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Robust Beamformer: Diagonal Loading 

 

MVDR beamformer (and the others) are sensitive to an AOA mismatch, which s 

may degrade performance substantially in real-world conditions when AOA is 

estimated from received signals. 

 

We need some ways to solve this problem. In other words, we need to design a 

robust beamformer, i.e. insensitive to small errors in parameters. This is a very 

important problem in many areas of communications, signal processing and 

control. 

 

There are many solutions (each one has its own advantages and disadvantages); 

we consider two of them: diagonal loading (DL) and LCMV (LCMP). 

A good measure of the array sensitivity to mismatch is the sensitivity function:  

2
T = w          (9.1) 

Our design constraint is  

2

0T T= ≤w .       (9.2) 
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This limits the array sensitivity to all kinds of random variations, including the 

AOA mismatch. 

 

Note: from the previous discussions, 

1
T

N
≥        (9.3) 

So that one cannot do better than 0 1/T N= .  
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Example: AOA mismatch 
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Robust Beamformer via Optimization 

Let us consider the following optimization problem (MPDR beamformer with 

limited sensitivity, i.e. a robust beamformer): 

0

minimize 

subject to 1 and  

x

s
T

+

+ +
= =

w S w

w v w w

    (9.5) 

 

It can be solved using the Lagrange multiplier technique (as before). The 

Lagrangian is 

*
1 0 2 21 1

x s s
F T

+ + + +     = + λ − + λ − + λ −
     

w S w w w w v v w (9.6) 

 

Taking the derivative /F∂ ∂w  and setting it to zero gives 

2 1

0 2 1

( )

( )

s x L

s x L s

+ −

+

+ −

+σ

=

+ σ

v S I
w

v S I v

     (9.7) 

where 
2

1Lσ = λ  is a design parameter. 
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Note that the effect of the quadratic constraint (QC) 0T
+

=w w  is to add the 

diagonal matrix 
2

Lσ I  to 
x

S . In fact, it means that we design a beamformer for a 

higher noise level than is actually present, as seen from 

( )2 2 2

0
s

x x L x I L
′ = + σ = + + σ +σS S I S S I     (9.8) 

Lagrange multiplier technique gives a robust solution with minimal effort! 

 

Q.: prove that (9.7) delivers minimum, not maximum. 

Q.: explain why DL works (i.e. why robust)! 

 

Note that as 
2

Lσ →∞ , the MPDR-DL beamformer approaches the conventional 

beamformer. 

 

Q.: explain why! 
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Important design parameter – the loading-to-noise ratio (LNR): 

2 2

0/LLNR = σ σ        (9.9) 

Performance will significantly depend on it. 

 

By varying LNR, we may maximize the array gain for given SNR and INR. 

Approximate rule of thumb: 

10SNR dB LNR INR+ ≤ ≤      (9.10) 

 

If LNR>INR, the interference is not canceled adequately 

If LNR<SNR+10dB, the effect of diagonal loading is small and variation effects 

are not cancelled. 

 

Note: the approach is feasible when 

( )10...15INR SNR dB≥ +       (9.11) 

DL provides good measure against random variations in array elements. 
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We can select appropriate LNR only if we have reasonably good information 

about expected SNR and INR. 

 

Q: what to do if we don’t have it? 

 

Overall, DL plays an important role in the design of robust beamformers. 

 

See Van Trees, section 6.6 for extensive discussion. 
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DL: The array gain vs. AOA mismatch 

LNR=0 dB 
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Q: explain why it drops so fast at high SNR (non-trivial). 
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DL: The array gain vs. AOA mismatch 

the same parameters as above, except for the LNR=30 dB 
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Q: compare to the previous one and explain the difference. 
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Optimal Loading:The optimum gain vs. SNR 

In this example, the optimum LNR is found by computing the gain as a function of LNR 

and then maximizing it (see Van Trees, sec. 6.6.4 for details). The optimum LNR is a 

function of SNR. The array parameters are the same as above. 
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DL: The array gain vs. SNR for an array with perturbations 

The array parameters are the same as above, INR=30 dB 
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Summary 

 

• Robust beamformer. 

• Diagonal loading provides robustness against various mismatches and 
perturbations. 

• DL: design for more noise than actually present. 
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Homework 

 

Fill in the details in the derivations above. Answer the questions. Do the examples 

yourself. 

 

 


