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1. INTRODUCTION 

q Exponential increase in the number of communication systems → digital 
systems 

q Difference from analog ones in nonlinear characterization → ACPR, EVM, 
PSR etc. 

q System designers need simulation tools → change of simulation approaches 

q Widespread use of behavioral-level techniques 

q Two most-popular ones – quadrature technique & discrete technique 
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2. GENERAL CONSIDERATION OF BEHAVIORAL-LEVEL 
SIMULATION TECHNIQUES 

 
q Two well-know techniques: the quadrature modeling technique & the 

discrete technique. 

q Recently proposed one – the “instantaneous” quadrature technique. 

q Historical remarks: the quadrature modeling technique is the oldest one – 
1972 (TWT power amplifiers modeling, presently - SSPA),  

q The discrete technique – 1988 (receiving path modeling under interference 
conditions),  

q The “instantaneous” quadrature technique – 1998 (wide range of 
applications is expected). 

q “Ten years” law – every decade we get a new behavioral-level simulation 
technique! 
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2.1. THE QUADRATURE MODELING TECHNIQUE 
q The main idea: use of complex envelope instead of real narrow-band 

signals. No carrier information. 
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q The same in mathematical language: 
 

RF modulated signal: 
 
 

Complex envelope: 
 
 

q A nonlinear stage is characterized by AM-AM and AM-PM transfer 
characteristics 
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q Both characteristics depend on the input signal amplitude, not on the 
instant value ! (they are “amplitude” , not “instantaneous” ones) 

q Consequences: sampling at the baseband frequency → high computational 
efficiency. 

q Uses two channels – in-phase & quadrature ones – to model AM-PM as 
well as AM-AM 
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q Limitations: no frequency response, no harmonics, no multiple carriers, no 
tone-spacing effect. 
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2.2. THE DISCRETE TECHNIQUE 

q Basis of the discrete technique is a representation of the system block 
diagram as linear filters and memoryless nonlinear elements. 

q Example: a single-stage radio amplifier, 

 Linear
Filter

 Linear
Filter

 Memoryless
Nonlinear
ElementInput Output

 
 

q The process of signal passage through linear filters is simulated in the 
frequency domain using the complex transfer factor,  

( ) ( ) ( ).nninnout fKfSfS ⋅=  
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q The process of signal passage through a nonlinear memoryless element is 
simulated in the time domain, 

( ) ( )[ ]kinkout tuftu =  

q The transition from the time domain to the frequency domain and vise 
versa is made with the use of the direct and inverse Fast Fourier 
Transform (FFT): 
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q Instantaneous values of input and output signals are used in the discrete 

technique. It allows one to carry out simulation over a wide frequency 
range (to predict carrier harmonics, to simulate multicarrier systems, to 
account for the system frequency response etc.) 
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q An illustration of the simulation process: 
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q Some issues related to the discrete technique: 
Ø The maximum frequency Fmax , frequency sample interval ∆f , time 

sample interval ∆t and the number of samples N are related:  
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Ø Nonlinear transformation causes input spectrum to expand I (order of 
nonlinearity) times: 
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Ø Polynomial approximation of the nonlinear transfer function can be 
used to control the spectrum expansion. 
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q Some issues related to the discrete technique: 
Ø Non-polynomial models can also be used but special care must be 

taken in order to avoid the spectrum aliasing. Practical values of the 
safety factor I ≈ 5 – 50. 

Ø The analysis dynamic range is limited by errors in the time domain 
signal quantization i.e. by the accuracy of computer data presentation 
(≈300 dB). 

Ø In order to achieve such a high dynamic range, all input frequencies 
must be round-off to sample FFT frequencies. 

Ø When simulating multistage systems, the quantization noise caused by 
the time-domain quantization is accumulated. This effect can be 
eliminated by periodic "cleaning out" the spectrum. 

Ø Utilization of geometrically spaced sample frequencies reduces the 
number of samples. However, it will slightly decrease the FFT 
efficiency. 
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q Some issues related to the discrete technique: 

Ø Further improvement in computational efficiency → two-stage 
simulation scheme: (1) first, the radio system simulation correct to 
carrier frequencies (low frequency resolution) is carried out, (2) all 
interference signals are sequentially analyzed at high frequency 
resolution (correct to modulating spectra) and with transformation to 
low frequencies. 

Ø Automatic identification of interference sources is also possible (using 
the dichotomy search procedure). 
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Ø Detector simulation 

( )A u uk k k= +2 2*

uk*= IFFT(-jSin)

uk= IFFT(Sin)

Sout= FFT(uout,k)

Sin

Sout

uout,k= kd (Ak )⋅Ak
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2.3. INSTANTANEOUS QUADRATURE TECHNIQUE 

q The main idea of the combined technique is to use advantages of both 
techniques. In order to model signals and systems over a wide frequency 
range, the instantaneous values of signals must be used, not the complex 
envelope. In order to model AM-PM conversion, the quadrature modeling 
structure should be used.  

q Thus, the modeling process consists of the following items. 
1. The modeling of linear filters is carried in the frequency domain.  
2. The modeling of nonlinear elements is carried out in the time domain 

using the quadrature technique, but the instantaneous signal values are 
used, not the complex envelope. 

3. Transform from the frequency (time) domain to the time (frequency) 
domain is made by IFFT (FFT) (very computationally efficient). 

4. Hilbert transform in the frequency domain is used to calculate the signal 
amplitude and in-phase and quadrature components. 
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Simulating a single-stage RF amplifier by the ‘instantaneous’ quadrature 
technique: 
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Modeling broadband nonlinear element by the ‘instanteneous’ quadrature 
technique: 
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2.4. INSTANTANEOUS TRANSFER CHARACTERISTICS 

q Using the instantaneous quadrature technique requires for the 
instantaneous voltage and phase transfer characteristics of nonlinear 
elements (not the same as amplitude characteristic !). 

)A()x(,)A(K)x(k inininin Φ≠ϕ≠  

q Only the 1st zone (fundamental) envelope (amplitude) characteristics can 
be determined by measurements or circuit-level simulations: AM-AM & 
AM-PM. 

q Thus, one needs a technique to calculate the instantaneous transfer 
characteristics from amplitude ones. 
 
 
 

                                                                                                         INSTANTANEOUS TRANSFER CHARACTERISTICS 



 21 

q A system of two integral equations gives relations between the envelope 
and odd instantaneous characteristics: 
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q Two ways to solve the system: 

1. Numerically, using method of moments 
2. Quasi-analytically, using the Bessel (cosine) series expansion 

method 
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2.4.1. NUMERICAL CALCULATION OF ODD INSTANTANEOUS 
TRANSFER CHARACTERISTICS 

q Using the method of moments, integral equations are reduced to the 
systems of linear equations 

q For piecewise constant basis functions and point matching technique, the 
matrixes of these equations are upper triangular ones, so the systems of 
linear equations can be solved analytically. 
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2.4.2. QUASI-ANALYTICAL CALCULATION OF ODD 
INSTANTANEOUS TRANSFER CHARACTERISTICS 

q Bessel function series are used to represent the envelope characteristics: 
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q Then the instantaneous transfer factors (gains) are presented as sine and 
cosine series: 
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q Least-squares curve fitting technique together with the singular value 
decomposition technique are used to calculate the Bessel series expansion 
coefficients (non-orthogonal functions!). 

q Polynomial series can also be used for quasi-analytical solution of the 
integral equations, but the Bessel series usually requires fewer terms. 

q IE works as a high-pass filter! 
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2.4.3. CALCULATION OF EVEN INSTANTANEOUS TRANSFER 
CHARACTERISTICS 

q Previous calculations give only the odd part of transfer characteristics. In 
order to calculate the even part (and even-order nonlinear products!), new 
system of integral equations must be used: 
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q Using the method of moments, these integral equations are reduced to the 
systems of linear equations. 

q For piecewise constant basis functions and point matching technique, the 
matrixes of these equations are upper triangular ones, so the systems of 
linear equations can also be solved analytically (similar to the previous 
case, for odd part): 
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q 2nd order AM-AM & AM-PM characteristics must be simulated or 
measured for these calculations. 

q Circuit-level simulation of these characteristics – in general, no problem 
(pay attention to the simulation accuracy. Usually, error for 2nd order 
characteristics is higher than for 1st order ones!). 

q Measurement of 2nd order AM-AM (using a spectrum analyzer) – in 
general, no problem (pay attention to the measurement accuracy, especially 
to avoid the measurement setup nonlinearities!). 

q Measurement of 2nd order AM-PM – general-purpose instrument is not 
suitable. Special techniques must be used. 

q In general, calculation errors are substantially higher for 2nd order 
characteristics – special care must be taken! 

q No any analytical or quasi-analytical solution is now available – 
everybody’s contribution is strongly welcome! 
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3. MODELING AND CHARACTERIZATION ISSUES 
 

q Some issues relevant to modeling and characterization for behavioral-level 
simulation: 

Ø AM-AM & AM-PM measurement versus simulation. 

Ø How represent (approximate) the characteristics: Splines, Orthogonal 
series, Non-Orthogonal series, Genetic algorithm, Neural networks, 
Simple analytical formulas etc. 

Ø Accuracy of approximation, its influence on the entire simulation 
accuracy and related issues. 
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3.1. AM-AM & AM-PM MEASUREMENT VERSUS 
SIMULATION 

 

q Two approaches are possible for obtaining AM-AM & AM-PM 
characteristics – measurement and simulation. 

q Usually, measured characteristic is more reliable and more close to the 
reality (but special care must be taken to avoid large measurement errors). 
It depends on measurement setup in much smaller extent than simulated 
one on simulation technique. 

q But measurements are more time and money consuming. Measurements 
are not possible on early design phases (no any fabricated circuit). 
Measurement noise and uncertainty is usually higher. 

q Special measures must be taken to filter out the measurement noise. 
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q Example: measured AM-PM characteristic 
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q Example: HB-simulated AM-PM characteristic 
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q Simulation can be made at early design phases. It is not so time and money 
consuming. 

q Simulation noise and uncertainty are usually smaller. There is no need to 
filter out the simulation noise. 

q But simulation results may depend substantially on technique and models 
used. In general, they are not so reliable as measurements. 
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3.2. HOW TO REPRESENT THE CHARACTERISTICS 

q Measured or simulated AM-AM & AM-PM characteristics are know for a 
number of specific points. Transformation to instantaneous characteristics 
usually requires for other points. What to do? 

q Several solutions are possible: 

Ø Simple analytical formulas 

Ø Splines 

Ø Orthogonal or non-orthogonal series 

Ø Genetic algorithm 

Ø Neural networks 
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3.2.1. SIMPLE ANALYTICAL FORMULAS 

q They were used very extensively in the past (most know – Saleh model of 
TWT), and sometimes are used at the present 

q Analysis process is quite simple 

q Analytical calculations are possible- no any need for substantial 
computational power 

q Give insight into the system behavior 

q Parameters are determined using a curve fitting technique 

q Main drawback – poor accuracy 
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3.2.2. SPLINES 

q Very well-known technique 

q 3rd order splines are usually used 

q Best accuracy if there is no noise in the data 

q Good computational efficiency 

q Main drawback – don’t allow to filter out the measurement (or simulation) 
noise → are used only for simulated characteristics 
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3.2.3. ORTHOGONAL OR NON-ORTHOGONAL SERIES 

q Which series are used 

Ø Polynomials (power series) (Non-orthogonal) 

Ø Chebyshev series (Orthogonal) 

Ø Bessel series (Non-orthogonal) 

Ø Sine/cosine series (Orthogonal) 

q Least-squares curve-fitting technique together with SVD technique is 
usually used for non-orthogonal series. The number of data points must be 
much larger than the number of coefficients. 
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Chebyshev Series: 

q Orthogonality of Chebyshev series over discrete set of points: 
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q Be careful to avoid the aliasing effect! 
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q Main advantages of Chebyshev series: (1) numerically stable, (2) give 
finite spectrum expansion, (3) fastest convergence among polynomials 

q Bessel series: usually, they converge faster than others (especially, for fast-
oscillating characteristics). 

q Sine/cosine series – allow to use all the powerful Fourier analysis. 
Convergence speed/accuracy – medium between Chebyshev and Bessel 
series. 

q In general, series expansions give good possibility to filter out the 
measurement/simulation noise by the number of terms: 

)x()x(y)x(y real ε+=  

q No any mathematical technique for optimum number of terms 
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Approximation accuracy & noise versus number of terms 
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3.2.4. GENETIC ALGORITHM 

q No any finite procedure to calculate minimax approximation coefficients 

q There are some iterative techniques, but they have a lot of drawbacks – 
convergence to local minima, slow convergence, numerically unstable etc. 

q Genetic algorithm approximation – completely new technique: 

Ø Search for global optimum 

Ø Numerically stable 

Ø Very robust (any criterion can be used, not only minimax one) 

Ø Gives the best possible approximation 

Ø Measurement noise filtering out is possible 

q Only preliminary work has been done. Much work must be done in future. 
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Genetic Algorithm Approximation Versus Chebyshev Approximation: 
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3.2.5. NEURAL NETWORKS 

q Neural Networks – another type of novel evolutionary computation 
techniques. 

q They are universal approximators. Successfully used for many 
approximation and optimization problems. 

q Behavioral simulation – comparison with old analytical models (Saleh 
TWT model) only. 

q Possible area of fast progress in future. 
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3.3. ACCURACY OF APPROXIMATION & RELATED ISSUES 

q Accurate approximation of transfer characteristics are extremely important 
for the entire simulation. 

q Small inaccuracy in transfer characteristic may lead to very large 
inaccuracy in final result – nonlinear problem! 

q Two kinds of approximation: (1) approximation of measured/simulated 
AM-AM & AM-PM, (2) approximation of instantaneous characteristics – 
to filter out the computational noise. 

q Practical approximation orders: 

Ø Chebyshev polynomials: in-phase channel – 10-30, quadrature channel 
– 40-100 
Ø Bessel series: in-phase channel – 5-15, quadrature channel – 10-40 
Ø Splines – only for 1st kind approximation 
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IMPs measurements versus behavioral-level simulation (N=24) 
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IMPs measurements versus behavioral-level simulation (N=64) 
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Harmonics measurements versus behavioral-level simulation (N=24) 
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Even harmonics measurements versus behavioral-level simulation (N=24) 
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3.4. TONE-SPACING EFFECT 

q Principal limitation to behavioral-level simulation accuracy – tone-spacing 
effect (also known as bias decoupling network effect) 

q What’s this ? When 2 input tones are located close enough (<1MHz) – 
good accuracy. When they are separated wider – poor accuracy. 

    Small spacing                                             Large spacing 
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q Reason: 2nd order IMP changes bias conditions at the input & output. 

q “Narrow-band spectra requires only odd characteristics and narrow-band 
modeling” – NOT TRUE ! 

q Accurate simulation of narrow-band spectra requires broad-band 
modeling! 

q No any narrow-band technique can handle this problem. 

q Instantaneous quadrature technique is a wide-band one and it can handle 
this problem. 
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      No tone-spacing effect                                 Tone-spacing effect 
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4. POSSIBLE APPLICATIONS 

q Several types of possible applications are feasible: 

Ø Power amplifiers 

Ø RF/microwave subsystems & systems 

Ø Active array antennas 

Ø Bell Labs limit for channel capacity & active array simulation 
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4.1. POWER AMPLIFIERS 

q Simulation of power amplifiers for digital wireless communications: 

Ø Spectral regrowth 
Ø Adjacent channel power 
Ø Error vector magnitude 
Ø Harmonics 
Ø Spurious signals 
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4.2. RF/MICROWAVE SUBSYSTEMS & SYSTEMS 

q Simulation of RF/Microwave subsystems & systems (primarily, wireless 
communications): 

Ø Mixers, local oscillators, LNA, IFA, AGC (nonlinear performance, 
nonlinear interference & distortions) 

Ø Transmitting and receiving paths (nonlinear performance, nonlinear 
interference & distortions) 

Ø Entire communication system (nonlinear performance, nonlinear 
interference & distortions) 
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4.3. ACTIVE ARRAY ANTENNAS 

q New area of applications: modeling & simulation of active array antennas 
(nonlinear performance & distortions). 

q High complexity of active arrays requires for efficient simulation 
techniques → behavioral-level simulation. 

q Widespread use of active arrays (UMTS, radars etc.) and “overcrowded” 
spectrum → high demand for simulation 
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4.4. BELL LABS LIMIT FOR CHANNEL CAPACITY AND 
ACTIVE ARRAY SIMULATION 

q Classical Shannon’s limit for channel capacity: 
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q Increases as the log of S/N → very slowly! 
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q Realistic values: few bits/Hz/s : 

Shannon’s channel capacity limit 
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q Try to use directional antennas to increase C ? 
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M – number of array elements 
 

q Increases as the log of M → very slowly! 
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q Realistic values: few bits/Hz/s : 

Channel capacity versus number of array elements (S/N=10dB) 
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q Split not only the carrier, but also the information! 
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q Increases as M → enormous channel capacity! 
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q Realistic values: 100s bits/Hz/s ! 

Bell Labs channel capacity 

                                                                                                                        BELL LABS LIMIT FOR CHANNEL CAPACITY 
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q First breakthrough in communication theory for the last 50 years! 

q Relies substantially on active array technology 

q Works substantially in multipath & multisignal environment → potential 
for nonlinear interference and distortions is “tremendous” ! 

q Extremely high demand for nonlinear analysis & simulation of active 
arrays is expected. 
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5. CONCLUSION 

q ??? 
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