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Review of Fourier Transform

• Fourier series works for periodic signals only. What’s 

about aperiodic signals? This is very large & important 

class of signals

• Aperiodic signal can be considered as periodic with 

• Fourier series changes to Fourier transform, complex 

exponents are infinitesimally close in frequency

• Discrete spectrum becomes a continuous one, also 

known as spectral density

T →∞
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Fourier Series -> Fourier Transform

14T T=

18T T=

116T T=

Periodic signal

Its spectrum

As T increases, spectral 

components are getting closer 

and closer, becoming the 

continuous spectrum at the limit

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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Fourier Transform

• Fourier transform (spectrum):

• Inverse Fourier transform:

• Existence: 

– Dirichlet conditions (details on the next page)

– Bounded (polynomial at most) growth
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Convergence of Fourier Transform

• Dirichlet conditions:

– x(t) must be absolutely integrable or finite energy

or

– x(t) has a finite number of maxima, minima & discontinuities within 

any finite interval (discontinuities must be finite).

• Dirichlet conditions are only sufficient, but are not necessary.

• If |x(t)| grows not faster with |t| than a power -> OK.

– singular functions are needed for FT in this case

• All physical (practical) signals meet these conditions.
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Convergence of Fourier Transform

• Engineering/physics: Nature takes care of it for us.

• “…we may be confident that no one can generate a waveform 
without a spectrum or construct an antenna without a 
radiation pattern. … The question of the existence of 
transforms may safely be ignored when the function to be 
transformed is an accurately specified description of a 
physical quantity. Physical possibility is a valid sufficient 
condition for the existence of a transform.” R. Bracewell, The 

Fourier Transform and Its Applications,  McGraw-Hill, 1999.
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Example: Rectangular Pulse
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Example: sinc(t)
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Shortening pulse widens its spectrum!
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Generalized (singular) Functions: Why?

• Unit step function:

• Dirac delta function: defined by its action, not values
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Generalized Functions

• Dirac Delta Function as a limit:

• In practice: small but non-zero,

• Examples: humans, systems/circuits (e.g. computer, cell 

phone etc.)
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Useful properties of delta function

• Convolution property:

• Integration & differentiation:

• Scaling, symmetry, product:
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Fourier Transform of Periodic Signal

• FT of a complex exponent:

• Important property:

• FT of a periodic signal:

• FT of                ?

( ) 0

0 0
2 ( ) ( )

j t
x t e f f

ω

= ↔ πδ ω− ω = δ −

( ) 0

0 0
2 ( ) ( )

FT
jn t

n n n

n n n

x t c e c n c f nf
+∞ +∞ +∞

ω

=−∞ =−∞ =−∞

= ↔ π δ ω− ω = δ −∑ ∑ ∑

( ) 2j ftf e dt
+∞

± π

−∞

δ = ∫

0
cos( )tω

Lecture 3

� prove this property

13-May-22 11(27)



Lecture 3, ELG3175 : Introduction to Communication Systems © S. Loyka

Properties of Fourier Transform*

• Very similar to those of Fourier series!

• Linearity:

• Time shifting:

• Time reversal:

• Time scaling:
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Properties of Fourier Transform

• Conjugation:

• Differentiation:

• Integration:

• Multiplication:

• Frequency shift (modulation):                                          
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Duality of Fourier Transform
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A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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Convolution Property

• This property is of great importance
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Parseval Theorem
• Total energy in time domain is the same as the total 

energy in frequency domain:

• - energy spectral density (ESD) of x(t). 

Represents the amount of energy per Hz of bandwidth

• Counterpart of Parseval theorem for periodic signals

• Autocorrelation property:
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Parseval Theorem: Example
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Fourier Transform of Real Signal

• if x(t) is real,

• Fourier transform can be presented as
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Signal Bandwidth & Negative Frequencies

• What is negative frequency ?

• It means that there is               term in the signal spectrum

• Convenient mathematical tool. Do not exist in practice 

(i.e., cannot be measured on spectrum analyzer)

• What is the signal bandwidth? There are many definitions.

• Defined for positive frequencies only.

• Determines the frequency band over which a substantial 

part of the signal power/energy is concentrated.

• For band-limited signals

2j ft
e
− π

max min max min
, , 0f f f f f∆ = − ≥
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Power and Energy

• Power P
x
& energy E

x
of signal x(t) are:

• Energy-type signals:

• Power-type signals:

• Signal cannot be both energy & power type!

• Signal energy: if x(t) is voltage or current, E
x
is the 

energy dissipated in 1 Ohm resistor

• Signal power: if x(t) is voltage or current, P
x
is the power 

dissipated in 1 Ohm resistor.
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Energy-Type Signals (summary)

• Signal energy in time & frequency domains:

• Energy spectral density (energy per Hz of bandwidth):

• ESD is FT of autocorrelation function:
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Power-Type Signals: PSD

• Definition of the power spectral density (PSD) (power per 

Hz of bandwidth):

• where           is the truncated signal (to [-T/2,T/2]),

• and            is its spectrum (FT),
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Power-Type Signals

• Time-average autocorrelation function:

• Power of the signal:

• Wiener-Khintchine theorem :
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Periodic Signals

• Power of a periodic signal:

• Autocorrelation function:

• Power spectral density (PSD):
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Relation Between Fourier Transform & 

Series

• consider a periodic signal x(t)=x(t+T)

• truncate it  (one period only):

• find FT of the truncated signal x
T
(t):

• Fourier series of the original periodic signal x(t) is

• Continuous spectrum is the envelope of discrete 

spectrum (see slide 2)! 
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Fourier Transform of Single Pulse ~ Envelope of 

Fourier Series of Pulse Train

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.

Lecture 3

FT/S

13-May-22 26(27)



Lecture 3, ELG3175 : Introduction to Communication Systems © S. Loyka

Summary

• Definition of Fourier Transform

• Properties of Fourier Transform

• Signal bandwidth

• Signal power & energy. Energy and power-type signals

• Fourier transform of periodic signals

• Relation between Fourier series & transform

• Reading: Couch, 2.1-2.6; Oppenheim & Willsky, Ch. 1, 3 & 4. Study 

carefully all the examples (including end-of-chapter study-aid examples), 

make sure you understand them and can solve them with the book closed. 

• Do some end-of-chapter problems. Students’ solution manual provides 

solutions for many of them.
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