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Adaptive Beamformers 
 

So far, we assumed that the correlation matrices 
x

S or ξS  and the desired signal direction 

were known. In practice, we have to estimate them from the incoming signal (wave). 

Hence , the beamformer will form a beam based on data extracted from the incoming 

signal – this is an adaptive beamformer. 

 

There are 3 types of adaptive beamformers: 

 

1. Estimate 
x

S or ξS  from incoming signal data and invert them — the sample matrix 

inversion (SMI) or the direct matrix inversion (DMI). 

2. Implement the inversion recursively – the recursive least squares (RLS) algorithm. 

3. Using the classical steepest descent algorithm — the least mean squares (LMS) 

algorithm — less computation but slow convergence. 
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Estimating Correlation Matrices 
 

How to find covariance matrices ξS , 
s

S  ? 

This can be done using measured signals (samples or snapshots).  

Measure the Rx signal at time moments 1,2, ,K… , i.e. 1 2
, , ,

K
x x x⋯ , and estimate 

x
S  

from these samples. 

A good estimate of 
x

S  is 

1

1ˆ
K

x x i i

i
K

+

=

= = ∑S C x x       (10.1) 

where 
x

C  is a sample (empirical) correlation matrix.  

If 
i

x  are not i.i.d Gaussian, the estimate in (10.1) may not be optimal in the ML sense, 

but it is still a good estimate, especially when K  is large. 

Note that 
x

C  (and 
x

S ) is Hermitian and, if K > N, it is positive definite. 

Q1: What happens if K < N ? Explain. 

Q2: minimum K ? 



ELG5132 Smart Antennas  ©  S.Loyka 

Lecture 10 26-Oct-17 3(13) 

Estimating Correlation Matrices 
 

How to estimate ξS  ? 

 

The noise + interference correlation matrix, ξS , can be estimated in a similar way 

provided that we are able to measure the incoming signals without the desired signal, 

1

1ˆ
K

i i

i
K

+
ξ

=

= ∑S ξ ξ        (10.2) 

 

 

Q. How to estimate 
s

S  ? 
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Sample Matrix Inversion (SMI) 
 

Using the estimates above, we can find the optimum weights using one of the algorithms 

discussed earlier. 

The MVDR weight vector is 

( )
1

1 1

0
ˆ ˆγ ,    γ =

s s s

−
+ + − + −

ξ ξ=w v S v S v    (10.3) 

 

 

Block Diagram of the SMI beamformer 

 

 

1ˆ
s

+ −

ξv Sγ

k
x

k
yk-sample

 delay

e s t i m a t i o n

o f   ξS ˆ
ξ

S



ELG5132 Smart Antennas  ©  S.Loyka 

Lecture 10 26-Oct-17 5(13) 

Performance Measures: SNIR 
 

The signal to noise + interference ratio (SNIR) at the beamformer output is  

2
2
ˆ

ˆ ˆ

s s

out out
SNIR

+

+
ξ

σ

ρ = =

w v

w S w

     (10.4) 

when there is one desired signal (plane-wave) of power 
2

s
σ . 

Introduce the normalized output SNIR α :  

out

MVDR

ρ
α =

ρ
       (10.5) 

where MVDR
ρ  is the output SNIR of MVDR with known (exactly) ξS . 
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Design Rule 
 

If we require 0α = α , then the number of samples is 

0

0 0

2

1 1

N N
K

− +α

= ≈

−α −α

     (10.6) 

 

Hence if 2 3 2 0.5 3K N N dB= − ≈ →α = → , i.e. the output SNIR is worse than that 

of the MVDR one with known ξS  by 3 dB. 

If we wish 0.95α =  (5% loss in the SNR gain), then 20K N≈ .  

 

Convergence:  ˆK →S S  as K →∞  in several senses (MSE, Prob.). 
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Example 7.3.1 [1] 

0,  0.15,  10 ,  200 trials, ULA with 10 and / 2s Iu u INR dB N d= = = = = λ  
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Diagonal Loading (DL) 
 

As earlier, we add a scaled identity matrix to ˆ
x

S  to improve the robustness of the 

beamformer: 

2

1

1ˆ
K

xL i i L

i
K

+

=

= +σ∑S x x I      (10.7) 

There are 3 reasons to use DL: 

1. To improve the SNIR performance of the MPDR beamformer. 

2. To implement beamformers when K<N. 

3. To achieve better sidelobe control and main-beam shaping. 

 

Q.: Why one cannot implement a beamformer for K<N without DL? 

 

To demonstrate performance improvement, consider the example 7.3.4 in [1]. 
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How Good Is The Beamforming ??? 
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How Good Is That? 
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How Good Is That? 
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A.Vardy, What’s New and Exciting in Algebraic and Combinatorial Coding Theory? Plenary Talk at 

ISIT-06. 
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Summary 
 

• Adaptive beamformers. Estimating the signal and interference correlation matrices.  

• Sample matrix inversion. Required number of snapshots. Performance measures. 

Comparison with MVDR and known correlation matrices. 

• Diagonal loading. Performance improvement.  Choice of LNR. 
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Homework 

 

Fill in the details in the derivations above. Answer the questions. Do the examples 

yourself. 
 


