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Space-Time Random Pr ocesses

Time-domain random process: x(t), X - random vaeal —
parameter (time). For any value of t, x(t) = r.v.

Autocorrelation function
R(1) = (X)X (t+1) (6.1)

where < > is statistical expectation. Note thgtdepends on the
time differenceT only as we assume wide sense stationary

(WSS) process. Its power B, = R (0) = <xx*>

In general (non-WSS process),

Ry(t1,t2) = (X(tX (t2)) 6.2)

but we will not use it, always making the WSS agstiom.
For deterministic signal(t) :

R (1) = j X)X (t+T1)dt (E.T.signals)  (6.3)
_1 .
R(n) = lim — j X)X (t+T)dt  (P.T.signals)  (6.4)

-T
The signal energy or power can be compactly exptess
R, (0).

Further, we use < > for both statistical and deteistic average.
Also, for most of our modelé,x(t)> =0, i.e. no DC component.
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Autocorrelation Function and Power Spectrum

Space time random procesgt,p), p - position vector.

Autocorrelation function (space-time)

Ry (t1,12,P1,P 2) = <X(t 1P DX (2P 2)>

= <x(t1,p1)x* (t1+T,pp+ Ap)>
=R (1,Ap) (6.5)

i.e. WSS is space and time, and assuming {Ixét,p» =0 (if
not, subtract the mean from in (6.5)).

For deterministicx(t,p): the same as for time only + space
coordinate.

Power spectrunor PSD (ESD for E.T. signal) of a time-domain
signal:

S(w) = FT{ RX(T)} = OJ? RX(T)e_ijdT (6.6)

—00
For deterministic x(t),

X (w) = FT{x(t)} = Of x(t)e” 1 “dt, (6.7)

—00

S, (@) = FT{R (1)} =[X(w)|" (6.8)

This justifies the term “power spectrum”.

Lecture6 26-Jan-13 2(9)



ELG5132 Smart Antennas © S.Loyka

Space-Time Power Spectrum and Correlation
Matrix

Space-time power spectrum
S(w,8p) = FT{R(t,4p)} .

©0 . (6.9)
= _[ R (T,Ap)e /“dt
Correlation Matrix
Consider the vector sign#(t) (the array output):
T
X®) =) x() .. xnO)]
-
=[x(t,p1) X(t,p2) ... Xt.pn) (6.10)
The (also “covariance” or “spectral”) matrix is oefd as
[Sx(@)];; = Sx(wpi =p)) (6.11)
In fact,
R, (T) = <x(t)x+(t ¥ r)> (6.12)
IS the correlation matrix, and
Sy(w) = FT{Ry (D)} (6.13)

This i1s a vector (array) analog of the power speotrFT is
applied to each component Bfy individually.
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The correlation matrix S, will play a central role in
beamforming algorithms.

Its component-wise representation is:

[Rx(r)]ij :<xi (t)x’} (t+r)> (6.14)

This is cross-correlation (or, simply, correlatida@tween signals
of various array elements.
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Narrow-band signals

Consider the complex envelope representation afrieowband
signal: % (t) = A (t)ejwct, where A (t) is a complex amplitude
(varies much more slowly than the carrier te&H‘i’Ct ).

The signal of i-th array element is delayed by

X (t) = X(t —1;) = At - 7;)e/ %) (6.15)
For narrowband signals,

At-T) = A), X t)=Ag)e eI (6.16)
The effect of delay is to introduce a phase @ﬁﬁtwcri only.

The received narrowband signal can be expressed as
X(t) = x(t)v(k) (6.17)

where X(t) = A(t)ej(")Ct is the plane-wave waveform coming
from the directiork , and the array manifold vector

v(k) = [e—jkpl,e—jkpz’”e—jkp;\] }T (6.18)
In the frequency domain:
X(w) = x(w) v (k) (6.19)
where X(w) = FT{x(t)} , X(W)= FT{X(t )}.

Q.: verify that (6.17) indeed represents the arezyponse to a
plane wave.
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This may be generalized to broad-band signals #skMm@vever,
in most cases we will consider narrow-band sigoalg and will
suppress.

In fact, different elements receive phase-shifiggies of the
same spectrum. We drap below assuming flat spectrum for
simplicity (alternatively,Xx and& can be considered as complex

envelopes).
Example 1 narrowband plane wave + noise,
X=Xg+& (6.20)

whereXg = XV(K) is a plane-wave signéd, is the (thermal)
noise.

Assume that the signal and noise are uncorrelated.
Correlation matrixXpower spectrum):

S, = <xx+> =S¢ +S (6.21)
S = <xSxS+> = o2v(k)v* (k) (6.22)
Se (@) = OF| (6.23)

whereog = <XSXS*> s the power ofXg [signals complex

envelope]; the noise is assumed to be uncorreédtdiferent
elements, i.e.

<§i§*j > =0, i# ] (6.24)

and
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of =(5¢) (6.25)

IS the noise variance (power), assumed to be the saall
elements.

We will use this model frequently in developing trdarming
algorithms. Make sure you understand it well!

Q.: derive (6.21)-(6.23). Hint: you may assume thah the
noise and the signal are white, i.e. their autaation function

is R(T) = 026(T), whered(T) is the Dirac delta function.

The noise withSE = G%I Is called“spatial white noise

Example 2M plane-wave signals + noise

M
X=) Xgj +& (6.26)
=1
whereXg; = X5;V(K;j), and the complex envelope of the i-th
iIncoming plane-wave signal ¥ ;. The correlation matrix is

Sy =VeSeVs' + 0% | (6.27)
Vs=[v(ky) V(k) ... vk )] (6.28)
[Ss]ij =<Xs,i X;j> (6.29)
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where Vg is the array manifold matrix. The noise correlatio

mautrix isSE = O'gl .

Q.: derive (6.27). Consider the case of uncorrdlaignals
envelopes, and compare it to the case of 1 plave-signal
(6.20).

Q.: prove that any correlation mati&has the following
properties:

1. Sis Hermitian, i.eS=S".
2. S'is positive semi-definite, i.ex* Sx = 00X.
3. S has non-negative eigenvalues.

Q.: prove the following properties &, above:
1. S, is positive definite, i.ex”Sx >00x # 0.

2. Sy has positive eigenvalues.

We will use below the example 1 and 2 models tagtes
optimum beamformers. Required signal and interfezenill be
considered to be plane waves.
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Summary

« Characterization of regular (time-domain) and sgaoe
random processes.

* Power (energy) spectrum.,

« Correlation (spectral) matrices.

« Spatially-white noise. Narrowband processes.
« Plane-wave signals.
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Homewor k

Fill in the details in the derivations above. De #xamples
yourself.
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