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ABSTRACT 
 
Keyhole MIMO channels were predicted theoretically and 
also observed experimentally. However, they are not often 
encountered in practice since the assumption of a single 
propagation eigenmode is only a rough approximation of 
real propagation environments. This paper presents an 
extension to the single-keyhole channel model, termed a 
“multi-keyhole channel”, which includes a number of 
statistically independent keyholes. Correlated full-rank and 
rank-deficient multi-keyhole channels are considered in 
detail. Under some general conditions the full-rank multi-
keyhole channel is asymptotically Rayleigh fading if the 
number of keyholes is large. When the number of both Tx 
and Rx antennas is large, the capacity of a rank-deficient 
multi-keyhole channel is a sum of the capacities of the 
equivalent single-keyhole channels. The outage capacity 
distribution of both full-rank and rank-deficient multi-
keyhole channels is asymptotically Gaussian. Based on the 
asymptotic capacity analysis, full ordering scalar measures 
of MIMO channel correlation and power imbalance are 
introduced. 
Index Terms - MIMO system, keyhole channel, outage 
capacity, correlation. 
 
 

1. INTRODUCTION 
 

Multiple-Input-Multiple-Output (MIMO) systems have 
become an attractive solution in wireless communications 
due to enormously large spectral efficiency. One of the 
major statistical characteristics of a MIMO fading channel is 
its outage capacity, which gives the ultimate upper limit on 
the error-free information rate with a given probability of 
outage [1]. The outage capacity distribution of Rayleigh and 
Rice MIMO channels are well studied, and many analytical 
and empirical results are available. Chizhik et al [2] 
analytically predicted a keyhole channel, which can be 
modeled as a cascade of two Rayleigh fading channels 
separated by a single keyhole whose dimensions are much 

smaller than the wavelength. The presence of the keyhole 
degenerates the channel, i.e. its rank is one regardless the 
number of antennas [2]. Consequently, the capacity of such 
channels deteriorates significantly comparing to the Rayeigh 
channel with the same number of Tx and Rx antennas, even 
if the channel matrix entries are uncorrelated. Outage 
capacity distribution of single-keyhole channels is studied in 
[3]. Even though the single-keyhole channels may appear in 
some propagation scenarios, they are not often encountered 
in practice as the assumption of a single propagation 
eigenmode is only a rough approximation of real 
propagation scenarios [4]. Motivated by recent studies of the 
single-keyhole channel [3], we introduce a multi-keyhole 
channel to generalize and expand the range of applicability 
of the keyhole channel model. We establish, for the first 
time, a link between the keyhole and Rayleigh channels, and 
introduce a generic scalar measure of channel correlation and 
power imbalance in terms of their impact on the channel 
capacity. The significant advantage of this measure, as 
compared to that based on the majorization theory [5], is that 
any two channels can be compared without exceptions. 
Using this measure, we show analytically that both the 
correlation and the power imbalance have a negative impact 
on the asymptotic outage capacity. 
 
2. SINGLE-KEYHOLE MIMO CHANNEL CAPACITY 
 
Consider a spatially correlated single-keyhole MIMO 
channel with tn  Tx and rn  Rx antennas (see Fig. 1). Let the 
element kmH , 1.. ;  1...r tk n m n= = , of the channel transfer 
matrix H  be a complex channel gain from the m-th transmit 
to the k-th receive antenna. The gain matrix of the keyhole 
channel is given by [2] 

H
trhhH =                                  (1) 

where ( )H⋅ denotes the Hermitian transpose, th [ 1]tn ×  and 

rh [ 1]rn ×  are mutually independent random vectors 
representing the complex gains from the transmit antennas to 
the keyhole and from the keyhole to the receive antennas 
respectively. Assuming that the considered  keyhole channel 
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is a cascade of two correlated Rayleigh fading channels, th  
and rh  are complex circular symmetric correlated Gaussian 
vectors with correlation matrices }{ H

ttt E hhR =  and 
}{ H

rrr E hhR =  respectively, where {}E ⋅  denotes 
expectation. H  is normalized so that rt nnE =}{ 2H , 
where  is the 2L  norm, and 

1}{}{ 2121 == −−
rrtt EnEn hh , which also implies 

1}{}{ 11 == −−
rrtt tracentracen RR . 

From [1], when the channel state information (CSI) is 
available at the Rx but not the Tx end, the instantaneous 
capacity (i.e. the capacity for a given channel realization) of 
a quasi-static frequency flat MIMO channel in natural units 
[ ]nat  is given by: 

0ln(det[ / ])H
tC n= + γI HH                      (2) 

where det  is the determinant, I  is [ ]r rn n×  identity matrix 
and 0γ  is the average SNR per Rx antenna. The exact 
expression for the cumulative distribution functions (CDF) 
of C  (the outage capacity distribution) when tR  or rR  are 
non-singular and have distinct eigenvalues is obtained in 
[3]. The following theorem is proven in [3]: 
Theorem 1: When both tn  and rn  tend to infinity, the 
distribution of C  is Gaussian in probability if 

1 { }t tn trace− < ∞R , 22 0t tn− →R  as tn →∞ , and 
1 { }r rn trace− < ∞R , 22 0r rn− →R  as rn →∞ . Moreover, 

if the channel is normalized so that 1 { } 1t tn trace− =R  and 
1 { } 1r rn trace− =R , the asymptotic mean µ  and the variance 

2σ  of C  are as follows: 
2 22 2 2

0ln(1 );    r t t r rn n n− −µ = + γ σ = +R R     (3) 

From (3), the correlation affects 2σ  but not µ . Apparently, 
the higher 2σ , the smaller outage capacity a keyhole 
channel has at outage probabilities less than 0.5. The 
opposite is true at outage probabilities higher than 0.5 
(however this range of outage probabilities has little 
importance from the practical point of view). 
The next corollary follows immediately from Theorem 1. 
Corollary 1: Asymptotically, the channel correlation enters 
into the outage capacity distribution through the norm only, 
i.e. even though two correlation matrices 1R  and 2R  (at 
either end) are different, they affect the capacity in the same 
way if 1 2=R R . 

 
3. SCALAR MEASURES OF CORRELATION 

AND POWER IMBALANCE 
 
Let R  (either tR  or rR ) belongs to ℜ , where ℜ  is a set 
of all n n×  correlation matrices such that ( )trace n=R . 
Using the Cauchy-Schwarz inequality and the fact that every 
∈ℜR  is positive semi-definite, it is straightforward to show 

that 
21 2 1n n− −≤ ≤R                              (4) 

where the lower bound is achieved when the channel at the 
Tx(Rx) end is uncorrelated with the same power at each 
Tx(Rx) antenna, and the upper bound is achieved when the 
channel at Tx(Rx) end is fully correlated. Based on (4), there 
are two major effects that can increase 22n− R : (i) non-
uniform power distribution across the antennas (also termed 
power imbalance) and (ii) non-zero correlation. To analyze 
those effects separately, let us split ∈ℜR  into a sum of two 
matrices as follows: 

= +R K P                                   (5) 
where { }diag= −P R I  and = −K R P ; { }diag R  is the 
diagonal matrix whose main diagonal is that of R . Clearly, 
P  and K  account for the power imbalance and the 
correlation respectively. Since for any ∈ℜR , ( )trace n=K  
and ( ) 0trace =P , it is straightforward to show that the 
decomposition (5) is norm-orthogonal, i.e. 

2 2 22 2 2n n n− − −= +R K P                  (6) 

Moreover, it can be shown that 
22 10 1n n− −≤ ≤ −P                         (7) 

where the lower bound is achieved when all antennas have 
the same power (no power imbalance), and the upper bound 
is achieved when there is only one active Tx or Rx antenna. 
Furthermore, based on (4) and (6) 

21 2 1n n− −≤ ≤K                            (8) 

where the lower bound is achieved when =K I  
(uncorrelated channel), and the upper bound is achieved 
when the channel is fully correlated. Motivated by Corollary 
1 and the discussion above, we introduce the following 
definitions. 
Definition 1: A channel with correlation matrix 1 ∈ℜR  is 
said to be equally or more correlated than that with 2 ∈ℜR  
if  

1 2≥K K                               (9) 

where 1K  and 2K  correspond to 1R  and 2R  respectively 
through (5). This scalar measure of the channel correlation is 
alternative to the measure given in [5], for channels with 
large n . Unlike [5], (9) is not based on the majorization 
theory and provides a complete correlation characterization 

TxTx
EndEnd

RxRx
EndEnd

keyholekeyhole

 
Fig. 1. A keyhole MIMO channel. Each end has rich multipath 

so that the sub-channels are correlated Rayleigh fading.
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with no exception (i.e. any two 1 2, ∈ℜR R can be 
compared; see also the remark to the Definition 1 in [5]). 
Definition 2: A channel with correlation matrix 1 ∈ℜR  has 
the same or more non-uniform power distribution (power 
imbalance) across antennas than that with 2 ∈ℜR  if  

1 2≥P P                              (10) 

where 1P  and 2P  correspond to 1R  and 2R  respectively 
through (5). 

To get some insight, consider a simple geometrical 
interpretation of Definitions 1 and 2 shown in Fig. 2. It 
follows that 22n− R  is a mapping of ℜ  onto a circle 
sector (a shadow region in Fig. 2). The channel correlation 
matrix R  is represented by vector R  such that  

1 1;   { } tan { / }R n angle R− −= =R P K      (11) 

Following Corollary 1, the asymptotic outage capacity is 
affected by the length of R  but not by its angle. Consider 
two channels with correlation matrices represented by the 
vectors 1R  and 2R  such that 1 2R R R= =  (see Fig. 2). 
Following Definitions 1 and 2, the channel with 1R  is more 
correlated than one with 2R . In contrast, the channel with 

2R  has more power imbalance across antennas. 
Nonetheless, the outage capacity of both channels is same. 
Therefore, the power imbalance and correlation between 
antennas have the same impact on the asymptotic capacity 
distribution of a single-keyhole channel if 1 2R R= . 

As an example, consider, n n×  exponential correlation 
matrix model for R  [6]. The following holds true as 
n →∞  [3], 

2
22

2

11 0; 1
1

r
n r

n r
− +

→ ⋅ → <
−

K               (12) 

where r  is a complex correlation parameter. From (12), the 
measure of correlation converges to zero (as required by 
Theorem 1) and increases monotonically with r . The latter 
fact supports Definition 1. 
 

4. MULTI-KEYHOLE CHANNEL 
 
Following [4], the ideal single-keyhole channel is not often 
encountered in practice since the assumption of a single 
non-zero eigenmode is only a rough approximation of real 
propagation scenarios. More often, the channel may have a 
number of keyholes. By extending (1), the channel transfer 
matrix of such a multi-keyhole channel can be represented 
as: 

1

M H H
k rk tk r tk

a
=

= =∑H h h H AH               (13) 

where M  is a number of keyholes, ka  is the complex gain 
of the k-th keyhole, tkh [ 1]tn ×  and rkh [ 1]rn ×  are random 
vectors representing the complex gains from the transmit 
antennas to the k-th keyhole and from the k-th keyhole to the 

receive antennas respectively; 1[ .. ]t t tM=H h h , 
1[ .. ]r r rM=H h h  are [ ]tn M×  and [ ]rn M×  matrices 

respectively, and A  is an [ ]M M×  diagonal matrix with 
elements kk ka=A , 1..k M= . Suppose that for every k , 

tkh  and rkh  are mutually independent complex circular 
symmetric Gaussian vectors with correlation matrices 

{ }H
tk tk tkE=R h h  and { }H

rk rk rkE=R h h . Suppose also, that 
the keyholes are independent of each other, i.e 

{ } { }H H
tk tm rk rmE E= =h h h h 0  for any k m≠ . For comparison 

purposes, H  is normalized so that rtnnE =}{ 2H  and for 
every k , 2 21 1{ } { } 1t tk r rkn E n E− −= =h h , which implies  

2

1
1

M
kk

a
=

=∑                            (14) 

i.e. the average SNR per Rx antenna is constant regardless of 
the number of keyholes. Substituting (13) in (2), the 
instantaneous capacity of a frequency flat quasi-static multi-
keyhole MIMO channel in natural units [ ]nat  with the CSI 
available at the Rx end only is given by: 

( )0ln det[ ]H
r r tC n= + γI B AB A               (15) 

where /H
t t t tn=B H H  and /H

r r r rn=B H H . Below, we 
consider two types of the multi-keyhole MIMO channels: 
Full-Rank Multi-Keyhole Channel ( min{ , }t rM n n≥ ): 
Theorem 2: A full-rank multi-keyhole channel is 
asymptotically Rayleigh fading as M →∞  if  

2lim max{ } 0kM k
a

→∞
= ,                        (16) 

i.e. the power contribution of each single keyhole 
approaches zero as M  goes to infinity. A proof of Theorem 
2 follows directly from the Lindeberg-Feller Theorem [7] 
and omitted for brevity. Fig 3 compares the outage capacity 
distributions of a 2x2 multi-keyhole channel with 

1/ka M=  and of the equivalent Rayleigh channel. The 
correlation at both Tx and Rx ends and for all M  keyholes 
is represented by the exponential model [6] with 0.5r = . 
The Kronecker model [8] was used to simulate the 
correlation at Tx and Rx ends in the Rayleigh channel. 
Clearly, the outage probability of the multi-keyhole channel 

1n− K

1n− P

1

1

0

1R

2R

R

R

 
Fig. 2. Geometrical interpretation of the power imbalance 

and correlation effects. 
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decreases with M  and becomes close to that of the 
equivalent Rayleigh channel already for 10M = . 
Rank-Deficient Multi-Keyhole Channel ( min{ , }t rM n n< ): 
Theorem 3: Let C  be an instantaneous capacity of the 
multi-keyhole channel (15). If for every , 1..k m M= , 

1 { }t tkn trace− < ∞R , 2 [ ] 0H
t tk tmn trace− →R R  as tn →∞ , and  

1 { }r rkn trace− < ∞R , 2 [ ] 0H
r rk rmn trace− →R R  as rn →∞ , 

the following holds true as both tn  and rn  go to infinity: 

( )2 2 2
01

ln 1 /
p M

k tk rk tk
C a n

=
→ + γ∑ h h       (17) 

where 
p
→  means convergence in probability. Hence, the 

asymptotic instantaneous capacity of a rank-deficient multi-
keyhole channel is the sum of the capacities of the 
equivalent single-keyhole channels. A proof is omitted due 
to the page limit. Note that the conditions of Theorem 1 for 
each single keyhole follow from those of Theorem 3; 
therefore the terms of the sum (17) are Gaussian. Moreover, 
they are independent as the keyholes are assumed to be 
independent. Therefore, similarly to the single-keyhole 
channel, the asymptotic instantaneous capacity of the multi-
keyhole channel is also Gaussian with the mean µ  and the 
variance 2σ  given as follows: 

( )2
01

2 22 2 2
1 1

ln 1
M

k rk

M M
t tk r rkk k

a n

n n

=

− −
= =

µ = + γ

σ = +

∑
∑ ∑R R

       (18) 

It follows from comparing (18) to (3) that the decomposition 
into the two orthogonal effects (the correlation and the 
power imbalance, see (5)) holds true not only for a single-
keyhole channel, but also for the rank-deficient multi-
keyhole channels with an arbitrary number of keyholes. 
Therefore, the impact of correlation and power imbalance 
on the asymptotic outage capacity distribution of the single-
keyhole channel and of the rank-deficient multi-keyhole 
channel are same, i.e. the capacity at outage probabilities 

less than 0.5 decreases with correlation or/and power 
imbalance across the antennas. 
 

5. CONCLUSION 
 

Motivated by recent studies of the single-keyhole 
channel, a multi-keyhole channel model is introduced and 
investigated. This model establishes a link between the 
keyhole and Rayleigh MIMO channels. As a byproduct of 
the present study, a new scalar measure of correlation and 
power imbalance is introduced. This measure allows 
complete rather than partial ordering of the channels and can 
also be applied to other MIMO channels, whose capacity 
depends on the norm of correlation matrices, for example, to 
correlated Rayleigh channels [9]. The fact that the outage 
capacity distribution of all considered channels is 
asymptotically Gaussian may indicate that the Gaussian 
distribution has a certain degree of universality in the outage 
capacity analysis of MIMO channels. 
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Fig. 3. Outage capacity distribution of 2x2 full-rank multi-

keyhole channel vs. the number of keyholes M.
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