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Machine Learning: Lecture 5 

Experimental Evaluation of    
Learning Algorithms 

(Based on Chapter 5 of Mitchell T.., 
Machine Learning, 1997) 
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Motivation 
❧ Evaluating the performance of learning 

systems is important because: 
●  Learning systems are usually designed to 

predict the class of  “future” unlabeled 
data points. 

●  In some cases, evaluating hypotheses is 
an integral part of the learning process 
(example, when pruning a decision tree) 
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❧ Bias in the estimate: The observed accuracy of the 

learned hypothesis over the training examples is a 
poor estimator of its accuracy over future examples 
==> we test the hypothesis on a test set chosen 
independently of the training set and the hypothesis. 

❧ Variance in the estimate: Even with a separate test 
set, the measured accuracy can vary from the true 
accuracy, depending on the makeup of the particular 
set of test examples. The smaller the test set, the 
greater the expected variance. 

Difficulties in Evaluating Hypotheses 
 when only limited data are available 



4 

Questions Considered 
❧ Given the observed accuracy of a hypothesis 

over a limited sample of data, how well does 
this estimate its accuracy over additional 
examples? 

❧ Given that one hypothesis outperforms another 
over some sample data, how probable is it that 
this hypothesis is more accurate, in general? 

❧ When data is limited what is the best way to use 
this data to both learn a hypothesis and estimate 
its accuracy? 
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Estimating Hypothesis Accuracy 
Two Questions of Interest: 

●  Given a hypothesis h and a data sample 
containing n examples drawn at random 
according to distribution D, what is the best 
estimate of the accuracy of h over future 
instances drawn from the same distribution? 
==> sample vs. true error 

●  What is the probable error in this accuracy 
estimate? ==> confidence intervals  
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Sample Error and True Error 
❧ Definition 1: The sample error (denoted errors(h)) of 

hypothesis h with respect to target function f and data 
sample S is: 

 errors(h)= 1/n Σx∈Sδ(f(x),h(x)) 
where n is the number of examples in S, and the quantity 
δ(f(x),h(x)) is 1 if f(x) ≠ h(x), and 0, otherwise. 

❧ Definition 2: The true error (denoted errorD(h)) of 
hypothesis h with respect to target function f and 
distribution D, is the probability that h will misclassify 
an instance drawn at random according to D.  

errorD(h)= Prx∈D[f(x) ≠ h(x)] 
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Confidence Intervals for 
Discrete-Valued Hypotheses 

❧ The general expression for approximate N% 
confidence intervals for errorD(h) is: 

errorS(h) ± zN√errorS(h)(1-errorS(h))/n 
where ZN is given in [Mitchell, table 5.1]  

❧ This approximation is quite good when 
n errorS(h)(1 - errorS(h)) ≥ 5 
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Mean and Variance 
❧ Definition 1: Consider a random variable Y 

that takes on possible values y1, …, yn. The 
expected value (or mean value) of Y, E[Y], 
is:                E[Y] = Σi=1

n yi Pr(Y=yi) 
❧ Definition 2: The variance of a random 

variable Y, Var[Y], 
is:                                      .                  
Var[Y] = E[(Y-E[Y])2] 

❧ Definition 3: The standard deviation of a 
random variable Y is the square root of the 
variance. 
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Estimators, Bias and Variance 
❧ Since errorS(h) (an estimator for the true error) obeys a 

Binomial distribution (See, [Mitchell, Section 5.3]), we 
have:  errorS(h) = r/n and errorD(h) = p 
where n is the number of instances in the sample S, r is the 

number of instances from S misclassified by h, and p is the 
probability of misclassifying a single instance drawn from D. 

❧ Definition: The estimation bias (≠ from the inductive 
bias) of an estimator Y for an arbitrary parameter p is 

E[Y] - p 
❧ The standard deviation for errorS(h) is given by 

√ p(1-p)/n≈ √ errorS(h)(1-errorS(h))/n 
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Difference in Error of two 
Hypotheses 

❧ Let h1 and h2 be two hypotheses for some discrete-
valued target function. H1 has been tested on a sample 
S1 containing n1 randomly drawn examples, and h2 has 
been tested on an independent sample S2 containing n2 
examples drawn from the same distribution. 

❧ Let’s estimate the difference between the true errors of 
these two hypotheses, d, by computing the difference 
between the sample errors: dˆ = errorS1(h1)-errorS2(h2) 
❧ The approximate N% confidence interval for d is:       

d^ ± ZN√errorS1(h1)(1-errorS1(h1))/n1 + 
errorS2(h2)(1-errorS2(h2))/n2 
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Comparing Learning Algorithms 
❧ Which of LA and LB is the better learning method on 

average for learning some particular target function f ? 
❧ To answer this question, we wish to estimate the 

expected value of the difference in their errors:                                              
ES⊂D [errorD(LA(S))-errorD(LB(S))] 

❧ Of course, since we have only a limited sample D0 we 
estimate this quantity by dividing D0 into a training set 
S0 and a testing set T0 and measure:                      
errorT0(LA(S0))-errorT0(LB(S0)) 

❧ Problem: We are only measuring the difference in errors 
for one training set S0 rather than the expected value of 
this difference over all samples S drawn from D   

Solution: k-fold Cross-Validation 
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k-Fold Cross-Validation 
1. Partition the available data D0 into k disjoint 

subsets T1, T2, …, Tk of equal size, where this size 
is at least 30. 

2. For i from 1 to k, do 
use Ti for the test set, and the remaining data for 

training set Si 
• Si <- {D0 - Ti} 
• hA <- LA(Si) 
• hB <- LB(Si) 
•  δi <- errorTi(hA)-errorTi(hB) 

3. Return the value avg(δ), 
where                           .                    
avg(δ) = 1/k Σi=1

k δi  
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Confidence of the k-fold 
Estimate 
❧  The approximate N% confidence interval for 

estimating ES⊂D0 [errorD(LA(S))-errorD(LB(S))] 
using avg(δ), is given by: 

avg(δ)±tN,k-1savg(δ) 
where tN,k-1 is a constant similar to ZN (See [Mitchell, 

Table 5.6]) and savg(δ) is an estimate of the standard 
deviation of the distribution governing avg(δ) 

savg(δ))=√1/k(k-1) Σi=1
k (δi -avg(δ))2 


