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Abstract: Ground resistance gives a substantial contribution 
to the transient response of overhead transmission lines. 
While the late-time behaviour of the ground transient 
resistance has been understood quite well, the same cannot be 
said of early-time behaviour. In this paper, we investigate the 
early-time behaviour using a high-frequency expansion of the 
ground impedance in a Taylor series and derive a compact 
closed-form analytical expression for it. This expression can 
be used for the transient analysis of transmission lines in a 
computationally efficient way. 
 
INTRODUCTION 
 
As it has been widely recognized, ground impedance has a 
profound effect on the transient response of overhead 
transmission lines to external disturbances like lightning 
discharges [1, 2].  This impedance is dispersive in nature, i.e., 
time and frequency dependent and an accurate prediction of 
transient phenomena on the lines depends heavily on the 
accuracy of its model.  While several closed-form ground 
impedance models are available for the overhead transmission 
line in the frequency domain, only numerical or grossly 
approximate closed-form models are available in the time 
domain.  Given that transient analyses are carried out in the 
time-domain, the ground impedance (frequency-domain 
function) must be transformed into the time domain giving the 
“ground transient resistance” function, which is the quantity 
used for the analysis of the transmission line response.  
Unfortunately, it is not possible to obtain an analytical form of 
the transient resistance in the general case and one must resort 
to numerical techniques for accurate prediction of the 
transient behaviour over extended time intervals.  This results 
in a computationally intensive process with little if any insight 
into the physics of the problem. 
 
In order circumvent the computational limitation and to gain 
some physical insight into the effect of ground impedance on 
the transient response of overhead lines at various time 
intervals, it is preferable to have an analytical closed-form 
representation of the ground transient resistance.  In this 
context, the low-frequency approximation of the ground 
impedance is employed, which, as was first demonstrated by 
Timotin [3], allows one to obtain a closed-form analytical 

representation of the transient resistance.  While this results in 
significant savings in computational resources and despite its 
wide acceptance, this approach has a major drawback: the 
early-time behaviour of the transient impedance is incorrectly 
predicted [4].  In fact, the low-frequency approximation gives 
a divergence of the kind t/1  for t→0 [1]. Further more, the 
general model (without low-frequency approximation) 
predicts that the transient resistance → constant for t→0 [4].  
Although this divergence does not present a problem for 
numerical analysis [1, 5], it gives the wrong physical picture 
and may result in inaccurate predictions. 
 
Thus, the study of the early-time behaviour is of significant 
importance for accurate analysis of transient phenomena in 
overhead transmission lines.  In this paper, we further develop 
the approach reported in [4] and show that, using the high-
frequency expansion of the ground impedance in Taylor 
series, it is possible to obtain a compact closed-form 
analytical expression for the early-time behaviour of the 
ground transient resistance, which can be further used for the 
transient analysis of transmission lines in a computationally-
efficient way.  Detailed analysis of the accuracy of high and 
low-frequency approximations show that none of these 
approximations provides a satisfactory accuracy in the 
“intermediate” region (i.e., when the time is already not 
“early” but still not “late”).  This region is the most difficult 
one to predict accurately because neither approximation alone 
(high frequency or low frequency) gives satisfactory results.  
The size and position of this region depends on the 
transmission line geometry and the earth electrical parameters 
(dielectric constant and conductivity).  Thus, some 
combination of these two approximations is required for 
accurate predictions in this region. 
 
GROUND IMPEDANCE AND ITS LOW-FREQUENCY 
APPROXIMATION 
 
Per-unit-length ground impedance in the frequency domain 
for a single wire located at height h above ground within the 
transmission line approximation (i.e., neglecting the radiation 
effect) is [1, 2]: 
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Figure 1. Overhead transmission line scenario. 
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where γg is the propagation constant in the ground, 
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σg - is the ground conductivity, εg - is the ground permittivity, 
µ0 - is the permeability of the free space. The electric field 
component due to the ground impedance is 
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where I(ω) is the line current. In the time domain, this 
equation takes the following form: 
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where )(tzg  denotes the inverse Fourier transform of 

)(' ωgZ , and “∗” denotes the convolution. The so-called 

ground transient resistance, which is given by the inverse 
Fourier transform, 
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can also be used for )(teg  calculation, 
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The term “ground transient resistance” is used for 
)(tξ because it is a time-domain function and its dimension is 

Ohms/meter [2, 6]. For a low-frequency approximation, when  

g

g

ε

σ
=ω<<ω max  ,                                     (7) 

and only the first term in (2) is essential, ξ(t) can be calculated 
by Timotin’s formula [1-3] 
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where τg = h2µ0σg , and erfc(x) is the complementary error 
function 
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As it is pointed out in [1, 5, 6], (8) has singular behavior at 
t=0 , and  

t
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But the following question arises: is this singularity a physical 
one or is it a consequence of the low frequency approximation 
? As it has been shown in [4], the source of this singularity is 
the low-frequency approximation and it does not exist if ξ(t) 
is calculated without the low-frequency assumption. Below 
we consider this issue in more detail. 
 
TIME-DOMAIN LIMITATION OF THE LOW-FREQUENCY 

APPROXIMATION 
 
Due to the fundamental property of the Fourier transform, (8) 
is not valid for small values of t because it has been obtained 
in the low-frequency approximation [4]. We will explain it 
using the following example [6, p.189]. Let us consider the 
inverse Fourier transform of the frequency-domain function 
Y(ω), 
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If Y(ω) is a constant, then y(t)=0 for all t ≠ 0 (due to the 
oscillating factor ejωt in the integrand in (11)). If Y(ω) is not a 
constant but it varies slowly enough in comparison to ejωt , 
then the infinite integration limits can be reduced to the finite 
ones since the integration subinterval for which |ω|t>>1  does 
not give a substantial contribution to the total integral due to 
the fast-oscillating factor ejωt ; the subinterval for which 
|ω|t<1 does give a substantial contribution since the factor ejωt 
does not oscillate in this subinterval. Further we will carry out 
simple order-of-magnitude calculations. Taking into account 
the considerations given above, (11) can be reduced to  
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Thus, the spectrum of y(t) must be known up to ωmax≈1/t0 in 
order to calculate y(t) at the point t0 . In a similar manner, if 
we know the function Y(ω) up to ωmax , then we can calculate 
y(t) for t ≥ 1/ωmax . If y(t) must be calculated for a smaller 
value of t , Y(ω) has to be known for a larger value of ω. 
 



Let us now turn our attention to ξ(t). Since Zg(ω) in the low 
frequency approximation is known up to ωmax = σg / εg (see 
Eq. (7)), we can correctly calculate ξ(t) using Eq.(8) for  
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The calculation of ξ(t) using Eq.(8) for t<tmin does not 
produce a valid result. In this region, we have to use Eq. (1) 
without the low-frequency approximation. 
 
GROUND TRANSIENT RESISTANCE IN THE EARLY-TIME 
REGION 
 
First of all, we note that the exact value of )(0 tlimt ξ→  (within 
the transmission line approximation) can be calculated using 
the initial value theorem for the Laplace transform [4]. 
According to this theorem,  
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where x(t) is a time-domain function, X(s) - is its Laplace 
transform. It is known [2] that for ω→∞  
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Using (1), (2), (15) and (16), one obtains 
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Thus, we know the ground transient resistance for 0=t  and 
need to estimate its value for the small value of time, i.e. for 
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The obvious solution is to use the linear approximation for 
)(tξ  between the points 0=t  (Eq. (17)) and mintt =  (Eq. 

(8)). However, a more accurate approximation can be 
obtained using the following approach. First, we transform (1) 
to the following form: 
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In the high-frequency region,  
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we expand the square root in (20) in the Taylor series and 
perform the integration, 
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Then, the second-order approximation of ( )ωgZ '  is (keeping 

only I2 and the first term in (23)): 
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Using (5), one obtains [7]: 
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where 0I  is the modified Bessel function of the first kind. Let 
us now consider the range of validity of this approximation. 
(22) can be transformed to 
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Based on this inequality, one obtains the following: 
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(27) can be further reduced to the following approximate 
expression: 
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This is the range of validity of Eq. (24). Going back to the 
time domain, one may expect that Eq.(25) is valid provided 
that: 

1
limlim
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Thus, the ground transient resistance can be estimated by Eq. 
(25) for lim0 tt <≤  and by the Timotin’s formula (Eq. (8)) 
for ∞<≤ ttmin . 
 
Fig. 2 and Fig. 3 compare the magnitude and phase 
correspondingly of the ground impedance computed by (1) 
with the 1st and 2nd order approximations (Eq.(24) with one 
and two terms correspondingly). The 1st order approximation 
provides better accuracy over the entire frequency range, and 
the 2nd order approximation provides better accuracy in the 
high-frequency region (however, its accuracy in the low 
frequency region is worse).  
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Figure 2a. Ground impedance magnitude versus 
frequency by Eq. (1), (24) (1st and 2nd order 
approximations) and its asymptotic value (Eq. (16)); 

10=εε g , 001.0=σg S/m, 10=h m. 
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Figure 2b. Ground impedance magnitude versus 
frequency, 01.0=σg S/m. 
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Figure 3a. Ground impedance phase versus frequency by 
Eq. (1) and (24) (1st and 2nd order approximations); 

10=εε g , 001.0=σg S/m, 10=h m. 
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Figure 3b. Ground impedance phase versus frequency, 

01.0=σg S/m. 

 
Thus, one may expect that the 2nd order approximation will 
provide better accuracy in the early-time region. Note that the 
accuracy of (24) is much better for higher ground 
conductivity, especially for the ground impedance magnitude 
(Fig. 2b). Fig. 4 compares the ground transient resistance 
computed by (1) and (5) (no low frequency approximation is 
used) using numerical FFT, by (25) keeping one (1st order 
approximation) and two (2nd order approximation) terms, by 
Timotin’s formula (8) and the asymptotic value (17). For, 

001.0=σg S/m, 8
min 108.8 −⋅=t  and 7

lim 105.1 −⋅=t , and 

for 01.0=σg S/m, 9
min 108.8 −⋅=t  and 6

lim 105.1 −⋅=t . Eq. 

(25) provides quite a good approximation for the early-time 
region. However, it is not accurate for later-time region for 
low ground conductivity ( 001.0=σg S/m), especially the 2nd 

order approximation. But Timotin’s formula provides an 

accurate approximation in that region. Thus, we can 
recommend the following compound approximation: 
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It should be noted that the numerical computation using FFT 
requires for a large number of samples (typically, around 106 
or more) to obtain accurate results. Thus, the approximation 
above may provide substantial reduction in computational 
complexity. 
 
COMMENT ON THE TRANSMISSION LINE APPROXIMATION 
 
The early-time behavior of the ground transient given by Eq. 
(25) is valid within the transmission line approximation, 
which is itself a low-frequency approximation. It is valid  
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Figure 4a. Ground transient resistance using numerical 
FFT computation ((1) and (5)), 2nd and 1st order 
approximations (eq. (25)), Timotin’s formula (eq. (8)) and 
the asymptotic value (eq. (17)); 10=εε g , 001.0=σg S/m, 

10=h m. 

1x10-9 1x10-8 1x10-7 1x10-6

0.5

1.0

1.5

2.0

σ
g
=0.01 S/m

 Numerical FFT
 2nd order appr.
 1st order appr.
 Timotin
 Asymptotic

T
ra

ns
ie

nt
 r

es
is

ta
nc

e,
 O

hm
/m

Time, s

Figure 4b. Ground transient resistance, 01.0=σg S/m,  

 

 
when the wavelength is higher than the system’s  transverse 
dimension (the wire’s height), 

hTL =λ>λ  ,                                   (32) 

which can be transformed to 
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where ε0 - is the free space permittivity. In the time domain, 
the inequality above is 

00εµ=> htt TL                               (34) 

Thus, strictly speaking, Eq. (25) is valid for limtttTL <≤ . 
Over the interval TLtt <≤0  the radiation effects may be of 
importance and this issue requires for further investigation. 
The same holds true for (17), which is also valid within the 
transmission line approximation. 
 
CONCLUSION 
 
In this paper,  we have considered the early-time behaviour of 
the ground transient resistance of overhead lines. Using the 
integral representation of the ground impedance in the 
frequency domain (within the transmission line 
approximation), we have derived approximate closed-form 
expression for the transient resistance in the time domain. 
Keeping in mind that the numerical computations using an 
FFT algorithm require for a large number of samples 
(typically, few millions), these approximations may provide 
substantial reduction in computational power. Additionally, 
they provide a physical insight into the early-time behaviour 

of the transient resistance. When used together with the 
Timotin’s formula, which provides a late-time approximation, 
they cover the entire range with satisfactory accuracy. 
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