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SSppaaccee--TTiimmee  RRaannddoomm  PPrroocceesssseess  

  
Time-domain random process: x(t), x - random variable, t –
parameter (time). For any value of t, x(t) = r.v.  

Autocorrelation function: 

*( ) ( ) ( )xR x t x tτ = + τ    (6.1) 

where < > is statistical expectation. Note that xR  depends on the 
time difference τ  only as we assume wide sense stationary 

(WSS) process. Its power is *(0)x xP R xx= = .  

In general (non-WSS process), 

               *
1 2 1 2( , ) ( ) ( )xR t t x t x t=      (6.2) 

but we will not use it, always making the WSS assumption. 

For deterministic signal x(t) : 

*( ) ( ) ( )xR x t x t dt
+∞

−∞
τ = + τ∫       (E.T. signals)  (6.3) 

*1
( ) lim ( ) ( )

2

T

x
T

T

R x t x t dt
T

+

→∞ −
τ = + τ∫     (P. T. signals)  (6.4) 

The signal energy or power can be compactly expressed as 
(0)xR . 

Further, we use < > for both statistical and deterministic average. 
Also, for most of our models, ( ) 0x t = , i.e. no DC component. 
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Autocorrelation Function and Power Spectrum  
 

Space time random process: ( , )x t p , p   -  position vector. 

Autocorrelation function (space-time) 

*
1 2 1 2 1 1 2 2( , , , ) ( , ) ( , )xR t t x t x t=p p p p  

                      *
1 1 1 1( , ) ( , )x t x t= + τ + ∆p p p  

     ( , )xR= τ ∆p       (6.5) 

i.e. WSS is space and time, and assuming that ( , ) 0x t =p  (if 

not, subtract the mean from  x  in (6.5)). 

For deterministic ( , )x t p : the same as for time only  + space 
coordinate. 

Power spectrum or PSD (ESD for E.T. signal) of a time-domain 
signal: 

{ }( ) ( ) ( ) j
x x xS FT R R e d

∞
− ωτ

−∞
ω = τ = τ τ∫   (6.6) 

For deterministic x(t), 

{ }( ) ( ) ( ) ,  j tX FT x t x t e dt
∞

− ω

−∞
ω = = ∫   (6.7) 

{ } 2( ) ( ) ( )x xS FT R Xω = τ = ω     (6.8) 

This justifies the term “power spectrum”. 
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Space-Time Power Spectrum and Correlation 
Matrix 

Space-time power spectrum: 

{ }( , ) ( , )

( , )

x x

j
x

S FT R

R e d

τ
∞

− ωτ

−∞

ω ∆ = τ ∆

= τ ∆ τ∫

p p

p
 (6.9) 

Correlation Matrix 

Consider  the vector signal ( )tx   (the array output): 

[ ]1 2( ) ( ) ( ) ... ( ) T
Nt x t x t x t=x  

[ ]1 2( , ) ( , ) ... ( , ) T
Nx t x t x t= p p p        (6.10) 

 

The (also “covariance” or “spectral”) matrix is defined as  

[ ]( ) ( , )x x i jij
S Sω = ω −p p          (6.11) 

In fact, 

( ) ( ) ( )x t t+τ = + τR x x    (6.12) 

is the correlation matrix, and 

{ }( ) ( )x xFT τω = τS R    (6.13) 

This is a vector (array) analog of the power spectrum. FT is 
applied to each component of xR  individually. 
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The correlation matrix xS  will play a central role in 
beamforming algorithms. 

Its component-wise representation is: 

[ ] *( ) ( ) ( )x i jij
x t x tτ = + τR    (6.14) 

This is cross-correlation (or, simply, correlation) between signals 
of various array elements. 
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Narrow-band signals 
 

Consider the complex envelope representation of a narrowband 

signal: ( ) ( ) cj t
i ix t A t e ω= , where  ( )iA t  is a complex amplitude 

(varies much more slowly than the carrier term cj te ω  ). 

The signal of i-th array element is delayed by 
( )( ) ( ) ( ) c ij t

i i ix t x t A t e ω −τ= − τ = − τ    (6.15) 

For narrowband signals,  

( ) ( ),     ( ) ( ) c c ij t j
i iA t A t x t A t e eω − ω τ− τ = =  (6.16) 

The effect of delay is to introduce a phase shift c ije− ω τ  only. 

The received narrowband signal can be expressed as 

( ) ( ) ( )t x t=x v k            (6.17) 

where ( ) ( ) cj tx t A t e ω=  is the plane-wave waveform coming 
from the direction k , and the array manifold vector 

1 2( ) , ,... N
Tjj je e e−− − =

 
kpkp kpv k   (6.18) 

In the frequency domain:  

( ) ( ) ( )xω = ω ⋅x v k     (6.19) 

where   { } { }( ) ( ) ,    ( ) ( )FT t x FT x tω = ω =x x . 

Q.: verify that (6.17) indeed represents the array response to a 
plane wave. 
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This may be generalized to broad-band signals as well. However, 
in most cases we will consider narrow-band signals only and will 
suppress ω. 

In fact, different elements receive phase-shifted copies of the 
same spectrum. We drop ω below assuming flat spectrum for 
simplicity (alternatively, x  and ξ  can be considered as complex 
envelopes). 

Example 1: narrowband plane wave + noise, 

s= +x x ξ           (6.20) 

where ( )s sx=x v k  is a plane-wave signal, ξ  is the (thermal) 
noise. 

Assume that the signal and noise are uncorrelated.  

Correlation matrix (power spectrum): 

x s
+

ξ= = +S xx S S     (6.21) 

2 ( ) ( )s s s s
+ += = σS x x v k v k          (6.22) 

2( )ξ ξω = σS I                                          (6.23) 

where 2 *
s s sx xσ =  is the power of sx  [signal’s complex 

envelope]; the noise  is assumed to be uncorrelated at different 
elements, i.e.  

*ξ ξ 0,   i j i j= ≠     (6.24) 

and  
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2 *ξ ξi iξσ =       (6.25) 

is the noise variance (power), assumed to be the same in all 
elements. 

We will use this model frequently in developing beamforming 
algorithms. Make sure you understand it well! 

 

Q.: derive (6.21)-(6.23). Hint: you may assume that both the 
noise and the signal are white, i.e. their autocorrelation function 

is 2( ) ( )R τ = σ δ τ , where ( )δ τ  is the Dirac delta function. 

 

The noise with  2
ξ ξ= σS I  is called “spatial white noise”. 

Example 2: M plane-wave signals + noise   

   ,
1

M

s i
i=

= +∑x x ξ           (6.26) 

where , , ( )s i s i ix=x v k , and the complex envelope of the i-th 

incoming plane-wave signal is ,s ix . The correlation matrix is 

2
x s s s

+
ξ= + σS V S V I           (6.27) 

[ ]1 2( ) ( ) ... ( )s M=V v k v k v k        (6.28) 

[ ] *
, ,s s i s jij

x x=S            (6.29) 
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where  sV  is the array manifold matrix. The noise correlation 

matrix  is 2
ξ ξ= σS I . 

 

Q.: derive (6.27). Consider the case of uncorrelated signal’s 
envelopes, and compare it to the case of 1 plane-wave signal 
(6.20). 

 

Q.: prove that any correlation matrix S  has the following 
properties: 

1. S  is Hermitian, i.e. +=S S . 

2. S  is positive semi-definite, i.e. 0+ ≥ ∀x Sx x. 

3. S  has non-negative eigenvalues. 

Q.: prove the following properties of xS  above: 

1. xS  is positive definite, i.e. 0+ > ∀ ≠x Sx x 0. 

2. xS  has positive eigenvalues. 

 

We will use below the example 1 and 2 models to design 
optimum beamformers. Required signal and interference will be 
considered to be plane waves. 
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Summary 
 

• Characterization of regular (time-domain) and space-time 
random processes. 

• Power (energy) spectrum. 

• Correlation (spectral) matrices. 

• Spatially-white noise. Narrowband processes. 

• Plane-wave signals. 
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Homework 

 
Fill in the details in the derivations above. Do the examples 
yourself. 


