Differential Phase Shift Keying (DPSK)

BPSK \rightarrow need to synchronize the carrier.
DPSK \rightarrow no such need.

Key idea: transmit the difference between 2 adjacent messages, not messages themselves.

Implementation:

$$
\begin{align*}
b_{k}=\overline{b_{k-1} \oplus m_{k}} \Rightarrow m_{k} & =1 \rightarrow b_{k}=b_{k-1} \\
m_{k} & =0 \rightarrow b_{k}=\overline{b_{k-1}} \tag{7.1}
\end{align*}
$$

where \oplus is binary (mod-2) addition and $\overline{(\cdot)}$ is binary negation.

Since BPSK (RF) modulation is used:

- same spectrum (Δf etc.),
- same rate/spectral efficiency.

Demodulator (sub-optimal):

Demodulator: (optimal)

EMF $=$ bandpass matched filter, $h(t)=p(t) \cos \omega t$.

Optimal probability of error (BER):

$$
\begin{equation*}
P_{e}=\frac{1}{2} e^{-\gamma} \tag{7.3}
\end{equation*}
$$

Q.: find expressions for signals at each point of demodulator assuming no noise $(y(t)=x(t))$. Compare to the suboptimal demodulator.

BER: $\approx 1 \mathrm{~dB}$ loss to BPSK.

BER in AWGN channel

In-phase/quadrature representation ${ }^{1}$:

$$
\begin{align*}
x(t) & =A \cos (\omega t+\varphi) \\
& =A \cos \varphi \cos \omega t-A \sin \varphi \sin \omega t \tag{7.4}\\
& =\underbrace{A_{I} \cos \omega t}_{I}-\underbrace{A_{Q} \sin \omega t}_{Q}
\end{align*}
$$

Complex form:

$$
\begin{align*}
x(t) & =A \cos (\omega t+\varphi)=\operatorname{Re}\left\{A e^{j(\omega t+\varphi)}\right\} \tag{7.5}\\
& =\operatorname{Re}\left\{A_{c} e^{j \omega t}\right\}
\end{align*}
$$

where $A_{c}=A e^{j \varphi}=$ complex amplitude, $\omega=$ carrier frequency, $A=$ carrier amplitude (real).

$$
\begin{gather*}
A_{c}=A_{I}+j A_{Q}=A \cos \varphi-j A \sin \varphi \tag{7.6}\\
A=\left|A_{c}\right|=\sqrt{A_{I}^{2}+A_{Q}^{2}} \tag{7.7}\\
\varphi=\arg \left(A_{c}\right)=\tan ^{-1}\left(A_{Q} / A_{I}\right) \tag{7.8}
\end{gather*}
$$

[^0]\[

\left.$$
\begin{array}{l}
A=A(t) \\
\varphi=\varphi(t) \\
A_{c}=A_{c}(t)
\end{array}
$$\right\} \leftarrow modulation
\]

BPSK constellation:

$$
\begin{aligned}
& x(t)=s(t) \cos \omega t \\
& s(t)= \pm 1, A_{I}= \pm 1, \quad A_{Q}=0 ; \quad A_{c}= \pm 1, \quad \varphi=0,180^{\circ}
\end{aligned}
$$

Figure 6.21 BPSK constellation diagram.
T.S. Rappaport, Wireless Communications, Prentice Hall, 2002

QPSK

Quadrature phase shift keying.

BPSK: $\varphi_{i}=0$ or π
QPSK: $\varphi_{i}=0, \pi / 2,3 \pi / 2$ or $\pi / 4$ (2 bits instead of 1).

2 forms:

$$
\begin{align*}
x(t)=A \cos \left(\omega t+\theta_{i}\right), \theta_{i} & =i \frac{\pi}{2}, \quad i=0,1,2,3 \tag{7.9}\\
\text { or } \theta_{i} & =i \frac{\pi}{2}+\frac{\pi}{4}
\end{align*}
$$

$I-Q$ form:

$$
\begin{align*}
x(t)= & A_{I} \cos \omega t-A_{Q} \sin \omega t \\
& A_{I}= \pm \frac{A}{\sqrt{2}}, \quad A_{Q}= \pm \frac{A}{\sqrt{2}} \tag{7.10}
\end{align*}
$$

Constellation:

(b): combination of I and Q BPSK:

$$
\begin{align*}
& x(t)=a_{i} \cos \omega t-b_{i} \sin \omega t \\
& a_{i}, b_{i}= \pm 1 \quad(I \text { and } Q \text { data }) \tag{7.11}
\end{align*}
$$

Figure 6.26 (a) QPSK constellation
T.S. Rappaport, Wireless Communications, Prentice Hall, 2002

QPSK: Properties

BPSK: 1 bit/symbol (sinc)
QPSK: 2 bit/symbol (sinc) \rightarrow twice SE! (same Δf)

$$
\begin{align*}
& \mathrm{SE}=\eta=\frac{R_{b}}{\Delta f}=\frac{2 \mathrm{bit} / T_{S}}{1 / T_{S}}=2 \quad(\mathrm{QPSK}) \tag{7.12}\\
& \mathrm{BPSK}: \eta=\frac{\mathrm{bit} / T_{S}}{1 / T_{S}}=1 \tag{7.13}
\end{align*}
$$

I/Q data sequences: constructed in the same way as for BPSK,

$$
\begin{equation*}
m_{I}(t)=\sum_{i} a_{i} p(t-i T), \quad m_{Q}(t)=\sum_{i} b_{i} p(t-i T) \tag{7.14}
\end{equation*}
$$

i.e. separate baseband BPSK over I and Q channels.

Bandpass modulated signal:

$$
\begin{equation*}
x(t)=A \sum_{i} p(t-i T) \cos \left(\omega t+\theta_{i}\right) \tag{7.15}
\end{equation*}
$$

$\theta_{i}=$ encodes data, e.g. $00 \rightarrow \theta_{1}, \quad 01 \rightarrow \theta_{2}$,

$$
10 \rightarrow \theta_{3}, \quad 11 \rightarrow \theta_{4}
$$

QPSK Modulator (Tx)

$$
\mathrm{QPSK}=2 \times \mathrm{BPSK}
$$

$\mathrm{BBM}=$ baseband BPSK modulator,
DS = data splitter.

$$
\begin{align*}
& m_{I}(t)=\sum_{i} a_{i} p(t-i T), \quad m_{Q}(t)=\sum_{i} b_{i} p(t-i T) \tag{7.16}\\
& m_{i} \rightarrow\left\{a_{i}, b_{i}\right\}, \quad a_{i}, b_{i}= \pm 1
\end{align*}
$$

$m_{I}(t), m_{Q}(t)=$ baseband BPSK-modulated signals.

QPSK Demodulator (Rx)

$\mathrm{MF}=$ baseband matched filter $($ to $p(t))$,
$\mathrm{DC}=$ data combiner.
Probability of bit error (BER):

$$
\begin{equation*}
P_{b}=Q(\sqrt{\gamma})=Q\left(\sqrt{2 \gamma_{b}}\right) \tag{7.17}
\end{equation*}
$$

where $\gamma_{b}=\frac{E_{b}}{N_{0}}=\frac{E_{S}}{2 N_{0}}=\frac{\gamma}{2}=\mathrm{SNR} / \mathrm{bit} ; E_{s}=2 E_{b}$.

Bandwidth of QPSK $(p(t)=R C)$:

$$
\begin{gather*}
\Delta f=\frac{1+\alpha}{2} \frac{R_{b}}{2} ; \Delta f_{R F}=\frac{1+\alpha}{2} R_{b} \tag{7.18}\\
R_{b}=2 R_{S}=\frac{2}{T_{s}}=\text { bit rate }[\mathrm{bits} / \mathrm{s}] \tag{7.19}\\
\eta=\frac{2}{1+\alpha}[\mathrm{bits} / \mathrm{s} / \mathrm{Hz}] \Rightarrow \mathrm{QPSK}=2 \mathrm{xBPSK} \tag{7.20}
\end{gather*}
$$

Key parameters (for any modulation):

- data rate R_{b}
- BER (error probability) P_{e}
- bandwidth $\Delta f\left(\Delta f_{R F}\right)$ or spectral efficiency (SE) η

QPSK Constellation in Noise: $\mathbf{S N R}=\mathbf{0} \mathbf{d B}$

QPSK Constellation in Noise: SNR = 10 dB

QPSK Constellation in Noise: $\mathbf{S N R}=\mathbf{2 0} \mathbf{~ d B}$

Quadrature Amplitude Modulation (QAM)

QAM key idea: use in-phase $(\cos \omega t)$ and quadrature $(\sin \omega t)$ for PAM simultaneously.

- 2 x rate of 1 channel
- independent channels as

$$
\int_{0}^{T} \cos \omega t \sin \omega t d t=0
$$

M-PAM:

$$
\begin{equation*}
s_{i}(t)=A_{i} p(t), \quad i=1, \ldots, M \tag{7.22}
\end{equation*}
$$

M-QAM:

$$
M-\mathrm{QAM}=\underbrace{\sqrt{M}-\mathrm{PAM}}_{I} \times \underbrace{\sqrt{M}-\mathrm{PAM}}_{Q}
$$

RF signal of M-QAM: use $\sqrt{M}-\mathrm{PAM}$ on I and Q :

$$
\begin{aligned}
& x(t)=A m_{I}(t) \cos \omega_{c} t-A m_{Q}(t) \sin \omega_{c} t \\
& m_{I}(t)=a_{i} p(t), \quad m_{Q}(t)=b_{i} p(t), \quad 0 \leq t \leq T
\end{aligned}
$$

a_{i}, b_{i} : represent I and Q bits

$$
=2 i+1, i=-L, \ldots, L-1, L=\sqrt{M} / 2
$$

Basis functions of QAM:

$$
\begin{equation*}
\psi_{1}(t)=p(t) \cos \omega_{c} t, \quad \psi_{2}(t)=p(t) \sin \omega_{c} t \tag{7.24}
\end{equation*}
$$

Note the orthogonality property:

$$
\begin{equation*}
\int_{0}^{T} \psi_{1}(t) \psi_{2}(t) d t=0 \tag{7.25}
\end{equation*}
$$

provided that $S_{p}(f) S_{\cos \omega_{c} t}(f)=0$, i.e. the spectrum of $p(t)$ and $\cos \omega_{c} t$ (or $\sin \omega_{c} t$) do not overlap.
Q.: Prove this.

Figure 6.47 Constellation diagram of an M-ary QAM $(M=16)$ signal set.

Alternative form of RF QAM signal:

$$
\begin{equation*}
x_{(t)}=a_{i} \psi_{1}(t)+b_{i} \psi_{2}(t) \tag{7.26}
\end{equation*}
$$

Minimum symbol energy $E_{\min }$:

$$
\begin{align*}
& E_{\min }=\frac{A^{2}}{2} E_{p} \\
& E_{p}=\int_{0}^{T} p^{2}(t) d t=\text { energy of } p(t) \tag{7.27}
\end{align*}
$$

Probability of symbol error (symbol error rate-SER) P_{S} :

$$
\begin{align*}
P_{S} & \approx 4\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{2 E_{\min }}{N_{0}}}\right) \\
& =4\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3 E_{a v}}{(M-1) N_{0}}}\right) \tag{7.28}
\end{align*}
$$

where $E_{a v}=$ average symbol energy,

$$
\begin{equation*}
E_{a v}=\frac{2(M-1)}{3} E_{\min } \tag{7.29}
\end{equation*}
$$

The BER P_{b} :

$$
\begin{equation*}
\frac{1}{\log _{2} M} P_{s} \leq P_{b} \leq P_{s}, P_{b} \approx \frac{1}{\log _{2} M} P_{s} \tag{7.30}
\end{equation*}
$$

BER of M-QAM in AWGN channel

Q.: reproduce the graph.
Q.: how much extra SNR do you need to add 1 extra bit at the same BER?

Adaptive modulation: keep BER (almost) constant.

4G systems:

Optimized for high-speed data service (Internet), VoIP.
Two major standards: LTE (Long Term Evolution) and WiMax (Worldwide Interoperability for Microwave Access).

LTE Standard

Modulation: OFDM + QPSK/16QAM/64QAM, up to 20 MHz bandwidth.
Rates: see below.

Table 1. LTE (FDD) downlink and uplink peak data rates from TR 25.912 V7.2.0 Tables 13.1 and 13.1a

FDD downlink peak data rates (640AM)

Antenna configuration	SISO	2×2 MIMO	4×4 MIMO
Peak data rate Mbps	100	172.8	326.4

FDD uplink peak data rates (single antenna)

Modulation depth	QPSK	160AM	640AM
Peak data rate Mbps	50	57.6	86.4

3GPP Long Term Evolution: System Overview, Product Development, and Test Challenges. Application Note, Agilent.

Note: $\mathrm{MIMO}=$ multiple-input multiple-output, or multi-antenna system.
SISO $=$ single-input single-output, or single-antenna system.

ELG4179: Wireless Communication Fundamentals © S.Loyka

IEEE 802.11n WiFi standard

MCS Index	Type	Coding Rate	Spatial Streams	Data Rate (Mbps) with 20 MHz CH		Data Rate (Mbps) with 40 MHz CH	
				800 ns	$\begin{gathered} \hline 400 \mathrm{~ns} \\ (\mathrm{SGI}) \end{gathered}$	800 ns	$\begin{gathered} 400 \mathrm{~ns} \\ (\mathrm{SGI}) \end{gathered}$
0	BPSK	$1 / 2$	1	6.50	7.20	13.50	15.00
1	QPSK	$1 / 2$	1	13.00	14.40	27.00	30.00
2	QPSK	$3 / 4$	1	19.50	21.70	40.50	45.00
3	16-QAM	$1 / 2$	1	26.00	28.90	54.00	60.00
4	16-QAM	$3 / 4$	1	39.00	43.30	81.00	90.00
5	64-QAM	2/3	1	52.00	57.80	108.00	120.00
6	64-QAM	$3 / 4$	1	58.50	65.00	121.50	135.00
7	64-QAM	5/6	1	65.00	72.20	135.00	150.00
8	BPSK	$1 / 2$	2	13.00	14.40	27.00	30.00
9	QPSK	$1 / 2$	2	26.00	28.90	54.00	60.00
10	QPSK	$3 / 4$	2	39.00	43.30	81.00	90.00
11	16-QAM	1/2	2	52.00	57.80	108.00	120.00
12	16-QAM	$3 / 4$	2	78.00	86.70	162.00	180.00
13	64-QAM	$2 / 3$	2	104.00	115.60	216.00	240.00
14	64-QAM	$3 / 4$	2	117.00	130.00	243.00	270.00
15	64-QAM	5/6	2	130.00	144.40	270.00	300.00
16	BPSK	1/2	3	19.50	21.70	40.50	45.00
...	\ldots	\ldots
31	64-QAM	$5 / 6$	4	260.00	288.90	540.00	600.00

802.11 n Primer, Whitepaper, AirMagnet, August 05, 2008.

Baseband/RF bandwidth; spectral efficiency of M-QAM:

$$
\begin{align*}
\Delta f & =\frac{1+\alpha}{2} R_{s}=\frac{1+\alpha}{2} \frac{R_{b}}{\log _{2} M} \\
& \rightarrow \eta=\frac{R_{b}}{\Delta f_{R F}}=\frac{\log _{2} M}{1+\alpha}[\mathrm{bit} / \mathrm{s} / \mathrm{Hz}] \tag{7.31}
\end{align*}
$$

Complex form of QAM signal:

$$
\begin{equation*}
x(t)=\operatorname{Re}\left\{m(t) e^{j \omega_{c} t}\right\}, m(t)=m_{I}(t)+j m_{Q}(t) \tag{7.32}
\end{equation*}
$$

Signal constellation: via $a_{i}+j b_{i}$

$$
\begin{aligned}
& M=2 \rightarrow \mathrm{BPSK}, M=4 \rightarrow \mathrm{QPSK} \\
& M-\mathrm{QAM}=(\sqrt{M}-\mathrm{PAM}) \times(\sqrt{M}-\mathrm{PAM})
\end{aligned}
$$

Demodulation: via

$$
\begin{align*}
& m_{I}(t)=L P F\left\{x(t) \cos \omega_{c} t\right\} \tag{7.33}\\
& m_{Q}(t)=-L P F\left\{x(t) \sin \omega_{c} t\right\}
\end{align*}
$$

+ baseband demodulation of $m_{I}(t), m_{Q}(t)$ (separately, as \sqrt{M} - PAM)

QAM Modulator

$\mathrm{BM}=$ baseband modulator
$\mathrm{DS}=$ data splitter, $m_{i} \rightarrow\left\{a_{i}, b_{i}\right\}$
BPF = bandpass filter
$\mathrm{BM}=\mathrm{PAM}$ modulator for $a_{i} p(t)$, or

$$
s_{I}(t)=\sum_{i} a_{i} p(t-i T) ; s_{Q}(t)=\sum_{i} b_{i} p(t-i T)
$$

The RF QAM signal is (single pulse):

$$
\begin{equation*}
x(t)=a_{i} p(t) \cos \omega t-b_{i} p(t) \sin \omega t, 0 \leq t \leq T \tag{7.34}
\end{equation*}
$$

QAM Demodulator

Demodulator: down-conversion, $\mathrm{MF}+$ detection.

$\mathrm{MF}=$ matched filter $($ for $p(t))$.
$\mathrm{BM}=$ bit mapping, $\left(\widehat{a_{i}}, \widehat{b_{i}}\right) \rightarrow(0101 \ldots)$.
$\mathrm{D}=$ detector, $\left(\hat{s}_{I}, \hat{s}_{Q}\right) \rightarrow\left(\widehat{a_{i}}, \widehat{b}_{i}\right)$.
$I, Q=$ in-phase and quadrature channels.

QAM demodulator $=\mathrm{I}-\mathrm{PAM}+\mathrm{Q}-\mathrm{PAM}$ demod.
In practice: $M=8,16,64, \ldots, 1024$.

Bandwidth and Spectral Efficiency

Baseband (BB):

$$
\begin{equation*}
\text { sinc: } \Delta f=\frac{1}{2 T_{S}} ; \mathrm{RC}: \Delta f=\frac{1+\alpha}{2 T_{S}} ; \text { rect: } \Delta f=\frac{1}{T_{S}} \tag{7.35}
\end{equation*}
$$

$\mathrm{RC}=$ raised-cosine pulse.; rect $=$ rectangular pulse.

Passband or RF:

If DSB is employed:

$$
\begin{equation*}
\operatorname{sinc}: \Delta f=\frac{1}{T_{S}} ; \mathrm{RC}: \Delta f=\frac{1+\alpha}{T_{S}} ; \text { rect: } \Delta f=\frac{2}{T_{S}} \tag{7.36}
\end{equation*}
$$

i.e. $\Delta f_{R F}=2 \Delta f_{B B}$. If SSB , take $1 / 2$ of DSB bandwidth.

Spectral efficiency (SE):

$$
\begin{equation*}
\text { SE: } \eta=\frac{R_{b}}{\Delta f} \quad[\mathrm{bits} / \mathrm{s} / \mathrm{Hz}] \tag{7.37}
\end{equation*}
$$

i.e. how many b/s per unit bandwidth (Hz).

Spectral Efficiency

Assume RC pulse everywhere; if not, adjust according to (7.35). General relationship:

$$
\begin{equation*}
R_{b}=R_{s} \log _{2} M=\frac{\log _{2} M}{T_{s}} \tag{7.38}
\end{equation*}
$$

Baseband (BB):

M-PAM:

$$
\begin{equation*}
\eta=\frac{R_{b}}{\Delta f}=\frac{2 \log _{2} M}{1+\alpha}[\mathrm{b} / \mathrm{s} / \mathrm{Hz}] \tag{7.3}
\end{equation*}
$$

Passband or RF:

M-PAM (2-PAM = BPSK):

$$
\begin{equation*}
\text { DSB: } \eta=\frac{\log _{2} M}{1+\alpha}, \text { SSB: } \eta=\frac{2 \log _{2} M}{1+\alpha} \tag{7.40}
\end{equation*}
$$

M-QAM (4-QAM = QPSK):

$$
\begin{equation*}
\text { DSB: } \eta=\frac{\log _{2} M_{Q A M}}{1+\alpha}=\frac{2 \log _{2} M}{1+\alpha} \tag{7.41}
\end{equation*}
$$

if $M_{Q A M}=M^{2}$, i.e.

$$
\mathrm{QAM}=\underbrace{M-\mathrm{PAM}}_{I} \times \underbrace{M-\mathrm{PAM}}_{Q}
$$

Q.: which is better?

Summary

- DPSK.
- QPSK.
- QAM.
- Signal constellation.
- Modulators/demodulators.
- Bandwidth and spectral efficiency.
- BER, SER.

Reading:

- Rappaport, Ch. 6 (6.1-6.10).
- L.W. Couch II, Digital and Analog Communication Systems, 7th Edition, Prentice Hall, 2007. (other editions are OK as well)
- Other books (see the reference list).

Note: Do not forget to do end-of-chapter problems. Remember the learning efficiency pyramid!

[^0]: ${ }^{1}$ For simplicity, assume $p(t)=\Pi(t / T)$ and consider 1 pulse only.

