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MIMO Systems and Channel Capacity 
 

Consider a MIMO system with m Tx and n Rx antennas. 

 

The power constraint: the total Tx power is 
2

t
P=x . 

Component-wise representation of the system model,  

1

m

i ij j i

j

y g x

=

= + ξ → = +∑ y Gx ξ      (13.1) 
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Theorem (Foschini, Telatar): Under isotropic signaling ( / )
x t

P n
+

= =R xx I  (e.g. no 

CSI at the Tx), the capacity of the channel in (13.1) is 

[ ]logdet  bit/s/Hz
m

C
m

+γ = + 
 
I HH      (13.2) 

where  

t r
P P=H G  is the normalized channel matrix, 

2

0r
Pγ = σ  is the aggregate SNR at the Rx end. 

( ) /r t
P P tr m

+

= ⋅ GG  is the total received power , 

so that reliable transmission is possible at any rate R C< . 

 

Proof: When x  is a complex Gaussian vector, ( , )
x

CN 0 K , its entropy is 

( ) ( )2
log det

m

x
H e = π

 
x K        (13.3) 

where 
x

K  is the correlation matrix, 
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[ ]x x i jij
x x

+ +

= → =K xx K       (13.4) 

Similarly for the noise and the output vector: 

( ) ( ) ( ) ( )2 2
log det ,  log det

n n

y
H e H eξ

   = π = π
   

ξ K y K    (13.5) 

where ,  

y

+
ξ = =K ξξ K yy

+

. 

Note: this follows from the pdf of a complex Gaussian vector, 

( ) 11
exp

xm

x

+ − ρ = − π
x x K x

K

       (13.6) 

and we have assumed that 

,  ,  

R R I I R I I R R I
j

+ + + +

= = − = +x x x x x x x x x x x    (13.7) 

where 
R

x  and 
I

x  are real and imaginary parts of x . 

 

The mutual information is 
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( ) ( ) ( ) ( ), , log
x y

xy

I H H H

⋅

= + − =

K K
y x x y x y

K
     (13.8) 

where  

x xy

xy

yx y

+ +

 ′ 
   = =     ′   

K Kx
K x y

y K K
      (13.9) 

The capacity is 

( )
( )max ,

p

C I =  
x

y x        (13.10) 

under the assumptions that the channel is fixed (static). We further assume that the CSI is 

available at the Rx only (but not at the Tx). 

 

For Gaussian noise, the maximum is achieved when x  is zero-mean Gaussian.  

Under certain circumstances (e.g. no Tx CSI), the covariance is a scaled identity, subject 

to the power constraint 
x t

tr P≤K  . Hence, 

t

x m

P

m
=K I         (13.11) 
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Here, we also assume that the noise is uncorrelated from one Rx antenna to another, 

2

0 nξ = σK I ,        (13.12) 

and that the signal and noise are uncorrelated as well: 

*
0i jx ξ =         (13.13) 
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Under these assumptions, 

2

0

,

t
y n

t t
xy yx

P

n

P P

m m

+ +

+

= = + σ

′ ′= =

K yy GG I

K G K G

       (13.14) 

Using the following identity, 

1−
=

A B
A D-CA B

C D
       (13.15) 

we find 

1 2

0

n

xy x y xy x yx x

−

′ ′= − = σK K K K K K K     (13.16) 

Finally, 

2

0

log logdet
x y t

m

xy

P
C

m

+
⋅  

= = + 
σ 

K K
I GG

K

    (13.17) 
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Let us normalize G as follows, 

t r
P P=H G         (13.18) 

where  
r
P  is the total received power. Then,  

[ ]logdet  bit/s/Hz
n

C
m

+γ = + 
 
I HH      (13.19) 

where 
2

0r
Pγ = σ  is the average SNR at the Rx. This gives the MIMO channel capacity in 

bit/s/Hz. This is the celebrated Foschini-Telatar formula.   Q.E.D. 
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Important special cases 
 

n parallel independent sub-channels,  

 ( )n m= =H I         (13.20) 

The capacity is 

log 1C m
m

γ = + 
 

       (13.21) 

Interpretation: the incoming bit stream is split into m independent sub-streams and 

transmitted independently over m channels. Since the total Tx power is fixed to 
t
P , per-

channel SNR is mγ .  

Asymptotically, 

ln 2
m C

γ
→∞⇒ ≈        (13.22) 

Note that capacity growth linearly with γ →  much faster! 
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While C(m) is monotonically increasing with m, the increase slows down for large n.  

Since increase in n is related to huge increase in system complexity, there is some 

maximum m, which is approximately 
max

m ≈ γ . 

In practice, one would keep 
max

m m≤ . 

 

Compare with the case when all the bits are transmitted over one sub-channel only,  

( )1
log 1C = + γ         (13.23) 

Clearly, 

1
 for 1C C≥ γ≫        (13.24) 

Another approach to this problem is based on the cost model, 

S m= α          (13.25) 

where S  = cost, α  = cost/stream. Hence, the capacity/cost ratio (capacity per unit cost) is 

1
log 1

C

S m

γ = + α  
       (13.26) 

This is capacity per unit cost and it is always decreasing function of n. However, the 

decrease is slow for moderate values of m, and it becomes large only when ~m γ . 
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Next consider diversity combining,  

[ ]1 2
,  1

T

n
h h h m= =H …       (13.27) 

(one Tx and n Rx’s). The capacity is 

2

1

logdet log 1
n

i

i

C h
m

+

=

 γ = + = + γ  
   

∑I HH    (13.28) 

Clearly, this is the MRC. It proves once again that the MRC is optimum (this time, from 

capacity (information theoretic) viewpoint). 

Selection combining can be represented as, 

( ){ } { }( )2 2

max log 1 log 1 max
i i

i i

C h h= + γ = + γ    (13.29) 

Hence, “capacity-wise” selection combining is the same as “power-wise” one. 

Tx diversity combining, for fixed 
t
P  , is not the same as Rx combining. 

Q: prove it! 

However, when per-branch Tx power is fixed, it is the same as Rx combining. 

Q: prove it! 
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SVD Decomposition and Channel Capacity 
 

Introduce a (instantaneous) channel covariance matrix: 

+

=W H H         (13.30) 

Eigenvalue decomposition of W  is  

+

=W Q QΛ         (13.31) 

where Q  is a mxm unitary matrix of eigenvectors, and  

[ ]1 2 m
diag λ λ λΛ = …  

diagonal matrix of eigenvalues. 

Consider the SVD of H:   

+

=H UΣV          (13.32) 

where U  and V  are unitary matrices (of left and right singular vectors of H ), and Σ  is 

diagonal (mxn) matrix of (non-negative) singular values. 

Note that  

+ + +

= =W H H VΣ ΣV        (13.33) 



ELG5132 Smart Antennas  ©  S.Loyka 

Lecture 13 15-Oct-15 12(31) 

Hence, 

,  

+

Q = V Σ ΣΛ =         (13.33) 

i.e, eigenvalues of W  are squared singular values of H , 
2

( ) ( )
i i

λ = σW H . 

 

Using the equations above, the capacity can be presented as 

1

log 1
m

i

i

C
m

=

γ = + λ 
 

∑         (13.34) 

Hence, 
2

( ) ( )
i i i

λ = λ = σW H  are the channel eigenmode power gains. 

Q: prove it! 

This is alternative representation of the Foschini-Telatar formula. 
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Note: capacity doesn’t change under transformation  +

→H H  

Q: prove it! 

 

 

       

       

       

channel 
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Example 1 
 

Consider the all-1 channel 1ijH = , find its capacity. 

Solution: 

+

=H UΣV  

where 

[ ]
1

1 1 1
T

n

=U … ,  [ ]
1

,   1 1 1mn

m

+

= =Σ V …   (13.35) 

Hence,  

1 2
,  , , 0

m
mnλ = λ λ =…        (13.36) 

( )log 1C n= + γ         (13.37) 

i.e, it increases only logarithmically with n –> this is an example of a correlated (rank-

deficient) channel. 

Note : the effect of m is hidden in γ  since 
2

0

r
P

γ =

σ

, where 
r
P  is the total Rx power, 

1r r
P mP= . 
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Example 2 
 

Consider a multipath channel of the form 

1

1
M

i i i

i

g

mn

+

=

= ∑H w v        (13.38) 

where 
i

v  = Tx array manifold vector, 
i

w  = Rx array manifold vector , and 
i

g  - channel 

gains, all for i–th multipath component. Assume that 

, i j ij i j ijn m
+ +

= δ = δw w v v       (13.39) 

(orthonormal). By inspection, we conclude that 

( )
2

1

,    = log 1 ,   if  min ,
M

i i i

i

g C M m n
m

=

γ λ = + λ < 
 

∑    (13.40) 

Hence the number of multipath components limits MIMO capacity! 
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In general case, the number of non-zero eigenvalues is  

( )
( )min , ,

0

1

min , ,   = log 1

m n M

i

i

M m n M C
m

=

γ = → + λ 
 

∑    (13.41) 

Assuming that all the eigenvalues are equal, 

( ) =min , , log 1C m n M
m

γ + λ 
 

       (13.42) 

Number of degrees of freedom: a factor in front of log is called a number of degrees of 

freedom, or capacity slope. 

Q.: What is the meaning of it? 
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Example 3 
 

MISO channel (Tx diverisity), [ ]1,   = 1 1 ... 1n = H : 

The capacity is 

( )log 1 log 1C m
m

γ = + ⋅ = + γ 
 

      (13.43) 

i. e., the same , as SISO with the same total Tx power (the effect of coherent combining is 

already included in ρ , which is the ratio of total Rx power, in one Rx from all Tx’s, to the 

noise power). 

Compare it with SIMO (Rx diversity), [ ]1,   = 1 1 1
T

m = H , 

( ) ( )log 1 log 1C n= + γ ⋅ ≠ + γ  if 1n ≠      (13.44) 

Q.: explain the difference! 
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Capacity of an Ergodic Rayleigh-fading Channel 
 

We assume that Rx knows the channel (H), but Tx doesn’t. 

Start with the general MIMO capacity expression for a given (fixed) H : 

logdetC
m

+γ = + 
 
I HH      (13.45) 

Since H is random for a fading channel, C is random as well.  For any given realization of 

H, C can be evaluated, but it varies from realization to realization, i.e. random variable. 

Define the mean (ergodic) capacity, 

logdetC C
m

+γ = = + 
 H

H

I HH      (13.46) 

Telatar gives a detailed formulation, based on the mutual information ( )( ), ,I x y H , and 

proves that the maximum is achieved when x are i.i.d. Gaussian. 

Note that the mean capacity makes practical sense for ergodic channels only, i.e., when 

the expectation over realizations is the same as expectations over time.  
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Interpretation of ergodic capacity: it can be proved (based on information theory) that 

there exists a single code that achieves the capacity in (13.46). Alternatively, an adaptive 

system can be built that achieves the instantaneous capacity in (13.45) and its average 

capacity is as in (13.46). 

For a Rayleigh channel, ijh  are i.i.d. complex Gaussians with unit variance, 

( )0,1ijh C∼ ℕ . Telatar describes in details the evaluation of capacity in this case 

(analytical approach). 

 

Consider some special cases. 
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Example 1 
 

n is fixed, and  m→∞ . In this case,  

*

1

1 1
m

ij kj n

j

h h
m m

+

=

= →∑HH I       (13.47) 

in probability due to the central limit theorem. Hence , the capacity is  

( )log 1C n= + γ         (13.48) 

i.e., the same as the capacity of n parallel independent channels, AWGN, no fading. This 

is the effect of Tx diversity. 

Consider 1,  n m= →∞  then,  

( )log 1C = + γ          (13.49) 

i.e, an infinite-order diversity transforms the Rayleigh-fading channel into a fixed (non-

fading) AWGN channel. 

 

Example 2:  m is fixed and n→∞  . Homework.   References: [1-3, 5, 6]. 
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Summary 
 

� MIMO capacity. Basic concepts (entropy, mutual information) for random vectors. 

� Canonical form of the MIMO capacity. Large n limit. 

� Comparison to conventional systems. Capacity of diversity combining systems. The 
impact of multipath, Tx and Rx antenna number. 

� MIMO capacity of a Rayleigh channel. The impact of fading. 
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Appendix 1: SVD and optimization of MIMO Channel Capacity 
 

When the 
x
T  signal correlation matrix { }+= ≠P E xx I , the MIMO capacity is 

2

0

1
log 1

+

= +

σ

C HPH       (1) 

If CSI (channel state information) is available at the 
x
T , P can be chosen to maximize C, 

subject to the total 
x
T  power constrain: 

1

( )
m

ii T

i

P tr P

=

= ≤∑ P        (2) 

where 
ii
P  is the i-th 

x
T  power. 

Consider the m n×  MIMO channel, 

= +y Hx ξ         (3) 

Using the SVD of H, 

+

=H UΣV         (4) 

where U,V are n n×  and m m×  unitary matrices, + +

= =U U V V I , and  
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1
0

0 0

Σ 
=  
 

Σ          (5) 

and [ ]1 1 2
, , ..

k
diagΣ = σ σ σ  are non-zero singular values of H. 

Using (4) and (3), 

ɶ ɶ
,

+

= + = +y UΣV x ξ y Σx ξɶ         (6) 

� � � , 1,2..
i i i i
y x i k= σ + ξ =          (7) 

where ɶ ɶ
, ,

+ + +

= = =y U y x V x ξ U ξɶ . Note that multiplication by a unitary matrix does 

not change statistics of a random vector and, hence, does not affect the mutual 

information and the capacity.  

Hence, the channel in (7) has the same capacity as the original channel (3). But the 

channel in (7) is as of k independent sub-channels, with per-sub-channel SNR: 

2

0

i

i

P
γ = λ

σ

ɶ           (8) 

and 
2

i i
λ = σ  are the eigenvalues of HH+ , and 

i ii
P P= . Its capacity is  

2 2

1 0

log 1
k

i

i

i

p

=

 
= + λ 

σ 
∑C        (9) 
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Optimum Pi can be found using water-filling (WF) technique as follows: 

2

0

1
, 1,2,..

i

i

P i k

+

 σ
= µ − = 

λ 
     (10) 

1

1

k

i T

i

P P

=

=∑         (11) 

where [ ]x x
+
=  if x>0 and 0 otherwise; k1 is the number of active eigenmodes (i.e. with 

non-zero Pi), and constant µ  is found from (10). Note that (10) and (11) also give 

(implicitly) k1. 
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Water-filling technique can be formulated as iterative algorithm as follows [1]: 

 
1) order eigenvalues, set iteration index p=0 

2) find µ  as follows 

2

0

1

1 1
k p

T
ii

p
k p

−

=

 
µ = + σ 

− λ 
∑            (12) 

 

 3) set Pi using (10) with 1
k k p= −  

 4) if there is zero Pi, set 1p p= + , eliminate 
i

λ  and go to step 2 

 5) finish when all Pi (i=1, 2,..k-p) are non-zero. 

 

This algorithm gives all non-zero Pi . All the other Pi are zeros (i.e., those eigenmodes are 

not used). 

 

Proof of the water-filling technique : 

using Lagrange multipliers with the following goal function, 
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2

0

log(1 )i i

i T

i i

P
F P P

 λ
= + − α − 

σ  
∑ ∑      (13) 

0, 0
i

dF dF

dP d
= =

α

         (14) 

where α  is a Lagrange multiplier. From (14), one obtains (10) and (11). 

 

Finally, optimum P is found using (4) 

+

=P VDV          (15) 

where  
11 2

, ,.. ,0...0 .
k

D diag p p p =    
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Effect of Tx CSI on the Capacity [2] 
 

Compare the MIMO channel capacity in 2 cases: 

1) no Tx CSI (uninformed Tx-UT) 

2) full Tx CSI (informed Tx-IT) 

In case 1, the capacity is given by (9) with T

i

P
P

m
=  

2

1 0

log(1 )
k

T

UT i

i

P

m
=

= + λ
σ

∑C       (15) 

 

In case 2, the capacity is given by (9) with Pi given by (10) 

1

2

1 0

log(1 )
k

i i

IT

i

P
C

=

λ
= +

σ
∑        (18) 

2

0

i

i

P

+

 σ
= µ − 

λ 
         (18a) 
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1

1

k

i T

i

P P

=

=∑         (18b) 

Consider the ratio 

IT

UT

C

C
β =         (19) 

when 
2

0
/
T
P σ →∞  i.e. high SNR mode. 

Assuming that PT=const and 
2

0
σ →∞ , it is clear from (18a) and (18b) that Pi=PT/m 

(assuming k=m, i.e. full-rank channel), and 

 

2

0

1
IT T

UT

C P
as

C
→ →∞

σ

      (20) 

 

Hence, optimum power allocation does not provide advantage in high SNR mode – 

parallel transmission (spatial multiplexing) with equal powers is optimum. 
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Consider the case of low SNR, 
2

0
/ 0
T
P σ → . Assume that 

2

0
σ →∞ , then from (18)-(18b) 

one finds that 
max
i T
P P=  and all the other 0

i
P

∗
= , where imax is the largest eigenmode 

index.  

Hence,  

max max

2 2

0 0

log 1 logT T

IT

P P
C e

 λ λ
= + ≈ 

σ σ 
    (21) 

Similarly, 

2

10

log
m

T

UT i

i

P
C e

m
=

≈ λ
σ
∑  

Hence, 

max max

1

( )

( )

IT

m

UT

i

i

m mC

C tr

+

+

=

λ λ
≈ =

λ∑

HH

HH

    (22) 

 

Important conclusion: in low SNR case, the best strategy is to use the largest eigenmode 

only →  this is beamforming! 
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In high SNR mode, the best strategy is to use spatial multiplexing (parallel transmission 

on all eigenmodes). 

 

References: 

 

1. A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications, Cambridge 

University Press, 2003. 

2. G. Larsson, P. Stoica, Space-Time Block Coding for Wireless Communications, Cambridge 
University Press, 2003. 


