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Rx Processing (“demodulation”, “decoding”):
V-BLAST Algorithm

Recall the basic idea:

Tx {ﬁ> Rx
TX \\:\\</,:// RX
Data RGNS Vector | Data
Data Tx F< & 2 ‘»} Rx Signal
Splitter X Processor
Tx <& 3> Ry
y=Hx+§& (14.1)

where X is the Tx vector, y is the Rx vector, 2; is the AWGN.
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Channel state information (CSI) is available at the Rx only. Given Y, how
to find X?

Simple solution,
x=Hy (14.2)

is not efficient, as it requires 0(N3) operations + possible noise
enhancement: for ill-conditioned H (det(H) close to 0) it is not optimum.

Q: What is the MMSE solution?

The best solution (min. BER): maximum likelihood (ML) -> too complex
(exponential in N).

Efficient solution —> V-BLAST detection algorithm (also known as
decision-feedback (DF) or successive interference cancellation (SIC)).

Three major steps:
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1) Interference cancellation (form already detected symbols)
2) Interference nulling (from yet to be detected symbols)
3) Optimal ordering (max. post-processing SNR)

The Rx (vector) signal can be expressed as:
n
y=> hx+¢& (14.3)
i=1
where h; is the i-th column of H.

Let’'s assume that (i-1) symbols, from the Tx 1 to (i-1), have already been
detected.
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The interference cancellation step: the contribution of these symbols
(from the Tx 1 to (i-1) ) to .. can be cancelled:

i—1
y'=y-) hzx, (11.4)
j=1

where )2]- are the detected symbols, which are assumed to be error free.

If this is the case, then (11.4) becomes

n
y' =) hx, +§
k=i (11.5)
Our immediate goal now is to detect x; , which is mixed up with

Xi1»+-+» X, Hence, the interference nulling stage:

To null out the interference from {xl-+1,. : .,an}, project y' to the sub-

X

space orthogonal to the sub-space spanned by {xl-+1,. ces Xy, }
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For this, use the projection matrix in (11.9). In fact, this is an interference
cancellation problem we discussed before.

This stage of V-BLAST is also called “zero-forcing” (ZF) interference
cancellation.

Alternative solution: MMSE interference cancellation.
Q.: which is better? Explain why.

Consider an example of nx2 V-BLAST. At step 1,

y =h;x; +hyx, +& (11.6)
— —
signal  [SI+noise

At step 2,
y =h,x,+ & (11.7)
- —J o

signal  noise
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The last component of the V-BLAST is the optimal ordering procedure.

The order of symbol processing is organized according to their after-

processing SNR’s in decreasing order, i.e, the symbol with highest after-
processing SNR is detected first.

Practical way to accomplish this: detect first the symbol whose
propagation vector has the lowest correlation with the other vectors.
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V-BLAST Block Diagram

\

Optimal ordering: Interfer"ence nul'hng
" h ' Y, = Cz‘+1y
{hi.h,...h, |
. > detection
1=1 ) "
¢ X = Q (yi)
Interference cancellation ’
i—1
Y, =Yy~ Z h x, No
— i=i+]
Yes

(o)
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V-BLAST Block Diagram

C,., is the projection matrix to the sub-space orthogonal to

{h'Hl,. : .,h'nT } This can be expressed as

C.=1-H,(HH) H;

. ' ' '
where H, —[ i1 i+2"’hnT:|'

Q.: what is the equivalent of (11.8) for MMSE V-BLAST?
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Optimal Ordering

If the Tx signals are of equal power, then the optimal ordering is
equivalent to finding the largest

a, =|C,;h,] (11.9)
l.e. at step i we detect the symbol

, keli.ng] (11.10)

J :argmax‘Cf.‘hk
k

where Cf IS a projection matrix to the subspace orthogonal to

{hl-,...,hk_l,hk+l,...,h } e all the vectors h;...h,, exceptfor h;.

nr

*k%

The algorithm described above, i.e. V-BLAST, is also known as ordered
ZF SIC (or “decision feedback interference cancellation”).

There are some modifications: unordered one, ordered MMSE SIC, etc.
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See the Appendix (at the end) for an extended discussion of those.
It can be proved that the BLAST achieves the full MIMO capacity [8].

Q.: write down explicitly all the steps for nx2 V-BLAST.

Useful references on V-BLAST:

A.U. Toboso, S. Loyka, F. Gagnon, On Optimal Detection Ordering for Coded V-BLAST,
IEEE Transactions on Communications, v. 62, N. 1, pp. 100-111, Jan. 2014.

V. Kostina, S. Loyka, Optimum Power and Rate Allocation for Coded V-BLAST:
Instantaneous Optimization, IEEE Transactions on Communications, v. 59, N. 10, Oct.
2011, pp. 2841-2850.

V. Kostina, S. Loyka, Optimum Power and Rate Allocation for Coded V-BLAST: Average
Optimization, IEEE Transactions on Communications, v. 59, No. 3, pp. 877-887, Mar. 2011.

S. Loyka, F. Gagnon, On Outage and Error Rate Analysis of the Ordered V-BLAST, IEEE
Trans. Wireless Communications, v. 7, N. 10, pp. 3679-3685, Oct. 2008.

V. Kostina, S. Loyka, On Optimum Power Allocation for the V-BLAST, IEEE Transactions on
Communications, v. 56, N. 6, pp. 999-1012, June 2008.
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Diagonal BLAST (D-BLAST)Basic idea — cycle Tx antennas

periodically over transmitted sub-streams to provide equal conditions for
each sub-stream.

Fixed V-BLAST architecture is not optimal because in fixed environment
(or slowing varying), one of the sub-streams may be in worst conditions
all the time.

Detailed description of the D-BLAST - see Foschini’s paper:

G.J. Foschini, Layered Space-Time Architecture for Wireless Communications in a Fading
Environment When Using Multi-Element Antennas, Bell Labs Technical Journal, Aug. 1996.
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b L N
bbb S on b.b,...b
o N splitter_2 Oﬁ L% o : N'
- P
\ b rocess

Hint: to facilitate understanding, consider first 2x2 D-BLAST.

Note: the cycling does not affect the system capacity; can be skipped if
rates of each stream are properly allocated.

Q.: what is the difference in BER performance of V- and D-BLAST?
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Maximum-Likelihood (ML) BLAST
A big disadvantage of V-BLAST is that 1st detected symbol doesn’t enjoy

any diversity (due to nulling out (n-1) other symbols) when n, = np =n,

or has the lowest diversity order of all steps, (1, —n; +1), in the general

case. This sub-stream will have the worst performance, which will
dominate the overall performance due to the error propagation.

Thus, the algorithm needs an improvement.

The key idea of the ML BLAST: first m symbols, m<n, are jointly detected
using the ML approach, and the remaining n-m symbols are detected in a
conventional way.

Advantage: diversity order for the first m symbols is m.

Cannot do m=n because ML is exponential in complexity, but it is very
feasible for small m (e.g. m=2).
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Maximum-Likelihood (ML) BLAST

n-1 \
n
| \ Conventional
| V BLAST
3 J
2 L Joint ML detection
1 ) I’Il:2
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Summary

V-BLAST, D-BLAST and ML-BLAST.
Detailed description of the algorithms.
Performance analysis.

Comparison: advantages and disadvantages.
Links to multiuser systems (MAC).

® & & o o
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Homework

Fill in the details in the derivations above. Answer the questions. Do the
examples yourself.
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Appendix: Further Discussion of the V-BLAST
and its properties.

Max. SNR/MMSE V-BLAST

Consider regular (ZF) V-BLAST first.
The basic basic channel model:

y=Hx+&=) hx +§ (1)
=1

Detection step i: assume the Tx symbols [xl...xl._l] has been correctly
detected,

N

X, =X

j=x, j=l.i-1 (2)
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Subtract the contribution of already detected symbols from Y,
i—1 m
y’:y_zx]h] :thxk +%:H(l—l)x(l—l) +% (3)
j=1 k=i

T
where H, | = [hl-,hl-+1,..hm], X(i-1) = [xl-,x xm] . This is the

i+1>°

interference cancellation stage.

Next, project out interference from yet to detected symbols X(j)-

y' =Py =Ph.x +PE, (4)

-1
where P, =T-H, (HjHl) H is the projection matrix (orthogonal to
Span{hi+1--hm})-
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Finally, do MRC using y” to maximize output SNR:

yl =a;y"=h/Ph.x;, +h/ P& (5)
where a, = h, are MRC weights. (5) can be compactly expressed as:
y;=w;y', w;=Ph, (6)

where we used the fact that P = P,.

The output SNR is:

h/Phx,

Yi = <

Lecture 14: 19-Nov-15 20(29)

2>

h'Ph.

2> ) lcél g
0

h'PE

1 1




ELGS5132: Smart Antennas © S. Loyka

: 2 : : - ..
assuming <‘xl-‘ > =1 (unit power constellation). y, is the decision

variable to find Xx;.

This algorithm is sometimes called ZF (zero-forcing) V-BLAST as P,
cancels completely IS (inter-stream interference) from {xiﬂ...xm}. It

does not minimize BER, however.
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Max. SNR V-BLAST

Consider step 7 and find such weights w; that the output SNR is
maximized,

- o
YVi=W, Y =71+

m
R _ + +
rg =wihx;, n;= Z w h x, +w;S
k=i+1

Output signal and noise/interference powers:

P, = <‘rsi‘2> =|w/h,
-

S
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2
+ +yy + 2+ +( 2 +
>=<Wl- Hxx H, Wl->+GOWZ- W, =W, (GOI+HZ-H,- )W,.
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where we have used <x(i+1)x6+l)> =1, <§2’;+> = o1 (i.e. iid. signals

and noise).
Finally, the output SNR is
P, w/hh'w,

N
=—5 = (10)
i P w/Rw,

where Rg = 6(2)1 + HZ-HZ-+ is noise and ISI| correlation matrix.

Optimization problem:

max v, (11)
Wi
The solution is
w, =R;'h, (12)
and the max SNR is
imax =Rz b, (13)
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Compare to ZF solution (7); for large average SNR, o5 — 0,

-1 1
-1 2
R.'=(cfI+HH,') ~—P, (14)
Oy
and max SNR solution is very close to ZF solution (7),
Vimax ~ YizF (15)

Max SNR solution (12)-(13) has very important property.

Theorem: Max SNR (MMSE) V-BLAST achieves the full MIMO capacity
(no Tx CSI, isotropic signaling).
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Proof:

I+ 2 HH"
m

C =log = log

I+2HH +2hh
m n

-1
—log|7+2H,H!|+log ]+B(1+BH1H1+) h,h| (16)
m m n

= log|l + 2 HH!|+ A,
m

—1
A, :log(1+ﬂhf(l+£Hlej hlj (17)
m m

. o 2
Note that with our normalization, <‘xl-‘ > =1,
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p_l
m ol

(18)

and
A, =log(1+7,), v, =h{ (ol +H1H1+)_1 h, (19)

Comparing (19) to (13), we conclude that v, is the output SNR of the max

SNR processing at step1 (considering T, 2..m as sources of interference,
IS1). Hence, A, is the capacity at step 1.

Applying the same expansion to log , one obtains:

1+2HH
m

m Al-:log(1+y,-)

C=)> A
ZI: : Yi:hj(GgIJer'H;)hz‘ )
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where A, is the capacity of i-th stream, and v, is the SNR with max SNR

processing. Q.E.D.

Note: from (14), one may conclude that asymptotically, o5 <1, ZF V-

BLAST also achieves MIMO capacity.

MMSE BLAST

In a similar way, one may consider MMSE solution to the stream

separation problem in (1),

Wi
Using
2
de; _ 0
aw,
one finds MMSE weights as
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-1
w, =(ogl+H,  H{_,) h, (23)
and

-1
& min = 1-h; (o31+H(,_ H(, ) h, (24)

i,min

After some manipulations, it can be shown that max SNR and MMSE
weights are related as

W _
WAisE = ﬁ—Nf v, =h/R¢'h, (25)

and, hence, MMSE solution also provides max SNR.
Important relationship between min MMSE and max SNR:

1

2
min, i

=1+, (26)
g
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Exercise: prove (14), (23), (25), (26).

Ref. [1] has an especially good chapter on MIMO systems. Highly
recommended, as well as [2].
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