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INTRODUCTION

The Bell Labs Layered Space-Time (BLAST) architecture has been recently proposed as an extremely efficient tool for
wireless communications in rich multipath environment [1-4]. Using multi-element antenna arrays and signal processing
in the spatial dimension, this architecture achieves channel capacity as high as 10-100 times that of traditional
architectures in certain applications (indoor communication, local-area networks, cellular systems in large cities etc.).
Such a tremendous increase in the channel capacity will stimulate in future, without any doubts, widespread use of such
communication systems. The main idea of the BLAST architecture is to exploit rather than suppress multipath
propagation. For a classical communication architecture with multi-element antenna arrays, channel capacity (Shannon’s
channel capacity limit) depends linearly on the logarithm of n (the number of array elements) and for the BLAST

architecture – linearly on n (for uncorrelated spatial paths). Thus, it grows much faster in the latter case as n increases.
An experimental setup was built to validate the new architecture and bit rates as high as 40 bits/s/Hz has been achieved
for indoor communications [4].

The BLAST channel capacity in the case of independent (uncorrelated) Rayleigh faded paths between antennas has been
extensively investigated [1, 2]. In the general case of n×n matrix channel and when the transmitted signal vector is
composed of statistically independent equal power components each with a gaussian distribution, the channel capacity is
given by the following [2]:
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where n – is the number of transmit/receive antennas, ρ - is the signal-to-noise ratio, I – is n×n identity matrix, H – is
the normalized channel matrix (for our consideration, we don’t need a non-normalized channel matrix so we shall not
consider it), and “+” means transpose conjugate. In the case of n independent identical channels H=I and
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For large n, this channel capacity is substantially higher than that of a traditional 1×1 channel (with the same total
radiated power). However, the practical value of the BLAST channel capacity depends substantially on the correlation
between individual channels (spatial paths) and may be much smaller in the case of highly correlated channels. Much
work must be done on the spatial path correlation and antenna coupling in order to get realistic values of the channel
capacity under real-world conditions.

In this paper, we first investigate the channel capacity of n-antenna (both at the transmitter and at the receiver) BLAST
architecture for the case of arbitrary (however linear and time-independent or slowly-varying) correlated channels. An
explicit dependence of the channel capacity on the channel correlation coefficients is given. We consider next the case
of n-antenna architecture having real and equal correlation coefficients and give a simple formula for its channel
capacity. A correlation coefficient as high as 0.5-0.8 is admissible in this case (note that this result compares well with
known results on the spatial diversity techniques [5]). When the correlation coefficient is an increasing function of n



(that is the case when one locates more and more antennas into a given space), there exists the maximum (optimum
number of antennas ) in the channel capacity as a function of n. It allows one to define the notion of channel capacity of
a given space (by analogy with the classic Shannon formula which defines the channel capacity of a given bandwidth).
This results in a very symmetric picture (in the spirit of spatial relativity): the channel capacity depends not only on a
given bandwidth (time or frequency domain) but also on a given space (space domain). Thus, time (or frequency) and
space are included in this notion of channel capacity on the equal basis.

CHANNEL CAPACITY OF BLAST ARCHITECTURE IN ARBITRARY CORRELATED CHANNELS

Let us now consider the case of n-antenna architecture in correlated channels:

XHY ⋅=  ,                                                                            (3)

where )...,( 21 nxxx=X T and )...,( 21 nyyy=Y T are transmitted and received signal vectors (complex

envelopes) respectively, and “T” means transpose. Since H is normalized,
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Y and X are also normalized (hij denotes the components of H). Following [2], we further assume that the transmitted
signal vector is composed of statistically independent equal power components each with a gaussian distribution (thus,
(1) is true). Since the transmitted signals are non-correlated, the correlation coefficient of the received signals is
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where “< >” denotes time average, “*” denotes complex conjugate. Note that H is assumed to be time-independent or
varying slowly with time (for more detail consideration, see [2]). The cause of correlation of received signals is the
correlation of individual channels. Thus, rij is also the correlation coefficient of individual channels (note that it depends

on the channel matrix only). Denoting the matrix under determinant sign in (1) as Z and using (5), we obtain the

following equation for the components of Z :
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βi is the relative received power in i-th channel (without the noise contribution), and ijδ  is Kroneker's delta. Using (6),

we obtain the following expression for the determinant:
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where 1
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ni..ii  otherwise. Eqs. (1) and (7) give an explicit dependence of the BLAST

channel capacity on the individual channel correlation. In the case of equal received powers ni 1=β . Hence, Eq. (7)

can be presented in the following form:
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Fig. 1. BLAST channel capacity versus correlation
coefficient, n=10.

Fig. 2. BLAST channel capacity versus number of

antennas, ρ=20 dB.

where ak depends on the correlation coefficients only. This proves the first hypothesis in [6]. Few first ak can be
expressed as:
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In general, the following estimation holds: k
k r~a  (k ≥ 2). However, it is not true to conclude that in the case of r

<< 1 the channel capacity depends only on the second-order term in (8) – higher-order terms also give a substantial

contribution. As a detailed analysis shows, higher-order terms may be neglected only when r << 1/ρ .

Let us now consider the case when all the correlation coefficients are equal and real: rij= r , Im(r) = 0. This case is
somewhat artificial because one expects that the correlation of neighboring antennas is larger than that of distant
antennas. However, the case of equal correlation coefficients provides a worst-case estimation and some insight into
BLAST operation in correlated channels, so it deserves to be considered. In this case, (8) reduces to
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For n=2, (10) reduces to (8) in [6]. Fig. 1 shows the channel capacity as a function of the correlation coefficients for

various signal-to-noise ratios. As it can be seen from this figure, the channel capacity decreases substantially for r ≥
0.5 – 0.8 what agrees well with known results on spatial diversity techniques [5]. It should be noted that the second
term in (10) is essential only when the correlation coefficient is close to 1. However, in this case the advantage of the
BLAST architecture over traditional techniques is very small (the channel capacity is close to Shannon's limit) and it is
not reasonable to use it. Thus, when the BLAST architecture provides a substantial advantage, its channel capacity can
be estimated as
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Comparing (11) with (2), we find that the effect of the channel correlation is equivalent to the decrease in the signal-to-
noise ratio.

When one locates more and more antennas in a given space, the correlation between individual channels will increase
(due to decrease in antennas' separation). In general, the channel correlation will be a non-monotonic function (with a lot
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of oscillations) of the number of antennas. For a large space and a small number of antennas, the correlation will be
close to zero, and for a large number of antennas and a small space, the correlation will be close to unity. For the sake of
simplicity, we approximate it by the following:

( )0nntanh)n(r = ,                                                                        (12)

where n0 depends on the space size occupied by antennas. Using (10) and (12) together, we find that C(n) has the

maximum (see Fig. 2), i.e. it increases with the increase in n up to some specific value (nmax). Further increase in n
(over nmax) results in a decrease rather than an increase of C(n). This fact has an important consequence. The existence
of the maximum value of C(n) means that the information transmission rate (per Hz) is limited for the given space by
exactly C(nmax), which is "spatial channel capacity". Thus, one may control the channel capacity by not only the
channel bandwidth (and, of course, by signal-to-noise ratio), but also by a spatial arrangement of the system. In fact,
C(nmax) is the maximum information transmission rate that can be realized for the given space. This gives a spatial
analog of the Shannon's limit.

It should be noted that the BLAST architecture relies substantially on active array technology (it is impossible in
principle to realize such a system using passive arrays) [4], i.e. it employs active circuitry in every transmit and receive
paths, and operates in rich multi-signal and multipath environment. In this case, nonlinear behavior of the active
circuitry has profound impact on the system operation and should be carefully taken into account [7]. In fact, this is one
more limitation on the channel capacity of BLAST architecture.

CONCLUSION

The channel capacity of the BLAST architecture depends substantially on not only the channel bandwidth and signal-to-
noise ratio (as it is the case for the classic Shannon's limit), but also on the channel spatial properties. The fundamental
limitation on channel capacity increase by employing more and more antennas is the correlation of individual spatial
paths (channels). The more antennas one employs in a given space, the larger is the channel correlation that, in turn,
decreases the channel capacity. Thus, the optimum number of antennas exists, for which the channel capacity achieves
its maximum value. This gives the spatial analog of the Shannon's limit and the notion of "spatial channel capacity".

In this paper, we developed a simple mathematical model of the spatial channel in order to investigate the
communication theory aspect of the problem. This model provides the worst-case estimation and allows us to apply the
known results on spatial diversity techniques to the present problem. More accurate analysis of the BLAST architecture
requires more precise electromagnetic models of the spatial channel and, in particular, of the electromagnetic
environment, the antennas and their coupling.
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