Lecture 14

1(10)

Source Coding (Compression)

The information context of any source is given by its entropy, H(x), which is the number of bits per source output.

Example: H(x) = 2 bits means that on average 2 bits are required to represent each source output symbol. **Question:** How to design a good encoder?

Example:

Source entropy:

$$H(x) = -\sum_{i} P_i \log P_i = 1.75 bit$$

The average number of bits of code (per symbol) is

$$R = \sum_{i} R_{i} P_{i} = 2 > H(x) = 1.75$$

X _i	P _i	Code word	R _i
a ₁	1/2	00	$R_1 = 2$
a_2	1/4	01	$R_2 = 2$
a ₃	1/8	10	$R_{3} = 2$
a ₄	1/8	11	$R_{4}^{-}=2$

Hence, the code is not efficient (more bits are used than actually needed.)

<u>The source-coding theorem</u>: a source with entropy H can be encoded with arbitrary small error probability (information loss) at any rate R>H. If R<H, error probability is bounded away from 0, regardless of encoder complexity.

The source-coding theorem gives a sharp bound on the compression.

<u>Basic idea</u> of source coding (compression): use fewer bits for most frequent symbols. For example, less bits should be allocated for a_1 and more for a_4 .

2(10)

Source Codes

Fixed-length source outputs are mapped into variable-length binary sequences (codewords) based on the idea above. Synchronization may be a problem (i.e. the decoder must know when the next code word begins).

Example:

X _i	P _i	Code 1	Code 2	Code 3	Code 4
a ₁	1/2	1	1	0	00
a_2	1/4	01	10	10	01
a ₃	1/8	001	100	110	10
a ₄	1/16	0001	1000	1110	11
a_5	1/16	00001	10000	1111	110

3(10)

Source Codes

• Code 1: <u>self-synchronizing</u> (each word ends with 1).

• Code 2: self-synchronizing, but not <u>instantaneous</u>. Both of them are <u>uniquely decodable</u>.

• Code 4 is not uniquely decodable. Example: 110110 can be decoded as a_5a_5 or $a_4a_2a_3$. It should never be used in practice.

<u>The prefix condition</u>: no any code word is a prefix of another code word. Codes 1& 3 satisfy it.

Any code is uniquely decodable & instantaneous if and only if it meets the prefix condition.

Source Codes

Good code meets prefix condition (code 1 & 3), and has the smallest average word length. For code 1,

$$R = \sum_{i} R_i P_i = \frac{31}{16}$$

and R=30/16 for code 3. Hence code 3 is the best one: uniquely decodable & instantaneous (prefix condition), and has the least average word length.

Huffman Encoding Algorithm

<u>Basic idea of Huffman algorithm</u>: if we can encode each source output of P_i with $log(1/P_i)$ bits, then

$$R = \sum_{i} P_i \log 1 / P_i = H$$

i.e. the least possible average length (from the source coding theorem).

The Huffman codes are <u>optimum</u>: among all the codes that satisfy the prefix conditions, they have the minimum average length.

Huffman Encoding Algorithm

- 1. Sort source outputs in decreasing order of probabilities.
- 2. Merge the 2 least-probable outputs into one (its probability is the sum of indiv. prob.)
- 3. If the number of remaining outputs is 2, go to step 4, otherwise go to step 1
- 4. Assign 0 and 1 as code words for the 2 outputs
- 5. If an output is a merger of 2 outputs in the proceeding step, append 0 and 1 to the code word
- 6. Repeat 5 until there are no merged outputs

Lecture 14

The tree diagram

The average length of a Huffman code, $R = \sum_{i} P(x_i)l(x_i)$ satisfies to the following: $H(x) \le R < H(x) + 1$

If the code is designed for blocks of *n* symbols (rather than single symbols), then $U(x^n) < x P < U(x^n) + 1$

$$H(x^n) \le nR < H(x^n) + 1$$

where $R^n = nR$, and $H(x) = H(x^n)/n$. Note that $R \to H$ as $n \to \infty$. This proves the optimality of the Huffman algorithm.

14-Apr-15Lecture 14, ELG3175: Introduction to Communication Systems © S. Loyka,9(10)

Summary

- Source coding (compression).
- The source coding theorem.
- Huffman code & algorithm.
- <u>Homework</u>: Reading, Proakis and Salehi (2nd ed.), 6.2,
 6.3. Study carefully all the examples, make sure you understand them and can solve with the book closed.
- Reference: T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, 2006

10(10)