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Abstract: Fading correlation is one of the fundamental limits on 
the performance of multi-antenna (MIMO) systems. Accurate 
modeling of the angular probability density function (pdf) of the 
incoming multipath is essential for accurate prediction of the 
correlation and, hence, the MIMO capacity. Previous studies were 
limited to the case of single-cluster distribution or uniform pdf. 
Measurements indicate that multipath often arrives in several 
angular clusters and with non-uniform angular cluster pdf. We 
begin with the popular single cluster model and extend it to the 
case of multi-cluster channel. The single cluster model with 
various cluster pdfs is studied in both the angular domain and the 
angular spectrum domain (u-domain). Using Fourier transform 
techniques, it is shown that the spatial correlation is the inverse 
Fourier transform of a scaled and shifted version of the cluster pdf 
in the u-domain. We further prove that the spatial correlations for 
all the pdfs is roughly the same given the same angular spread. It 
is shown that the correlation in the two clusters channel has an 
oscillatory behavior as antenna spacing increases regardless of 
multipath AOA distributions; the envelope of the correlation is 
determined by the single cluster angular spread while the 
oscillations within the envelope are determined by the inter-cluster 
angular spread. The cluster angular pdf has negligible impact on 
the MIMO capacity and, hence, simpler uniform model can be 
used without degradation in accuracy.  
Index Terms—Wireless propagation channel, fading correlation, 
Fourier Transform, MIMO capacity 

I.    INTRODUCTION 
Understanding of spatial fading correlation is crucial for 
accurate prediction of multi-antenna (MIMO) system 
performance. It is well know that the fading correlation in 
spatially separated antennas depends on the angular 
distribution of the incoming multipath [1]. While some 
special cases of the angular pdf have been investigated  [1-
8], no detailed understanding of the problem has been 
achieved so far. Most studies were limited to the case of 
single cluster with uniform [1-2] or non-uniform pdf [3-5]. 
Only preliminary studies of multi-cluster channels have 
been reported [6-7]. It is important to understand the 
correlation behavior of multi-clustered channels with non-
uniform pdf since measurements of practical channels 
indicated that multipath often arrives in multiple clusters 
and with non-uniform angular pdf [5,8]. 

In this paper, we extend Salz-Winters model (single 
cluster with uniform pdf) to account for more than one 
cluster and study the effect of clustering with different 
angular pdfs in details. The emphasis is on analytical 
analysis, which is further validated using Monte-Carlo 
simulations. Using the well-known Fourier transform 
techniques, we demonstrate that the spatial correlation is 

mainly determined by the angular spread, and the exact 
shape of angular spectrum is negligible if the angular 
spread is small. A case of two symmetrical clusters is 
studied in details, including uniform, triangle, truncated 
Gaussian, and truncated Laplacian pdfs. Using the 
developed correlation models and the technique presented 
in [2], we study the MIMO channel capacity. In particular, 
we demonstrate that the angular pdf shape has negligible 
effect on the MIMO channel capacity provided that the 
distribution parameters (i.e. angular spread and mean AOA) 
are fixed. 

An extension to the case of n-cluster scenario is 
straightforward. The major analytical techniques developed 
above are applicable in this general case as well. The results 
presented agree well with those published in the literature 
earlier and extend them to the case of multi-cluster 
channels. 

II. SINGLE-CLUSTER CHANNEL MODEL 
In this model, all the multipath components are assumed to 
arrive to the Rx array within / 2±∆  of the mean angle of 
arrival (AOA) ϕ (see fig. 1) in the horizontal plane (i.e., this 
is a 2-D model). The AOA probability density function is 
assumed to be uniform, 
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Fig 1. Incoming multipath signals arrive to the linear antenna 
array within / 2±∆  of mean angle ϕ 

The normalized correlation between two omni-directional 
antennas can be expressed as 
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where 2 /z l= π λ , l is the element spacing, λ is the 
wavelength, and j is the imaginary unit. A simple but still 
accurate approximation of the Bessel series expansion for 
small 1∆ <<  can be derived using β≈βsin  (valid for 
small β), and performing integration in (2) [2,6,9] 



  

     ( ) ( ) ( )exp sin sin cos / 2uR l jz z≈ ϕ ∆ ϕ                (3) 

where ( ) ( ) ( )sinc sin /x x x= . 
Measurements indicate that multipath power density is 

not uniform distributed. It can be modeled as truncated 
Gaussian, truncated Laplacian or other distribution. 
Furthermore, [8] demonstrates that the Laplacian 
distribution gives better match than uniform or truncated 
Gaussian one in both urban and rural areas. For the 
truncated Gaussian distribution, the pdf is 
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where 1/ ( )g gQ erf= γ , /( 2 )g gγ = π σ , and the spatial 
correlation can be approximated as [6] 
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For the  truncated Laplacian distribution, the pdf is 
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where 1/[1 exp( )]L lQ = − −γ  and 2 /l lγ = π σ , and the 
spatial correlation is approximately 

  ( ) ( )2exp( sin ) / 1 cos / 2l lR l jz z ≈ ϕ + σ ϕ
 
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For the small variance, 1gσ = , 1lσ = , (3) , (5) and (7) 
have similar expansion terms [6] [10] by setting the same 
angular spread for these distributions, i.e. 

/ 2 3g lσ = σ = σ = ∆ , 
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These approximations are correct provided that 
cos 1zσ ϕ < . Comparing (8), (9) and (10), one can 

conclude that the correlation coefficient is very similar 
provided the average angle ϕ  is not too small (not too 
close to the end-fire direction), and the antenna spacing is 
not too large. 

III. SINGLE-CLUSTER CHANNEL MODEL IN u -
DOMAIN 

The spatial correlation can be alternatively derived using 
the angular spectrum of the incoming multipath. The spatial 
correlation and the angular spectrum of the effective 
sources are related through the Fourier transform [11], 
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where sin 2 sin /u k= θ = π θ λ  is spatial frequency. We 
further use the following notations, 

   ( ) ( ) ( ) ( ),     u uP u FT R l R l IFT P u= =                     (11) 

The power density of the effective scatterer distribution in 
the u -domain is expressed as ( ) ( ) 2 2/uP u P k uθ= θ − , 
where ( ) ( ) ( )2P f gθ θθ = θ θ  is the power of the effective 
scatterer distribution in the angular( θ ) domain, ( )g θ  is 
the antenna pattern. In this paper, we consider only omni 
directional antennas ( ( ) 1g θ = ). Defining β θ − ϕ@ , 

0 sinu k ϕ@ , where ϕ  is the mean value of θ , one obtains 
( ) ( )f fθ βθ = θ − ϕ , ( ) ( )P fθ βθ = θ − ϕ ; ( )fβ β  is the 

angular pdf centered about the broadside direction. For 
small β , 2 2 2 2

0 cosk u k u k− ≈ − = ϕ . Using the Taylor 
series expansion, 
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and ( ) ( )0 / cosu u kβ ≈ − ϕ . Using this, 
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Combining (12) and (11), one obtains the spatial 
correlation, 
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Using the scaling and shifting properties of Fourier 
transform, (13) can be further simplified as 

     ( ) ( ) cosoju lR l e F k l= ϕ⋅                                       (14) 

where ( ) ( )F x IFT f= β    is the correlation of the angular 
pdf centered about the broadside direction: if 0ϕ = , 

( ) ( )0 R l F kl= . Non-zero ϕ  results in the scale factor 
0ju le  in the correlation coefficient and the scale factor 

cos ϕ  in the function argument. Using (14), one can easily 
obtain the results for uniform, Gaussian and Laplacian pdfs, 
i.e. (3), (5) and (7). Note, however, that (14) is valid for any 
angular pdf with small angular spread. 

Using the moment property of Fourier transform and the 
fact that the odd order moments of ( )f β  are zero (because 

( ) ( )f fβ = −β ), one obtains for  0,1,2, ,i = …  
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The even order moments of ( )f β  are 
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In particular, 
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The Taylor series expansion of ( )F x , 
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Using (14), generic spatial correlation is 
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This equation immediately explains the results (8) - (10) for 
the uniform, truncated Gaussian and truncated Laplacian 
distributions. 
       One can use (14) and (18) to derive the compact 
expressions and approximations for various angular pdfs. 
As an example, using the triangle pdf, 
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( ) ( )( ) ( )2sinc / 2tF x IFT f x= β = σ , and the compact form 
of the spatial correlation is  

( ) ( )sin 2  sinc cos / 2jk l
tR l e k lϕ⋅= σ ϕ⋅  

The second moment of of ( )f β  is 2
2 / 6tS = σ , and the 

forth moment of of ( )f β  is 4
4 /15tS = σ . Setting 

6tσ = σ  to achieve the same angular spread with the 
uniform, Laplacian and Gaussian pdfs, and using (18), one 
obtains 
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Comparing (19) with (8)-(10), and noticing that kl z= , 
sinou l z= ϕ , one can observe that the magnitude of 

correlation with the triangle pdf is between those with the 
uniform and Gaussian pdf (see Fig 3). 
        Asymptotically, ( ) 0R l ≈  if cosk lσ ϕ  is large 
enough, and ( ) 1R l =  for cos 0k lσ ϕ =  for any pdf model. 
On the other hand, the magnitude of correlation decreases 
when cosk lσ ϕ  increases. If cos 1.1klσ ϕ > , ( ) 0.5R l < , 
and the system performance is not affected significantly by 
the correlation (see [6] and Fig 4). For cos 1.1klσ ϕ < , one 
can approximate (18) as  

( ) ( )( )2 1 cos / 2oju lR l e kl= − σ ϕ                 (20) 

If cosk lσ ϕ  is fixed, (20) shows that any pdf model will 
produce roughly the same spatial correlation. Overall, the 
performance predictions based on different models will be 

roughly the same in terms of correlation. We conclude that 
the assumption of uniform angular pdf does not limit 
significantly the accuracy of the single cluster angular 
model. Since uniform distribution is much easier to work 
with, it should be used for the system performance 
prediction.  

IV. TWO-CLUSTER MODEL 
Measurements indicated that multipath arrives frequently in 
more than one cluster [3][4][5]. The single cluster channel 
model has been generalized to multiple clusters [6][7][9]. In 
particular, [7] derived a generic expression for correlation 
coefficient using Bessel series. However, in the case of two 
clusters with uniform pdf, it is especially simple[9]. We 
assume the angular pdf of the form, 
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and only study two symmetric clusters in this paper. Hence, 
1 2∆ = ∆ = ∆ and 1 2ϕ = −ϕ = ϕ . The scenario is illustrated 

in Fig. 2.  
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Fig 2. Incoming multipath is concentrated in two clusters. 

As demonstrated in [10], the compact approximation for the 
spatial correlation is 

   ( )2 cos( sin )sinc( cos / 2)R l z z≈ ϕ ∆ ϕ         (22) 

This approximation agrees well with the rigorous results 
and Monte-Carlo simulations. Although the real parts of (3) 
and (22) are the same, their magnitudes are very different. 
In fact, the single-cluster magnitude correlation is the 
envelope of the two-cluster correlation and the cosine 
function in (22) results in oscillation in the latter case. 
         Now let’s consider this model in the u-domain. Using 
the Fourier transform properties, (14) can be generalized to 
the two cluster case as follows 
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where ( ) ( ) ( )0
2 0cosju lR l R l e u l−= ⋅ ⋅ . The RHS of (23) is 

the angular spectrum of the two-cluster channel, and ( )2R l  
is the spatial correlation, which can be related to the single-
cluster one, 

       ( ) ( ) ( )2 0cos cosR l u l F k l= ⋅ ϕ⋅
                               

 (24) 



  

For instance, for the uniform pdf, ( ) sinc( / 2)F x x= ∆ , 
which can be written as 

( )2 cos( sin )sinc( cos / 2)R l z z= ϕ ∆ ϕ  

This result agrees with (22), which was derived from the 
angular pdf directly without using Fourier transform [10]. 
     Fig 3 compares correlations predicted by the different 
pdf models considered above. Clearly, the uniform and 
Laplacian distributions give the most pessimistic and most 
optimistic predictions, respectively, which is in the 
agreement with the arguments in single cluster channel. The 
triangle distribution is between uniform and Gaussian pdf 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

l/λ

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Laplacian
Gaussian
Uniform
Triangle

 

Fig 3. Correlation coefficient versus element spacing for the case 
of two symmetric clusters. 0 010 ,  =30∆ = ϕ with uniform, triangle, 
Gaussian and Laplacian pdf 

V. MIMO CAPACITY 
Using the approach of [2] and the correlation models above, 
the MIMO capacity can be evaluated. As an example, we 
consider a MIMO system of 10T Rn n= =  with SNR=20 
dB per receive antenna, and a two-cluster channel with 20 
multipath signals arriving at each cluster with angular 
spread 0

2 1 5 / 3σ = σ = , 0
1 30ϕ = − , 0

2 30ϕ =  (i.e., 
symmetric). The transmit array elements are assumed to be 
uncorrelated – all the correlation is concentrated at the Rx 
end. The mean capacity of the channel is shown in  Fig 4.  
Clearly, given the same parameters (i.e. angular spread and 
the mean AOA), all the different pdfs result in almost the 
same MIMO capacity. Comparison with the correlation 
curve indicates that the peaks of correlation correspond to 
notches of the capacity and vise versa. Also, the capacity 
oscillations, which do not appear in the single-cluster model 
[2], are apparent. 
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Fig 4. 10x10 MIMO channel capacity of a two-symmetric-cluster 
channel for various multipath AOA pdf 
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