
ELG5132 Smart Antennas ©  S.Loyka 

Lecture 7 26-Jan-13 1(14) 

OOppttiimmuumm  BBeeaammffoorrmmiinngg::  BBaassiicc  CCoonncceeppttss  

 

Deterministic techniques for beamforming -> good when the 

signal and interference are known completely (example: null 

steering to cancel the inference). 

What to do when interference or/and signal parameters are not 

known? -> Use statistical or adaptive techniques! 

We further design beamforming algorithms, which are optimum 

in a statistical sense. 

 

Objectives of the array processing (beamforming): 

Estimate the plane-wave signal in the presence of noise and 

interference; statistics of noise and interference is known or must 

be measured; some criteria of optimality must be employed; we 

discuss several such criteria below. 

Estimate the direction of arrival (AOA) of the signal(s) in the 

presence of noise and interference. This is a parameter 

estimation problem. 

Estimate the spatial spectrum of the signal (space-time process). 

A general goal is to pass the required signal without distortion 

and to suppress noise and interference as much as possible. 

Beamforming algorithm may be optimal under one criterion and 

far away from optimum under another one. 

Beamforming = space-domain signal processing. 

Basic models of signal and interference/noise 
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Possible Scenarios 
 

 

 

H.L. Van Trees, Optimum Array Processing, Wiley, 2002. 
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Possible Scenarios 

 

 

H..L. Van Trees, Optimum Array Processing, Wiley, 2002 
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OOppttiimmuumm  BBeeaammffoorrmmeerrss  

  

Consider the incoming signal and noise: 

s
= +x x ξ      (7.1) 

i.e. we use the narrowband assumption. The array output is 

*

1

N

i i

i

y w x
+

=

= =∑w x    (7.2) 

Assume the required signal 
s

x  is a plane wave, 

( )
s s s s s

x x= ⋅ =x v k v    (7.3) 

where sk  is its wave vector, 
s
x  is the waveform (complex 

envelope; may be considered as the plane-wave signal at the 

reference point 0=p ). 

Note: for a broadband signal one has to consider 

( ) ( ) ( , )
s s s

xω = ω ⋅ ωx v k   (7.4) 

The noise + interference correlation matrix is (in general), 

2

0Iξ = + σS S I     (7.5) 

where 
2

0σ I  is the AWGN (spatially white) correlation matrix, 

and IS  includes any interference (in a form, for example, of 

plane waves). 
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Minimum Variance Distortionless Response 

(MVDR) Beamformer 

 

In absence of noise, 

s
y y=      (7.6) 

In the presence of noise, 

      
s

y y yξ= +        (7.7) 

and we wish to minimize the output noise power. 

The distortionless criterion is 

1
s

+
=w v     (7.8) 

The noise + interference variance (power) at the output is 

22
,out y

+
ξ ξ ξσ = = w S w    (7.9) 

Q.: prove it! 

 

We minimize (7.9) subject to the distortionless criterion, 

min
+

ξ
w

w S w , s.t. 1
s

+
=w v      . 

by using Lagrange multipliers. The Lagrangian is 

*( 1) ( 1)
s s

F
+ + +

ξ= + λ − + λ −w S w w v v w  (7.10) 
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MVDR Beamformer: cont. 

Take the derivative of F w.r.t. 
+

w  : 

 0
s

F
F+ ξ+

∂
∇ = = + λ =

∂
w

S w v

w

  (7.11) 

 

The optimum weight vector is 

 
* 1

0 s ξ

+ + −
= −λw v S     (7.12) 

Using the constraint, 

1
* 1

s sξ

−
+ − λ = −

 
v S v    (7.13) 

1

0 1
=   

s

s s

+ −
ξ+

+ −
ξ

v S
w

v S v

   (7.14) 

This is the optimum MVDR beamformer, which was derived 

first by Capon and is referred to as a Capon beamformer. 

Note that this is a very general result -  ξS  can be any. 

Q.: consider the special case of 
2

0ξ = σS I . Find 0w . Does it 

look similar to something? 
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Array SNR Gain 

The noise + interference power at the output with the optimal 

weights is 

2 2 1 1
,out s s

+ − −
ξ ξ ξ ξσ = γ = γv S S S v    (7.15) 

1
1

s s

−
+ −

ξ
 γ =
 
v S v      (7.16) 

The output signal power is 
22

s s
xσ =  since 1

s

+
=w v . 

Assume that the noise + interference power at each array 

element is the same, 
2

ξσ , then 

2

2

s

in
SNIR

ξ

σ

=

σ

     (7.17) 

For simplicity, we further use SNR to denote SNIR whenever 

interference is present, unless indicated otherwise. 

The array SNR gain is  

2

2 1

0
out

s s

in

SNR
G

SNR

ξ + −
ξ ξ

σ
= = = σ

γ
v S v   (7.18) 

Introduce a normalized noise correlation matrix: 

2
,n

−
ξ ξ ξ= σS S      (7.19) 

The SNR gain is 

1

0 s n s
G

+ −
ξ= v S v     (7.20) 
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Comparison to Conventional Beamformer 

 

For a conventional array (beamformer), 

1

c s

N

+ +
=w v      (7.21) 

The output noise + interference power is 

2
, 2

1

c out s s

N

+
ξ ξσ = v S v    (7.22) 

The gain is 

1
2

c s n s
G N

−
+

ξ
 =
 
v S v    (7.23) 

 

This assumes equal-magnitude weights. 

For spatially white noise: 

0   
n c

G G Nξ = → = =S I  

 

In other cases 0 c
G G≥  

Q: prove it! Hint: Use the Schwartz inequality. 
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Minimum Mean-Square Error (MMSE) 

Beamformer 

 

We employ the same model as before:  

s s
x= +x v ξ , 

where  
s
x  is the required (plane wave) signal, which is assumed 

to be a random (unknown), 
s

v  is array manifold at  sk , and  ξ  

is the noise + interference. 

The noise correlation matrix is 

2

0Iξ = + σS S I     (7.24) 

where 
2

0σ  is the thermal noise variance (power density),  IS  is 

the interference correlation matrix. ξS  and  
s

v  are assumed to 

be known (in practice, they must be estimated from measured 

data). 

The total (signal+noise+interference) correlation matrix is  

2

x s s s

+
ξ= σ +S v v S    (7.25) 

We assumed that the noise statistics are the same at all the array 

elements. 
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MMSE Beamformer 

The mean square error is  

2

s
x

+
ε = −w x      (7.26) 

Our goal is to minimize it by proper choice of w . 

Taking the derivative 0∇ ε =
w

 and assuming the signal and 

noise are uncorrelated, we obtain 

2
1

0 2

s

s

s

+ + −
ξ

σ γ
=

σ + γ

w v S    (7.27) 

where  
1

1

s s

−
+ −

ξ
 γ =
 
v S v , and 

2

s
σ  is the power of 

s
x . 

Since we employ the narrowband assumption, 
2

s
σ  and γ  are 

frequency-independent (flat). Generalization to non-frequency-

flat case is straightforward. 

The minimum error (MMSE) is 

2

2
2 22

0
0 2 2 2 2

02

0

s

ss

s s

s

G

G

G

ξ

ξ

ξ ξ

σ
σ

σ σσ γ
ε = = =

σ + γ σ σ +σ
σ +

   (7.28) 

where 
2 1

0G
−

ξ= σ γ  is the array gain. 

For large SNR, 
2 2

0/
s

Gξσ σ≫  and hence 
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2

2

0

0

s

G

ξσ
ε ≈ σ≪     (7.29) 

Block diagram 

 

 

 

Note: MMSE beamformer is a scaled version of MVDR one. 

 

1

s

+ −

ξγv S
2

2

s

s

σ

σ + γ

x yyɶ

MVDR  scalar gain 
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Derivation of MMSE (homework) 

The estimate of 
s
x  is 

s s s
x x x= + ∆
⌢

    (7.30) 

where 
s
x∆  is random error due to noise, and  

s s
x x=

⌢

, when 

there is no noise (i.e. unbiased estimator). 

The estimation mean square error (MSE): 

*

2

2 *

2

1)  =  

s s

s

s s s

s x
x x

x

x x x

S S+

+

+ + + +

+ +

ε −

= + − −

= σ + − −
x x

w x

w xx w x w w x

w S w w w

 

where  

2

x s s s

+ +
ξ= = σ +S xx v v S , *

*
,  

s s

s s
x x

S x S x+

+
= =

x x

x x . 

 

* *

1

02)  0  = 
s s

x x
x x

S S
+ + −

+

∂ε
= − = →

∂
x x

S w w S

w

 

*

* * * 23)   ( )
s

s s s s s s s s s
x x

S x x x x x x= = + ξ = = σv v v  
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( )
1 11

1

1

1 1 2

1 1

1 2

4)   M.I.L. :   
1

      
1

s s s

x

s s s

− + −−
+ −

+ −

− + −
ξ ξ− −

ξ + −
ξ

+ = − →

+

σ

→ = −

+ σ

A xx A
A xx A

x A x

S v v S
S S

v S v

 

 

1 2 2
2 1 1

0 1 2 2
5) 1

1

s s

s s s

s s

−
+ + − + −

ξ ξ−

 γ σ σ γ
= σ − =  + γ σ σ + γ 

w v S v S , 

1
1

 where 
s s

−
+ −

ξ
 γ =
 
v S v . 

 

 

Note : there is no distortionless constraint in MMSE: 0 1
s

+
≠w v  

Q1: evaluate 0 s

+
w v , is it much different from 1? 

Q2: find 0

+
w  for a spatially-white noise. 

Q3: find the resulting MSE. 

Q4: when the desired signal is not a plane-wave one, what are 

the optimum weights? 
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Summary 

Optimum beamforming. Objectives and criteria. Possible 

scenarios. 

MVDR beamformer. Optimum weights. Array gain. Comparison 

to the conventional (equal-weights) beamformer. 

MMSE beamformer. Optimum weights. Comparison to MVDR. 

The techniques we develop also apply to other problems, i.e. 

optimum (adaptive) equalizers, MIMO systems, resource 

allocation in networks, etc. 
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Homework 

 

Fill in the details in the derivations above. Do the examples 

yourself. 


