Introduction to Combinatorial Algorithms

Lucia Moura

Fall 2009

Introduction to the course

What are :

- Combinatorial Structures?
- Combinatorial Algorithms?
- Combinatorial Problems?

Combinatorial Structures

Combinatorial structures are collections of k-subsets/ K-tuple/permutations from a parent set (finite).

- Undirected Graphs:

Collections of 2-subsets (edges) of a parent set (vertices).

$$
V=\{1,2,3,4\} \quad E=\{\{1,2\},\{1,3\},\{1,4\},\{3,4\}\}
$$

- Directed Graphs:

Collections of 2-tuples (directed edges) of a parent set (vertices).

$$
V=\{1,2,3,4\} \quad E=\{(2,1),(3,1),(1,4),(3,4)\}
$$

- Hypergraphs or Set Systems:

Similar to graphs, but hyper-edges are sets with possibly more than two elements.

$$
V=\{1,2,3,4\} \quad E=\{\{1,3\},\{1,2,4\},\{3,4\}\}
$$

Building blocks: finite sets, finite lists (tuples)

- Finite Set
$X=\{1,2,3,5\}$
- undordered structure, no repeats

$$
\{1,2,3,5\}=\{2,1,5,3\}=\{2,1,1,5,3\}
$$

- cardinality (size) $=$ number of elements $|X|=4$.

A k-subset of a finite set X is a set $S \subseteq X,|S|=k$.
For example: $\{1,2\}$ is a 2 -subset of X.

- Finite List (or Tuple)
$L=[1,5,2,1,3]$
- ordered structure, repeats allowed
$[1,5,2,1,3] \neq[1,1,2,3,5] \neq[1,2,3,5]$
- length $=$ number of items, length of L is 5 .

An n-tuple is a list of length n.
A permutation of an n-set X is a list of length n such that every element of X occurs exactly once.

Graphs

Definition

A graph is a pair (V, E) where:
V is a finite set (of vertices).
E is a finite set of 2-subsets (called edges) of V.

$$
\begin{aligned}
& \begin{array}{l}
G_{1}=(V, E) \\
V=\{0,1,2,3,4,5,6,7\} \quad E=\{\{0,4\}, \\
\{0,1\},\{0,2\},\{2,3\},\{2,6\}, \\
\{1,3\},\{1,5\},\{3,7\},\{4,5\},\{4,6\}, \\
\{4,7\},\{5,6\},\{5,7\},\{6,7\}\}
\end{array}
\end{aligned}
$$

Complete graphs are graphs with all possible edges.

Substructures of a graph: hamiltonian cycle

Definition

A hamiltonian cycle is a closed path that passes through each vertex once.
The list $[0,1,5,4,6,7,3,2]$ describes a hamiltonian cycle in the graph: (Note that different lists may describe the same cycle.)

Problem (Traveling Salesman Problem)

Given a weight/cost function $w: E \rightarrow R$ on the edges of G, find a smallest weight hamiltonian cycle in G.

Substructures of a graph: cliques

Definition

A clique in a graph $G=(V, E)$ is a subset $C \subseteq V$ such that $\{x, y\} \in E$, for all $x, y \in C$ with $x \neq y$. (Or equivalently: the subgraph induced by C is complete).

- Some cliques: $\{1,2,3\},\{2,4,5\},\{4,6\},\{1\}, \emptyset$
- Maximum cliques (largest): $\{1,2,3,4\},\{3,4,5,6\},\{2,3,4,5\}$

Famous problems involving cliques

Problem (Maximum clique problem)

Find a clique of maximum cardinality in a graph.

Problem (All cliques problem)

Find all cliques in a graph without repetition.

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where:
X is a finite set (of points/vertices).
\mathcal{B} is a finite set of subsets of X (blocks/hyperedges).

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where:
X is a finite set (of points/vertices).
\mathcal{B} is a finite set of subsets of X (blocks/hyperedges).

- Graph: A graph is a set system with every block with cardinality 2.

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where:
X is a finite set (of points/vertices).
\mathcal{B} is a finite set of subsets of X (blocks/hyperedges).

- Graph: A graph is a set system with every block with cardinality 2.
- Partition of a finite set:

A partition is a set system (X, \mathcal{B}) such that $B_{1} \cap B_{2}=\emptyset$ for all $B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}$, and $\cup_{B \in \mathcal{B}} B=X$.

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where:
X is a finite set (of points/vertices).
\mathcal{B} is a finite set of subsets of X (blocks/hyperedges).

- Graph: A graph is a set system with every block with cardinality 2.
- Partition of a finite set:

A partition is a set system (X, \mathcal{B}) such that $B_{1} \cap B_{2}=\emptyset$ for all $B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}$, and $\cup_{B \in \mathcal{B}} B=X$.

- Steiner triple system (a type of combinatorial designs):
\mathcal{B} is a set of 3 -subsets of X such that for each $x, y \in X, x \neq y$, there exists eactly one block $B \in \mathcal{B}$ with $\{x, y\} \subseteq B$.

$$
\begin{aligned}
& X=\{0,1,2,3,4,5,6\} \\
& \mathcal{B}=\{\{0,1,2\},\{0,3,4\},\{0,5,6\},\{1,3,5\},\{1,4,6\},\{2,3,6\},\{2,4,5\}\}
\end{aligned}
$$

Combinatorial algorithms

Combinatorial algorithms are algorithms for investigating combinatorial structures.

- Generation

Construct all combinatorial structures of a particular type.

- Enumeration

Compute the number of all different structures of a particular type.

- Search

Find at least one example of a combinatorial structures of a particular type (if one exists).
Optimization problems can be seen as a type of search problem.

- Generation

Construct all combinatorial structures of a particular type.

- Generate all subsets/permutations/partitions of a set.
- Generate all cliques of a graph.
- Generate all maximum cliques of a graph.
- Generate all Steiner triple systems of a finite set.
- Generation

Construct all combinatorial structures of a particular type.

- Generate all subsets/permutations/partitions of a set.
- Generate all cliques of a graph.
- Generate all maximum cliques of a graph.
- Generate all Steiner triple systems of a finite set.
- Enumeration

Compute the number of all different structures of a particular type.

- Compute the number of subsets/permutat./partitions of a set.
- Compute the number of cliques of a graph.
- Compute the number of maximum cliques of a graph.
- Compute the number of Steiner triple systems of a finite set.
- Search

Find at least one example of a combinatorial structures of a particular type (if one exists).
Optimization problems can be seen as a type of search problem.

- Find a Steiner triple system on a finite set. (feasibility)
- Find a maximum clique of a graph. (optimization)
- Find a hamiltonian cycle in a graph. (feasibility)
- Find a smallest weight hamiltonian cycle in a graph. (optimization)

Hardness of Search and Optimization

- Many search and optimization problems are NP-hard or their corresponding "decision problems" are NP-complete.

Hardness of Search and Optimization

- Many search and optimization problems are NP-hard or their corresponding "decision problems" are NP-complete.
- $\mathbf{P}=$ class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in \mathbf{P})
$\mathbf{N P}=$ class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, $\mathbf{P} \subseteq \mathbf{N P}$.
NP-complete are problems in NP that are at least "as hard as" any other problem in NP.

Hardness of Search and Optimization

- Many search and optimization problems are NP-hard or their corresponding "decision problems" are NP-complete.
- $\mathbf{P}=$ class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in \mathbf{P})
$\mathbf{N P}=$ class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP) Therefore, $\mathbf{P} \subseteq \mathbf{N P}$.
NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the $\mathbf{P}=\mathbf{N P}$ question. One million dollars offered for its solution!

Hardness of Search and Optimization

- Many search and optimization problems are NP-hard or their corresponding "decision problems" are NP-complete.
- $\mathbf{P}=$ class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in \mathbf{P})
$\mathbf{N P}=$ class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, $\mathbf{P} \subseteq \mathbf{N P}$.
NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the $\mathbf{P}=\mathbf{N P}$ question. One million dollars offered for its solution!
- It is believed that $\mathbf{P} \neq \mathbf{N P}$ which, if true, would mean that there exist no polynomial-time algorithm to solve an NP-hard problem.

Hardness of Search and Optimization

- Many search and optimization problems are NP-hard or their corresponding "decision problems" are NP-complete.
- $\mathbf{P}=$ class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in \mathbf{P})
$\mathbf{N P}=$ class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, $\mathbf{P} \subseteq \mathbf{N P}$.
NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the $\mathbf{P}=\mathbf{N P}$ question. One million dollars offered for its solution!
- It is believed that $\mathbf{P} \neq \mathbf{N P}$ which, if true, would mean that there exist no polynomial-time algorithm to solve an NP-hard problem.
- There are several approaches to deal with NP-hard problems.

Approaches for dealing with NP-hard problems

- Exhaustive Search
- exponential-time algorithms.
- solves the problem exactly
(Backtracking and Branch-and-Bound)
- Heuristic Search
- algorithms that explore a search space to find a feasible solution that is hopefully "close to" optimal, within a time limit
- approximates a solution to the problem
(Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algor's)
- Approximation Algorithms
- polynomial time algorithm
- we have a provable guarantee that the solution found is "close to" optimal.
(not covered in this course)

Types of Search Problems

1) Decision Problem:

A yes/no problem
Problem 1: Clique (decision)
Instance: graph $G=(V, E)$,
target size k
Question:
Does there exist a clique C of G with $|C|=k$?
3) Optimal Value:

Find the largest target size.
Problem 3: Clique (optimal value) Instance: graph $G=(V, E)$,
Find:
the maximum value of $|C|$, where C is a clique

2) Search Problem

Find the guy.
Problem 2: Clique (search)
Instance: graph $G=(V, E)$, target size k
Find:
a clique C of G
with $|C|=k$, if one exists.

4) Optimization:

Find an optimal guy.
Problem 4: Clique (optimization) Instance: graph $G=(V, E)$,
Find:
a clique C such that
$|C|$ is maximize (max. clique)

Course Outline

Topics for the Course

Kreher\&Stinson, Combinatorial Algorithms: generation, enumeration and search

Topics for the Course

Kreher\&Stinson, Combinatorial Algorithms: generation, enumeration and search
(1) Generating elementary combinatorial objects [text Chap2]

Sequential generation (successor), rank, unrank. Algorithms for subsets, k-subsets, permutations.

Topics for the Course

Kreher\&Stinson, Combinatorial Algorithms: generation, enumeration and search
(1) Generating elementary combinatorial objects [text Chap2] Sequential generation (successor), rank, unrank. Algorithms for subsets, k-subsets, permutations.
(2) Exhaustive Generation and Exhaustive Search [text Chap4]

Backtracking algorithms (exhaustive generation, exhaustive search, optimization)
Branch-and-bound (exhaustive search, optimization)

Topics for the Course

Kreher\&Stinson, Combinatorial Algorithms: generation, enumeration and search
(1) Generating elementary combinatorial objects [text Chap2] Sequential generation (successor), rank, unrank. Algorithms for subsets, k-subsets, permutations.
(2) Exhaustive Generation and Exhaustive Search [text Chap4]

Backtracking algorithms (exhaustive generation, exhaustive search, optimization)
Branch-and-bound (exhaustive search, optimization)
(3) Heuristic Search [text Chap 5] Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

Topics for the Course

Kreher\&Stinson, Combinatorial Algorithms: generation, enumeration and search
(1) Generating elementary combinatorial objects [text Chap2] Sequential generation (successor), rank, unrank. Algorithms for subsets, k-subsets, permutations.
(2) Exhaustive Generation and Exhaustive Search [text Chap4] Backtracking algorithms (exhaustive generation, exhaustive search, optimization)
Branch-and-bound (exhaustive search, optimization)
(3) Heuristic Search

Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.
(0) Computing Isomorphism and Isomorph-free Exhaustive Generation [text Chap 7 + Kaski\&Ostergard's book Chap 3,4] Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Course evaluation

- 45% Assignments 3 assignments, 15\% each covering: theory, algorithms, implementation
- 55\% Project: individual, chosen by student 5\% Project proposal (up to 1 page) 40\% Project paper (10-15 page) 10% Project presentation (15-20 minute talk) research (reading papers related to course topics), original work (involving one or more of: modelling, application, algorithm design, implementation, experimentation, analysis)

