Lecture 4

Review of Linear Systems

* Linear system -> the superposition principle holds:

L [alxl (f) + %) (f)] — CZIL [.Xl (f)] + azL [.Xz (f)]

« Time-invariant system -> shift in time does not change
the response:

y(0)=Lx ()] = y(t—19) =L x(t—1y) ], Vg

l.e., the operator L[ ] does not change in time

* Linear time-invariant (LTI) system -> both, linear and
time-invariant
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Lecture 4

Response of LTI System

 |f the input is a Dirac delta function, the output is impulse

response.

h(t) = L[5(1)]

 If the input is x(t), the output is a convolution integral:

8-Apr-23

o0

y(O) = [ x(Dh(t =)t = x(1) * k(1)

—00

Nx(t)h(t—1)

x(to)h(t—10)

\_/
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« Convolution theorem in frequency domain:

Lecture 4

Transfer Function

x(t)

» Transfer function (frequency response); [2x(®)] [H(®)

() =x()*h(t) < S, (f) =S, (/IH(f) T h(t)

H(f)=

S, (f)

Sy (/)

*

h(t) <> H(f)=L]|I1]

 Amplitude response & phase response:

H(f)=
=|H(f)

H(f)‘ /)

Zo(f)

y(t)

Sy(©)

Im{H(f)}

_ a1
(P(f)_tan [R@{H(f)}

1
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» Power transfer function: |G(f) = = |H(f)|2

Power Transfer Function
P,(f)

P(f)

Lecture 4

r
=
: &
« Example 2.14: RC filter W) =2 g
i 2 (b) I Ise Response é
mpuis spons
. M o RC ! p =
Q
2
x(1) i(1) 1~ C  y(1) 5’_?
&
O
O —O0 S
(a) RC Low-Pass Filter ’ g
:
_ G(f) )
= 1 2
o) H(f) = (c) Power Transfer Function 10 7
> L+ jf /7 fo 7
— N
) 1 2
0 G(f)= > R | '
1+(f1 fo) |
|
| .
f{]: l
T 2mRC f=—
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ldeal (“brick-wall”) Filters

e low-pass filter (LPF)
e high-pass filter (HPF)
e band-pass filter (BPF)

LPF HPF BPF
H(f) H(f) H(f)
foo S £ f fi 4
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|deal Filters: LPF

* |deal ("brick-wall”) low-pass filter (LPF)
— Frequency response:

LPF
, H(f)
19 f‘ S fC
H(f) =1
\Oa f‘ > fC
— iImpulse response: ¥ 7
h(t)="7
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ldeal Filters: HPF, BPF

e HPF: H(f)=? h(t)=?
e BPF: H(f)=? h(t)=?

e How to build BPF using LPF and HPF?

— suggest at least 2 ways

e Practical: measured in Lab 1
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Practical Filters: Butterworth

e Frequency response: ‘Hn(f)‘:

| [ I
| - 1deal LPF[
\\'\\ — - n=1
Ny -
\ n=3
h n=20
WS\
0.5 '\\ ]
.\ -
) e ~—
0 | ~- - T
0 1 3 4
/e
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1
JI+(f 1 £

Q: show that
lim |H,(f)|=Hypp(f)

n—» o0
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e Implementation: n=17

Practical Filters: Butterworth

L,

— Nn=3, passive Vi, « N——11 e Vout

— n=2, active
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N
|
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=
—
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Lecture 4

Signal Bandwidth

Defined for positive frequencies only.

Informal: a frequency band over which a substantial (or
all) signal power is concentrated

Absolute bandwidth: for band-limited signals, the minimum
frequency band over which the spectrum is not zero. For
all other frequencies, the spectrum must be zero:

Sx(f) =0 Vf & [fmin»fmax]:Af — fmax _fmin

3 dB (half-power) bandwidth: frequency band where PSD
(or ESD) is not lower than -3 dB with respect to maximum

Zero-crossing bandwidth: frequency band limited by 1st
zero(s) in the spectrum.
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Lecture 4

Signal Bandwidth (baseband/lowpass)

absolute bandwidth 3 dB bandwidth
2
1S, ()
S (f)
S
0

zero-crossing bandwidth

S (/)

fmin =0, Af:fmax
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Lecture 4

Signal Bandwidth (bandpass/RF)

absolute bandwidth 3 dB bandwidth
S

A

: Af :

zero-crossing bandwidth Af

A 15:()

>

—
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Sampling Theorem

Lecture 4

The sampling theorem is one of the most important
results. A bridge between digital and analog worlds. DSP

IS based on |it.

Intuitive explanation: interpolation.

Signal sampling:

x5 (2) = x(2) i 5(t—nTg)=

n=—ao0

o0

>, x(nT,)8(t —nTy)

n=—00

p(t) @
xs ()

x(t)—)»

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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1. A continuous bandlimited signal x(?):

Sx(f) =0,V

max

_f max

2. Absolutely-integrable FT (power-type OK):
fmax
[ ]8.(N|dr <o
_fmax
(2) holds if energy-type:

0 fmax
[[x@far="| [s.(H df =E, <o

—0 _f max
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Lecture 4

The Sampling Theorem

If x(tf) is a continuous bandlimited signal with absolutely-
integrable FT, then

1. x(t) is uniquely determined, for any t, by its samples
x(nTy), n=0,£1,%2,..., Ty <1/(2 finax)
T, = sampling interval.
2. x(t) can be reconstructed from its samples as follows:

(=Y x(nTS)sinc(TLS—nj

n=—a0

fi=1Tg22f..« isthe sampling frequency;
2fmax  is the Nyquist frequency (the min. possible sampling frequency);
f.=2f... IS allowed if no singularity at f=71__
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Lecture 4

Sampling in Frequency Domain

o0 original signal
(1) =x(1) 3 8(t ) 5.0
xa(f)HSx(w)*Sa(O)) /\

—Wm (DM w

=— Z S (®—noy) 55 (©)

wy 0 U)M

I H=—00 /T\ sampled signal: f,>2f .
Nyquist

L“ (I.) T U)M
frequencv sampled signal: f,<2f . 1 | Ss(®)
- T
Jsmin =2/ max MAH/\H/\/\H/\W/\F
/ X X A X A A A \
Vi EX ., y 2. X | #X -\ 2N \
0 Wg W

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
(d) (ws o U)M)
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Lecture 4

Reconstruction in Frequency Domain

= Sy(®)
p(t) = 2 d(t — nT)

- Ay )
S, ()
Xs\! . ®
X (1) s 8( ) | H(jw) = X(t) ( ) 0 *~>2u>M
(a) —ms ws
>
. . | <
« sample the signal with f,>2f . 4 W) | <o, <(eg —wop) %
* use low-pass filter with f < f.< fo-f, o« g
. . . >
to recover original signal —wg W w 2
(d) =
1 &
er ((D) %—’
o
Y Wy ® @
(©) 3
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Lecture 4

Sampling Theorem: Consequences

If x(f) is a continuous bandlimited energy signal, then

1. Its energy is determined by its sampIeS'

E, = j x(0)|” dt = Ty <1/(2fmax)
2. and o0 0
| x(dt =1, Y x(nTy)
3. If y(t) also satisfies the conditions, then
| xy*@dt =T, Y x(nT,)y*(nTy)
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Lecture 4

Sampling Power-Type Signals

If x(t) is a continuous bandlimited power-type signal, then

1. Its power IS determined by its samples:
N

P, = lim — j (P di = fim —— Y

2
» Ty <1/(2 finax)

—>002T N—)oozN-I—ln:_N
2. and T 1 v
Iim — | x(¢)dt = lim x(nT,
T 2T “r () N—ow 2N +1 EN ( S)

3. If y(t) also satisfies the conditions, then
T N
lim % WOy * (Ot = lim PECHECS
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Lecture 4

Sampling Theorem and the Internet

(somewhat simplified: no quantizing yet)

x(? [
( ) > Sampler x(nTS)> Internet x(nTS)9 LPF x( )>
) A A 3
analog digital digital analog

()= x(nTS)sinc(T—tS—nj

n=—0
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Lecture 4

Sampling in Practice

* Approximately band-limited signals + LPF

fmax
S ()= OS] > frnax @ xO = | S (f)e/* M df
_fmax

« Approximate recovery from a finite number of
samples over a finite time interval:

()~ xy (1)= 3 x(nTS)sinc(TL_nj, (< NT

n=—N S
* Approximation errors: must be small,

‘xN (¢) —x(t)‘ <e, [|<NT,
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Sampling sinc?(t)

N, =2N+1=1, T, =2

N
X, (t,N) = Z x(nTg )sinc L—n
n=—N TS
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Sampling sinc?(t)

N, =2N+1=3

-3 -2 -1 0 1 2

N
X, (t,N) = Z x(nTg)sinc L—n
n=—N TS
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Sampling sinc?(t)

N,=2N+1=7

-3 -2 -1 0 1 2

N
X, (t,N) = Z x(nTg)sinc L—n
n=—N TS
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Lecture 4

Dimensionality Theorem

« Areal signal of bandwidth B can be approximately
recovered from

N =2BT
samples over a time interval T provided that B7 > 1

* This is a foundation for digital communications,
signal processing, Internet, etc.

 If not band-limited?
« Sampling in practice: f, =2B+Af

« Example: 1h of HiFi music, N=?
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Lecture 4

On Time/Bandlimited Signals

* An absolutely bandlimited signal cannot be
time limited and vice versa.

* Engineering implications?
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Sampling Theorem

Kotelnikov (1933) Shannon (1948) Whittaker (1915)

[1] V.A. Kotelnikov, On the carrying capacity of the ether and wire in telecommunications, The First All-Union
Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA (in Russian), 1933.

[2] C.E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, Oct. 1948.

[3] E.T. Whittaker, On the Functions Which are Represented by the Expansions of the Interpolation Theory,

Proc. Royal Soc. Edinburgh, 1915.
adopted from https://en.wikipedia.org/
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Viadimir Kotelnikov

Born: 6 Sep. 1908, Kazan, USSR.
Died: 11 Feb. 2005 (aged 96), Moscow, Russia

-------------------
_________
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Claude Shannon

. The Bell System Technical Journal * Farther of Information Theory
 Born: 30. Apr. 1916, Michigan, USA

* Died: 24 Feb. 2001, Massachusetts, USA

Vol. XXVII Tuly, 1948 No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley*
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selecled from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

! Nyquist, H., ““Certain Factors Affecting Telegraph Speed,”” Bell System Technical Jour-
nal, April 1924, p. 324; “Certain Topics in Telegraph Transmission Theory,” A. 1. E. E.

Tyans., v. 47, April 1928, p. 617. ) .
“:'ﬁmvlc;- RV ll Chnemicsion of In@GIUre 4; £ELG3145 . Jntreduction to Co
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Edmund Whittaker

XVIIL—On the Functions which are represented by the Expansions
of the Interpolation-Theory. By E. T. Whittaker.

(MS, received May 14, 1915. Read June 7, 1915.)

§ 1. Introduction.

Let f{z) be a given function of a variable . We shall suppose that
f(z) is a one-valued analytic function, so that its Taylor's expansion in any
part of the plane of the complex variable = can be derived from its Taylor's
expansion in any other part of the plane by the process of analytic
continuation.

Let the values of f(z) which correspond to a set of equidistant values of
the argument, say «, a+w, ¢ —w, a+2w, a—2w, a+3w, . . . . be denoted
by for foo o for foa [y ete. We shall suppose that these are all finite, even
at infinity. Then denoting (f;—f,) by d&f, (f,—F-) by df., (8fi—é&r-) by
&f, ete., we ean write out a “table of differences” for the function: the
notation which will be used will be evident from the following scheme :—

Argument. Entry.
a-2w S

3')“,,,) .
a-1w S &, ...
8y 87 s .
a ./.(. 8"‘ ° ﬂ", « e« s of (1)
o3 &5
a+w N &%)
& -

a+2w  fy.

Now it is obvious that f(x) is not the only analytic function which can
give rise to the difference-table (1): for we can form a new function by
adding to f() any analytic function which vanishes for the values o, a 4w,
a—w, a4+2w, . . .. of the argument, and this new function will have
precisely the same difference-table as f(x). All the analytic functions
which give rise in this way to the same difference-table will be said to be
cotabular. Any two cotabular functions are equal to each other when the
argument has any one of the values a, a4-w, a=w, a42w, . . . ., but they
are not equal to each other in general when the argument has a value not

Born: 24 Oct. 1873, Lancashire, England
Died: 24 Mar. 1956 (aged 82), Edinburgh, Scotland
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Harry Nyquist

Certain Factors Affecting Telegraph Speed' .
Born: 7 Feb. 1889, Varmland, Sweden

Died: 4 Apr. 1976 (aged 87), Texas, US

By H. NYQUIST

Sy~orsts: This paper considers two fundamental factors entering
into the maximum speed of transmission of intelligence by telegraph.
These factors are signal shaping and choice of codes. The first is con-
cerned with the best wave shape to be impressed on the transmitting
medium so as to permit of greater speed without undue interference either
in the circuit under consideration or in those adjacent, while the latter
deals with the choice of codes which will permit of transmitting a maxi-
mum amount of intelligence with a given number of signal elements.

It is shown that the wave shape depends somewhat on the type of
circuit over which intelligence is to be transmitted and that for most
cases the optimum wave is neither rectangular nor a half cycle sine wave
as is frequently used but a wave of special form produced by sending
a simple rectangular wave through a suitable network. The impedances
usually associated with telegraph circuits are such as to produce a fair
degree of signal sh: aping when a rectangular voltage wave is impressed.

Consideration of the choice of codes show that while it is desirable to
use those involving more than two current values, there are limitations
which prevent a large number of current values being used. A table of
comparisons shows the relative speed efficiencies of various codes pro-
posed. It is shown that no advantages result from the use of a sine wave
for telegraph transmission as proposed by Squier and others® and that
their arguments are based on erroneous assumptions.

SIGNAL SHAPING

EVERAL different wave shapes will be assumed and comparison
will be made between them as to:
Excellence of signals delivered at the distant end of the circuit,
and
Interfering properties of the signals.

Consideration will first be given to the case where direct-current
impulses are transmitted over a distortionless line, using a limited
range of frequencies. Transmission over radio and carrier circuits
will next be considered. It will be shown that these cases are closely
related to the preceding one because of the fact that the transmitting
medium in the case of either radio or carrier circuits closely approxi-
mates a distortionless line. Telegraphy over ordinary land lines

! Presented at the Midwinter Convention of the A. I. E. E., Philadelphia, Pa.
February 4-8, 1924, and reprinted from the Journal of the A. I. E. E. Vol. 43, p
124, 1924,
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Lecture 4

Sampling: if not bandlimited?

e What to doif x(t) is not (ideally) bandlimited?
e Extra LPF is needed to make it bandlimited (pre-filering)

e Approximate reconstruction only

x(2) ~ x(¢)

e Practical: all practical signals are not ideally bandlimited
e Block diagram
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Lecture 4

Sampling A (t) (no pre-filtering)

T.=1, N,=2N+1=3

(N)= Y x(nTS)sinc(TL—nj

n=—N S
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Lecture 4

Sampling A (t) (no pre-filtering)

T,=1/2, N,=2N+1=5

(N)= Y x(nTS)sinc(TL—nj

n=—N S
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Lecture 4

Sampling A (t) (no pre-filtering)

I.=1/5 N, =2N+1=11

Q: repeat for the rectangular pulse. How many samples are
needed for accurate reconstruction ?
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Lecture 4

Sampling I1(t) (no pre-filtering)

T,=1/10, N, =2N+1=11

1.2
1
0.8
x(t) 0.6
xs(t,N) 04
0.2
O LY .“.. -.“.o ...‘..:o ". .: +..|‘._..‘.|F|:|._,'_',:1L,._'-,T|;
-0.2
-2 -1.5 -1 - 0.5 0 0.5 1 1.5 2
t
N !
xS(t,N)z Z x(nTS)smc T——n
n=—N S
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Natural Sampling (Gating)

(a) Baseband Analog Waveform

+ The sampled (PAM) signal is x(7)

X (t) — S(t)x(t),

o (t—kT, & |
S(I)Zk:Z_OOH( . j 0 \

s(t) (b) Switching Waveform with Duty Cycle d = 7T, = 1/3

—f 7}
where f,=1/T, 22F,
0
Analog bilateral switch 7

O = OV:QC Z xs(l‘) _'1/71‘—
: |
: N

(c) Resulting PAM Signal (natural sampling, d = 7/T = 1/3)
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Natural Sampling (Gating): Spectrum

« Spectrum (FT) of the sampled (PAM) signal is

S, (f)=FT[x,()]=d ) sinc(kd)S, (f k)
k=—00
where d =1/T, is the duty cycle of s(t).

= Example:

= original signal spectrum sampled signal spectrum S_ (f)
S
Se (/)
d-S.(f)
| e é\ / d -sinc(kd)
= “tJﬂf,; ‘ | | I ‘ | ‘ ) ‘hhl“ gl
-B | B ,__, -2, -1, -B | B % 2f,
[ ot

= similar to ideal (delta-function) sampling?
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Natural Sampling: Proof

o Start with xs(t) =5(1)x(t) <> SxS (f)= Sx(f)*Ss(f)
* Find Fourier series of s(t):

s(t) = Z cnej”mst, c, =d -sinc(nd)
+ FTofs(t)is S,(f)= D ¢,8(f-nf)
+ Finally, S, (/)=S:()*S;()= D, xSl =fy)

« This concludes the proof.
 How to recover (demodulate) the original signal?
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Instantaneous Sampling

« Also known as flat-top PAM or sample-and-hold.
 The sampled signal is

()= x(kTS)H(t_kTS

:H(i
T

o0

(a) Baseband Analog Waveform

| ~

8-Apr-23

T
kz—ooOO 0 g el \
J * Z X(kTS )6(1‘ — kTS) (b) Impulse Train Sampling Waveform
= P 1 T
t t
0 A
o
Xy (1)
g
0
S

§

(c) Resulting PAM Signal (flat-top sampling, d = 7/7T, = 1/3)
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Instantaneous Sampling: Spectrum

* The sampled signal spectrum (FT) is

s fr=—c0

S, (N)=—H() Y So(f=kf,) H()=sine(ef)

= Example:
= original signal spectrum

S, (f)

_____
-

sampled signal spectrum st (f)

d -sinc(rf )

A

N

- B B

Js 2fs

) —

= Proof — homework. How to recover (demodulate) x(t) ?
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Lecture 4
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Lecture 4

Summary

e Review of linear systems. Response of LTI system in time &
frequency domains. Power transfer function.

e Signal bandwidth.
e Sampling theorem. Recovery of sampled signals.

e Good reference on filters (etc.): W. Siebert, Circuits, signals,
and systems, McGraw Hill, ch. 15.

e Homework: Couch, 2.6, 2.7, 2.9-2.11; Oppenheim & Willsky, Ch. 2.2,
2.3,6.1-6.4, 7.1-7.3. Study carefully all the examples (including end-of-
chapter study-aid examples), make sure you understand them and can
solve them with the book closed.

e Do some end-of-chapter problems. Students’ solution manual provides
solutions for many of them.
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