Lecture 3

Review of Fourier Transform

* Fourier series works for periodic signals only. What's
about aperiodic signals? This is very large & important
class of signals

* Aperiodic signal can be considered as periodic with
T — o

* Fourier series changes to Fourier transform, complex
exponents are infinitesimally close in frequency

* Discrete spectrum becomes a continuous one, also
known as spectral density
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Lecture 3

Fourier Series -> Fourier Transform

Its spectrum o
/ T = 4T,
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A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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Lecture 3

Fourier Transform

* Fourier transform (spectrum): radial frequency

S (f)= j_*:x(t)e-ﬂnﬁdt S, (0) =

—00

400

x(t) e /O dy

* |nverse Fourier transform: radial frequency
o . | +00 .
x(;):jj S, (f)ejznﬁdf x(t):g S (0)e’do
» Existence:

— Dirichlet conditions (details on the next page)
— Bounded (polynomial at most) growth
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13-May-22

Convergence of Fourier Transform

Dirichlet conditions:
— X(t) must be absolutely integrable or finite energy

T x(1)|dr < oo

or

T x (1) dr <0

Lecture 3

— X(t) has a finite number of maxima, minima & discontinuities within

any finite interval (discontinuities must be finite).

Dirichlet conditions are only sufficient, but are not necessary.

If |x(t)| grows not faster with |t| than a power -> OK.
— singular functions are needed for FT in this case

All physical (practical) signals meet these conditions.
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Lecture 3

Convergence of Fourier Transform

e Engineering/physics: Nature takes care of it for us.

e “_.we may be confident that no one can generate a waveform
without a spectrum or construct an antenna without a
radiation pattern. ... The question of the existence of
transforms may safely be ignored when the function to be
transformed is an accurately specified description of a
physical quantity. Physical possibility is a valid sufficient
condition for the existence of a transform.” R. Bracewell, The
Fourier Transform and Its Applications, McGraw-Hill, 1999.
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Lecture 3

Example: Rectangular Pulse
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Lecture 3

Example: sinc(t)

Shortening pulse widens its spectrum!
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Lecture 3

Generalized (singular) Functions: Why?

e Unit step function:

u(t)

1Lt >0 | i—
u(t) = >
®) {Qt<0

e Dirac delta function: defined by its action, not values

j S()x(t)dt = j S(H)x(t)dt = x(0) Ve>0

5(1)

S(t):{o(l’tti(()) & [d(di=1 ) t
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Lecture 3

Generalized Functions

Dirac Delta Function as a limit:

1 ITA(?)
A
1/Alt|]<A/2 ey
1, (F) = :> |
A () { 0./t > A 5
: : t
. ——— | ——
O(t) = lim I1,(?) A A
A—0 22

* In practice: small but non-zero, |0 <A <K T — 0(t) = [1,(¢)

Examples: humans, systems/circuits (e.g. computer, cell
phone etc.)
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Useful properties of delta function

« Convolution property:

* Integration & differentiation:

« Scaling, symmetry, product:

13-May-22

o0

—00

5(£)* x(1) = j S(t)x(t — 1)dt = x(1)

l

j 5(¢)dt = u(t)

—Q0

du(t)
dt

= 8(¢)

o(at) = i

o(?) o(—1) = o(1)

a

x(1)0(1) = x(0)0(7)
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Lecture 3

Fourier Transform of Periodic Signal

* FT of a complex exponent:

x(z) = /% & 2nd(o—wy) =0(f — fy)

Important property:

5(f) = J‘M et/2Wi gy| & prove this property

—Q0

* FT of a periodic signal:

+00 , FT +0 Ry
x(t) — Z c, e’ <> 2m Z c,0(®—nw,) = Z ¢, O(f —nfy)

N=—0o0 /1=—00 Nn=—0

FT of cos(wyt) ?
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Lecture 3

Properties of Fourier Transform’

 Very similar to those of Fourier series!

. Linearity: e, (1) + B (1) > S, (/) +BSy, (/)

« Time shifting: x(t) > S (@)= x(t—1ty) © e_j(”tOSx((D)

+ Timereversal: |y(1)o S (0)= x(—t) & S, (-0)

» Time scaling: 1 ® Prove these
x(at) <> HS X (;j properties.

‘properties are useful for evaluating Fourier transform in a simple way
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Lecture 3

Properties of Fourier Transform

» Conjugation: |y 55 (0) = x*(1) S, (-o)

dx(t ,
. Differentiation: |*() <> Sx(®) = X()QJ‘”S)C((D)
’ 1
» Integration: jx(f)dfﬁj—msx(m)JrﬂSx(O)S((D)

x(t)y(t)(—)— j S (@)S, (0- )Mo’ =

—00

= 5,(0)*S, ()

« Multiplication:

Prove these properties

Frequency shift (modulation): [x(1)e’® < S(o—w)
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Lecture 3

Duality of Fourier Transform

x(1) > S, (0) = S, (1) © 2mx(—o) | |x(1) <> S, ()= S,() <> x(—f)

X4 (t) X1 (J(’))
2T,
1 _ T ar
e Ty T4
Ty T4 t S~ \/ b,
%(t) Xo(jw)
W/
/ 1
A ol BRSNS | "
W W
\ Y
t -W W

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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Convolution Property

« This property is of great importance

Lecture 3

x(® ¥(0)
x T h(t) T’
y(t) = j X(DA( —1)dT > S, (0)H(0) =S5, (0) 1

€2 Sx(@)| [H(w)| |Sy(®)

X(t) | H(j0) ] Hy(j ) = y(1) Cascade connection
of LTI blocks
&

x(t) | H. (jo)Hs(jo) > V(1) X(t) ] Hop(j ) | H 1 (j ) e Y/(1)

(b) A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.

(c)

« Example: FT of a triangular pulse by convolution
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Lecture 3

Parseval Theorem

« Total energy In time domain is the same as the total
energy in frequency domain:

E= [ |xfdr= [ |s.( f)\zdf:i [ [8c(@)*do

—Q0

2
« E(f)= ‘Sx(f)‘ - energy spectral density (ESD) of x(t).
Represents the amount of energy per Hz of bandwidth

« Counterpart of Parseval theorem for periodic signals
* Autocorrelation property:

Re(1)= [ x(1)x" (1=1)dt > |Se(@)’|  [Ry(0)=E

—00

13-May-22 Lecture 3, ELG3175 : Introduction to Communication Systems © S. Loyka 16(27)



Lecture 3

Parseval Theorem: Example

T sint °

—Q0
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Fourier Transform of Real Signal

« ifx(t)is real, [Im{x(¢)}=0= S, (-0)=S, (o)

* Fourier transform can be presented as

m|[ S (/)

Re

o(/) = tan”! [I

S (/).

x(1) =2 [ |8, (f)|cos (2nf +o(£))df
0

J

No negative
frequencies!
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Lecture 3

Signal Bandwidth & Negative Frequencies

« What is negative frequency ?
+ It means that there is ¢ /?" term in the signal spectrum

« Convenient mathematical tool. Do not exist in practice
(i.e., cannot be measured on spectrum analyzer)

* What is the signal bandwidth? There are many definitions.
« Defined for positive frequencies only.

« Determines the frequency band over which a substantial
part of the signal power/energy is concentrated.

* For band-limited signals

Af:fmax _fmin9 fmax»fmin >0
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Lecture 3

Power and Energy

* Power P, & energy E, of signal x(t) are:

" 2
P, = 1111005 j x(0)dt| |E, = [ |x(n)fds

—00

* Energy-type signals: £, <o
* Power-type signals: 0 < P, <
« Signal cannot be both energy & power type!

« Signal energy: if x(t) is voltage or current, E, is the
energy dissipated in 1 Ohm resistor

 Signal power: if x(t) is voltage or current, P, is the power
dissipated in 1 Ohm resistor.
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Lecture 3

Energy-Type Signals (summary)

« Signal energy in time & frequency domains:

E, = [ |x@fdr= [ ]S, f)\zdf:i [ [8,(@)[*do

« Energy spectral density (energy per Hz of bandwidth):
2
E.(f)=|Sx(f)

« ESD is FT of autocorrelation function:

+00

Re(v)=]  x()x"(t1-7)dt > EL(f)|  |R.(0)=E,
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Lecture 3

Power-Type Signals: PSD

« Definition of the power spectral density (PSD) (power per
Hz of bandwidth):

o 1S OOL

T —0 T

P.(f) =P =[ P(f)df <

« where x;(¢) is the truncated signal (to [-T/2,T/2]),

0 (t)H(tj x(t), —T/2<t<T/2
X =X _ —
! T 0, otherwise

* and s.(f) isits spectrum (FT),
Sr(f)=FT {xr (1)}
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Lecture 3

Power-Type Signals

« Time-average autocorrelation function:

R, (7)= Tli_r)nw% D ()" ()

« Power of the signal.:

. 1T 2
P, = lim — _|x(0)] dr=R,(0)

 Wiener-Khintchine theorem :

P.=[" P(f)df = P.(f)=FT{R(v)}
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Periodic Signals

* Power of a periodic signal.:

% [ [x@fdt="3 le,| = R.(0)

n=—a0

e Autocorrelation function:

=—j t ’C dt— Z ‘c ‘2e]”m0T

N=—00

* Power spectral density (PSD):

P.(f)=FT{R.(v)}= n_z_oo\c\ 8( j

13-May-22

Lecture 3

Z c, e]noaot

Nn=—00

Prove these
properties!
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Lecture 3

Relation Between Fourier Transform &
Series

« consider a periodic signal x(t)=x(t+T)
 truncate it (one period only): x(£),~T /2 <t<T /2
XT [ :{ ’ N

0, otherwise

- find FT of the truncated signal x;(t): ¥7r(?) <> 5, (®)
* Fourier series of the original periodic signal x(t) is
|

Cp = ?SxT (nog)| <& prove this

« Continuous spectrum is the envelope of discrete
spectrum (see slide 2)!
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Lecture 3

Fourier Transform of Single Pulse ~ Envelope of
Fourier Series of Pulse Train

(b)

A.V. Oppenheim, A.S. Willsky, Signals and Systems, 1997.
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Lecture 3

Summary

e Definition of Fourier Transform

e Properties of Fourier Transform

e Signal bandwidth

e Signal power & energy. Energy and power-type signals
e Fourier transform of periodic signals

e Relation between Fourier series & transform

e Reading: Couch, 2.1-2.6; Oppenheim & Willsky, Ch. 1, 3 & 4. Study

carefully all the examples (including end-of-chapter study-aid examples),
make sure you understand them and can solve them with the book closed.

e Do some end-of-chapter problems. Students’ solution manual provides
solutions for many of them.
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