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Adaptive Equalizer as a Beamformer 
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where 1z−  is one symbol delay element, and k  is temporal 
(symbol) index. 
Optimum weights w  should provide best estimate of the 
transmitted symbols. 
While the beamformer is multiple input single output system, an 
equalizer is the single input system (serial rather than parallel 
input). 
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ISI Channel Model (discrete time) 
 
The discrete time model of an ISI vector channel can be 
expressed in the following form, 

′= +x s ξ      (3) 
′s  represents the required signal + ISI,  and ξ is AWGN. 

Component-wise this can be represented as follows, 
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where L is the memory (in symbols) of the channel. 
Job of equalizer : find best estimate of ks  given x , ˆ ( ) ?ks =x  

 
Linear equalizer = Beamformer 
Best Linear equalizer = MMSE beamformer 
 
Q. What is the physical reason for ISI ? 
Q. What is the best (non linear) equalizer? 
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The equalizer output ky  serves as an estimate of ks : 

ky = ˆks        (6) 

The estimation error is  
ˆk k k k ks s y sε = − = −     (7) 

Further, we drop index k for clarity. 
 
MMSE equalizer = MMSE beamformer: minimize MSE, 
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Compare to the MMSE beamformer: 
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Key Property: 

0 x 0( ) ( )MSE MMSE += + − −w w R w w   (11) 
2 -1

s sx x sxMMSE += σ − r R r      (12) 

 
Q. Prove it! 
 
Orthogonality Principle 
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which means that x  and kε  are not correlated (x  cannot be used 
to reduce kε  further). 

 
In other words, x  and kε  are statistically orthogonal. 

This is a very general and important principle (for MMSE).  

Functional Space

x

kε



ELG 7178E  Smart Antennas  ©  S.Loyka 

 8-Nov-05 5(5) 

The orthogonality principle can be derived directly from the 
basic optimum condition, 
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