Electrically programmable equivalentphase-shifted waveguide Bragg grating for multichannel signal processing

Weifeng Zhang and Jianping Yao

Microwave Photonics Research Laboratory School of Electrical Engineering and Computer Science University of Ottawa

uOttawa

L'Université canadienne Canada's university

OFC 2019 March 3-7, 2019, San Diego

Université d'Ottawa | University of Ottawa

www.uOttawa.ca

Introduction to equivalent phase-shifted (EPS) Bragg gratings

- EPS Bragg grating design and performance evaluation
- > Multichannel signal processing
- Conclusion

Introduction – fiber Bragg gratings

$$2 n_{eff} \Lambda = \lambda_o$$

Bragg condition

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Appl. Phys. Lett., vol. 32, pp. 647–649, 1978.

3

Introduction – fiber Bragg gratings

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Appl. Phys. Lett., vol. 32, pp. 647–649, 1978.

Introduction – waveguide gratings

✓ Uniform waveguide Bragg grating (through edge corrugations)

Need very high fabrication accuracy (nm range)

W. Zhang, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett. 26, 2383-2386, (2014)

Introduction – waveguide gratings

 Equivalent-phase-shifted (EPS) waveguide Bragg grating Uniform grating Sampling function sampling period P $P+\Delta P$ EPS grating $\theta = 2m\pi \frac{\Delta P}{P}$ equivalent phase shift

S. Blais and J. P. Yao, J. Lightw. Technol. 27, 1147-1154 (2009)

Introduction – waveguide gratings

Grating	Phase-shifted block length	
Conventional phase-shifted grating	1⁄4 λ	Need high fabrication accuracy (nm range)
EPS grating	hundreds of λ	Reduced by three orders of magnitude (µm range)

After fabrication, non-programmable

J. Sun, et. al, IEEE Photon. Technol. Lett. 24, 25–27 (2012)

Programmable EPS grating design

Programmable EPS grating design

Programmable EPS grating design

Performance evaluation: static state

 $\theta = 2m\pi \frac{\Delta P}{P}$

Performance evaluation: independent tuning

 Applying and tuning a bias voltage to the PN junctions in the on-modulation grating sections

 Applying and tuning a bias voltage to the PN junctions in the off-modulation grating sections

Performance evaluation: joint tuning

 ✓ 1. The two bias voltages are simultaneously and synchronously changed from −19 to +1 V.

 Z. Tuning the extinction ratio while the 3rd channel notch wavelength is maintained unchanged for different bias voltages.

Multichannel signal processing: temporal differentiation

A multichannel temporal differentiator with a channel spacing of 2.4 nm is experimentally demonstrated. The figure shows the measured temporally differentiated pulses corresponding to a differentiation order of (a) 0.53 at the +5th channel, and (b) 0.74 at the +7th channel.

Conclusion

- A silicon-based on-chip electrically programmable EPS waveguide Bragg grating was designed, fabricated and experimentally demonstrated.
- By incorporating the programmable EPS grating in a microwave photonic system, a multichannel microwave photonic differentiator was experimentally demonstrated.
- Incorporating more independent control sections would enrich the functionality.

Acknowledgements

CMC Microsystems

NSERC SPG program

