AVERAGE SERIN FADING CHANNELS

Proof: similar to that of Corollary 5.1.

Corollary 6.2: The asymptotic behavior dPe'i"y and P(;-"y,

which also applies tcPJy and C"'y , Is as follows
lim Pe"."y =lim Ff:'i'\y =0 (16)
Y- o Y -

and the convergence to the limit is uniform.
Proof: immediate from Theorem 6.
Corollary 6.3: B; ,RP; (and alsoR,, R.) and their first
derivatives are continuous differentiable functiofshe SNR.
Proof: immediate from Theorems 5 and 6.
VI. UNIVERSAL BOUNDS ONSERDERIVATIVES IN NOISE
POWER

Here we explore properties of the SER derivativethé noise
power. These results parallel ones of the prevémasion and
have similar proofs, which are omitted here foniiye

Theorem 7. The first derivative in the noise pow%PN is
bounded, for arbitrary constellation, as follows,

C
O<P, s
dPy PN

(17)

Corollary 7.1: The upper bound in (17) is achieved for the

spherical decision region of the radiysP, .
Theorem & The second derivative in the noise povFgEN
is bounded, for arbitrary constellation, as follpws

%SPJPN s% (18)
where
_ [nr2(m)"e™ \/m(bz)nlze_|D2
VT ) YT 2 g

by :%(n+2+1/2(n+ 2)) , b, :—;(n+ 2=\ 20+ 2)
Corollary 8.1: the lower and upper bounds in (18) ar
achieved for the spherical decision regions ofr gk

R =V2,R, R =R (19)
with the effective SNRsy, = R?/R, =n+2-,/2(n+ 2) and
Y, =R2/R, =n+2+./2(n+2).

Corollary 8.2: The asymptotic behavior off; and
Fil, » Which also ?pphes t@qu. and Rjq . is as follows
SR @0)

and the convergence to the limit is uniform.

Corollary 8.3: P; ,R; (and alsoP,, F.) and their first
derivatives are continuous differentiable functiefighe noise
power.

fading channels, which is explored in this sectidfe assume
frequency-flat slow-fading channel.

Theorem 9 If the instantaneous SERP, is convex
(concave) and the CDF of the instantaneous SWRs a
function of y/y, only,

CDF(y) = F(vy/Yo) (21)

where y, is the average SNR, then the average SERs
convex (concave) iy, .

Proof: follows from the integral expression of the aygra
SER, with the substitutioh=y/y,.

It should be pointed out that the convexityRf at the large
SNR mode in a Rayleigh-fading channel can also dréied
directly from the large-SNR approximatimﬁ_’e = contant N('j ,
which is a convex function.

The equivalent to (21) condition is that the PDFyo€an be
expressed a®DF (y) = g(y/Yy)/ Yo - The condition is not too
restrictive as many popular fading channel modatssfy it,
which includes Rayleigh fading channel (also witaximum-
ratio combining), Rice and Nakagami fading channels
However, some channels do not satisfy (21), whicddudes
the log-normal and composite fading channels.

VIII.

Convexity/concavity is in high demand in any opftiation
problem [1]. Below we consider some of them.

APPLICATIONS

Optimum_Power Allocation for the V-BLAST Algorithm:
Consider the block error rate (BLER), i.e. the oty of at
least one error at the detected transmit vectahe¥-BLAST

[7]:

Rs(ay..0p)=1- |_| A-R @i )) (22)
i=1

where B, is the SER for the constellation in usg, is the
SNR of i-th stream with uniform power allocation; is the

éraction of the total transmit power allocated-th istream (the

uniform power allocation corresponds w =1), m is the
number of streams (transmitters). Both instantaseand
average P, can be used in (22). Using the BLER as an
objective, the following optimization problem cane b
formulated [7]:

MiNgg, oy Ps. Subjectted " o; =m (23)

where the constraint insures that the total trangover is
fixed.

Theorem 10: The optimization problem in (23) has a
unique solution for either: (i) 1-D or 2-D cons&ibns in
terms of instantaneous or average (in Rayleighe Riad
Nakagami-fading channels) BLER, or (ii) fbf-D symmetric
constellationsM =1, in terms of instantaneous BLER.
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Proof: note that the problem in (23) is equivalent tetraightforward. If follows from Theorem 4 that,

MaXg, o4 Oy NP @y ). If P, is convex,(1-R,) and P >0, <P,
In(1-F,) are concave [1]. Thus, the objective function is df (26)
concave and hence the problem has a unique salufign Pq"pN <O, R >R

Theorem 1 and 9, this holds for 1-D or 2-D conatalhs in
the AWGN channel, or Rayleigh, Rice, or Nakagandirig
channels if the average BLER is used. Hdr=1 and a
symmetric constellation, the uniqueness in terms
instantaneous BLER follows from Corollary 3.1.

and the sub-optimum sharing is as follows:

Theorem 11 The sub-optimum solution to (24) is to use the
3]1ngle power level (always “on"B; =R, if By 2R, and
*on-off” strategy with the on-intervad, = By / By, By, = Py if

A <h,

Optimum Power/Time Sharing for a Jammer: This section

extends the corresponding results in [5] to noratyirmulti- {O‘iapr\n ,}_

n=10a,=1R; =R B 2Pk
27)

dimensional constellations. Since the proofs ofs¢heesults ;-1
follow along the same lines as those in [5], wetaimem for
brevity.

ConsideringP, as a function off, , one may formulate the

R .
0

which achieves the following SER,

following jamming optimization problem using powérie = NLAGYE ARzhR
sharing: =10 )R /R, B <P (28)
: . 2(R)A /Py Ry <Ry
M&% {aty...an}{ Pz Pud Zi:lui RF) (24) Proof: it is straightforward to verify that (28) correspls to
subject tozm o = 1Zm a,Py = Py the strategy in (27). Using (26), it follows that
=1 " Luj=1 i Ni

P.(Py) 2 P.(Py) . Thus, (27) is indeed a better strategy than no
where the jammer splits its transmission intsub-intervals, sharing.Q.E.D.
a; being the fractional length of i-th sub-intervaidaR; is Intuitive explanation for (27) is that one elimiaatthe
its noise (jammer) power, with the total noise poweR,, convex part ofP,(R,) by time/power sharing and the concave
and n is the number of sub-intervals. The objediivetion in  part is left intact (no optimization is requireceth). Indeed, it
(24) is the SER over the whole transmission interdn can be  verified that |5q" =0ifR, <R and
immediate conclusion from (24) is that H,(Py) is concave, |5"P <0 if By >PR,. The solution in ?27) is not optimum since
the power/time sharing does not help, i.e. the beategy is the Tirst derivative ofP,(Py) is discontinuous aB, =R, and
no sharing:n=1, a; =1, R; =K. This can be seem from |5"P (R) =+ (unless Pe;PN (R) = Ru(Ry)/ Py, in which case

the basic concavity inequality, 2 ? gives the optimum solution) so tha(Py) is not
n n a concave, which means that further optimizationasgible.
Zizlai Fe(Ru) < Pe(zizlai Pui ) - PE(PN) (25) It follows that the optimal solution for the singl&flection

point case is the same as that in [5, Theorem &jgise it is

Theorem 4 ensures that the optimization is possiblee . . :
. ; : based only on the convexity/concavity properties tbé
optimum n follows immediately from Caratheodory theorem . Lo
. _ ; roblem, which were demonstrated above), and idestical
[5, 6]: n<2, wheren=1 corresponds to no sharing so tha

o R 0 (27) with a differently-defined thresholg, .
the only non-trivial solution is1=2, i.e. two power levels are
enough to achieve the optimum. Let us denote theéman in Optimum__ Time/Power Sharing for the Transmitter:
(24) as R,(Ry), where “~" denotes optimality. Similarly to Similarly to the jammer problem above, the optirtiza
[5], it has simple characterization: problem can be formulated for the transmitter, witie
Lemma 1: RP,(Ry) is concave. objective to reduce the SER. In fact, these twdlemos are
Proof: by contradictioh If it is not concave, one can applyequivalent, via the substitutions,
the sharing in (24) again to increase it. But iba’mpossmle PP, y-R, (29)
as two consecutive sharings are equivalent to glesione and )
hence the second one does not help. THygR,) has to be FOr completeness, we formulate below the main tesul

concave, in which case second sharing does not hslf25) ~ Theorem 12 If F.(y) is concave, e.g. for 1-D and 2-D
indicatesQ.E.D. constellations, the optimum transmission strategyalways

It also follows thatP.(P) is the smallest concave function“On”, without sharing (i.e. power/time sharing doest help to
that upper-boundsP,(R,) [1,5,6]. This fact, however, is reduce _the SER, wh|_ch was the case in [5] for aaryin
immaterial for our problem as we try to maximiBe so larger modulation). If F(y) is not concave, e.g. for some M-D
functions are naturally welcome. constellations, M >3, (i) the sub-optimum transmitter

Before finding the optimal solution, we give a sytimal Strategy is given by Theorem 11, and (ii) the optim
one, which is however simpler to characterize. €larity of ~fransmitter strategy is given by [S, Theorem 3pthbwith the
exposition, we consider here the case of a singflection Substitutions in (29).

point (R) only; the extension to the general case is Comparing these results to those in the previoosose we
conclude that the jammer is in better position caragd to the

1 The original proof in [5] relied on an elaborategement. The transmitter for 1-D and 2-D constellations.
contradiction-type proof given here is much simpler
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Implication for Fading Channels: The following result is a
straightforward consequence of the basic convarigguality

and the results in Section lll.

Theorem 13 If R,(y) is convex in the non-fading AWGN

channel,
reduces the SER (“fading is never good”),

Aw=n)

e.g for 1-D and 2-D constellations, fadmgver

(30)

where x denotes mean value of.

*kk

rates haaéso

implications for the inter-symbol interference plesh [8].
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X. APPENDIX

Proof of Theorem 1 (sketch):considerP:, , which can be

|\y J
expressed as

d? pz(x)
C|\y '[Q| (31)
where the derivative is
d2 X n/2 2
pzz( ) :}(lj R (|X|2) (32)
dy 4\ 21
and \}‘j_)—(t a,/y)(t-a,ly), a, =n+y2n>0,
a, =n-v2n<0, so that f(|x|2)<0 if |x| <a,/y, and

f(|x| )>0 otherwise. Consider three different cases.

(i) If dmax’ <a,/y, whered,,; is the maximum d|stance
from the origin to the boundary of);, then f(|x| )<0
Ox0OQ; so that the integral in (31) is clearly negativel £5)
follows. Fig. 1 illustrates this case. This is a48NR mode
sincey <oy /dZ. -

(i) If drf"n, za,/y, where dyp,; =min;(;) is the
m|n|mum distance from the origin to the boundary(hf, then
f(|x| )20 DxO(R"-Q, ], where R"is the n-dimensional
space, andR" -Q, {x xDQi} is the complement of); .
The integral in (31) can be upper bounded as

" d?p; (x) d? pz(X)
P\v j—d > dx<j

o dy dy?

where we have used the fact ttha\tn P:(X)dx =1. This is a
large-SNR mode sincg = orlldmlnl .

(iii) The last case oﬁm,n, <a,/y< dma,(L is illustrated in
Fig. 2. Separate the decision regi@y into two sub-regions,

=0 (33)

Rn

Q.. is (are) the cone(s) whose base(s) is (are) the
mtersectlon(s) of the planesa X= b and the baII

convexity/concavity properties of error

Clearly, the integral ovelQ, is negative. The mtegral over
Q, can be bounded as

dp(X)
[ TR0

d? d7pe () (x)
dy?

=0 (34

Qy (R”—an)
where the inequality follows from the fact thaft(|x|2) >0
OxO(R" = Qg 0 Q; |, and the equality follows from the fact
that the integral ovev(R”—Qoon) is independent of SNR.
Combining the bounds for the integrals o¥eg and Q,, one

obtains (5).

»
»

Fig. 1. Two-dimensional illustration of the problemgeometry for
Case (i). The decision regiorQi is shaded.

Fig. 2. Two-dimentional illustration of the problem geometry for
Case (iii). The coneQ,, is build on the OA and OB rays.Q,, is
the triangle AOB.
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